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Abstract

In recent years, there has been growing interest
in using NLP tools for decision support sys-
tems, particularly in Science, Technology, and
Innovation (STI). Among these, topic model-
ing has been widely used for analyzing large
document collections, such as scientific arti-
cles, research projects, or patents, yet its inte-
gration into decision-making systems remains
limited. This paper introduces CASE, a tool
for exploiting topic information for semantic
analysis of large corpora. The core of CASE is
a Solr engine with a customized indexing strat-
egy to represent information from Bayesian and
Neural topic models that allow efficient topic-
enriched searches. Through ad-hoc plug-ins,
CASE enables topic inference on new texts and
semantic search. We demonstrate the versatil-
ity and scalability of CASE through two use
cases: the calculation of aggregated STI indica-
tors and the implementation of a web service
to help evaluate research projects.

1 Introduction

How can public administration officials efficiently
manage thousands of grant proposals? How to find
the most appropriate researchers for specific fund-
ing calls? Topic models, beyond their traditional
uses in information retrieval and summarization
(Boyd-Graber et al., 2017), can play a major role
in these tasks tailored to Science, Technology, and
Innovation (STI) (Zhang et al., 2016).

Despite the recent dominance of large language
models (LLMs) in topic modeling research (Lam
et al., 2024; Pham et al., 2024; Reuter et al., 2024),
Bayesian and Neural topic models (Blei et al., 2003;
Bianchi et al., 2021a; Dieng et al., 2020) remain
pertinent, particularly in their interpretability and
ability to preserve document-topic and word-topic
distributions —which most of these new algorithms
disregard. This approach tailors applications such
as thematic trend analysis, topic-based document
retrieval, or similarity search.
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Figure 1: System Overview: A Solr-powered search en-
gine enhanced with custom plug-ins for indexing topic
model, and providing real-time topic inference capabili-
ties. A REST API provides access for web services or
direct user interaction.

Though LLM-based ranking models (Khattab
and Zaharia, 2020; Santhanam et al., 2022) excel
in information retrieval (IR) tasks requiring deep
contextual understanding, they rely on dense vec-
tors (embeddings) that behave as black-box models,
offering high-dimensional representations that lack
interpretability for answering specific STI-related
questions. Furthermore, the growing use of ded-
icated vector stores (e.g., FAISS, Pinecone) for
efficient retrieval introduces new approaches to IR
architectures, but their capabilities largely over-
lap with those of established systems like Lucene
(Yang et al., 2018; Xian et al., 2024).

Several studies have underscored the potential
of integrating topic information with Lucene (Has-
san et al., 2011; George et al., 2014; Chen and Xu,
2016; Rajapaksha and Silva, 2019). There is also
considerable work on developing topic modeling
tools focused on training and visualization (Ter-
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ragni et al., 2021; Babb et al., 2021). However,
these efforts do not directly address the exploita-
tion of topic models, particularly their integration
into more complex IR systems. This gap highlights
the necessity for tools that enhance the practical
application of topic models within broader informa-
tion systems, leveraging their interpretability and
thematic analysis capabilities.

To address this, we propose CASE, a tool de-
signed for leveraging topic models and seman-
tic analysis in large-scale, thematically diverse
datasets. CASE’s core is a Solr search engine op-
timized for search and retrieval tasks involving
large datasets. Using a novel approach for indexing
topic information and integrating several plugins
for topic-based similarity searches, CASE enables:

* Searching and filtering by document meta-
data and topic information;

« Efficient aggregation of search results with
partial document-topic assignments; and

* Semantic similarity searches based on topic-
based representations.

CASE aims to support STI managers and public
administration officials by simplifying tasks such
as expert identification, project proposals classifi-
cation, similarity checks against previously funded
projects, and alignment of researchers with rele-
vant funding opportunities. The tool includes a
RESTful API for seamless indexing and retrieval,
compatible with standalone usage or a user-friendly
frontend, packaged in Docker for easy deployment.

CASE is available on GitHub under an MIT li-
cense,! with a demo showcasing its functionalities.?

2 CASE

This section describes CASE’s solution for indexing
corpus and topic model information. It also covers
its architectural and functional descriptions.

2.1 Common representation of topic models

CASE employs a Solr engine to jointly index doc-
ument metadata and topic model information (see
Fig. 1). It supports any topic model adhering to the
common representation described in this section,
ensuring compatibility with various algorithms. Let
cqg (d=1,..., D) denote each document in corpus
C with a vocabulary size V', with w,,, v =1,...V

"https://github.com/Nemesis1303/CASE
*https://youtu.be/Iv366i91EXc
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Figure 2: CASE architecture: A Python-based REST
API interacts with the Solr engine, the user or frontend,
and the Inferencer service. In this setup, CASE is inte-
grated into a complete exploitation system.

being each of the words in the vocabulary. We as-
sume that any topic model trained on C' with K
topics provides:

Word-to-topic assignments. Each topic ¢, (kK =
1,..., K) is characterized by an over-the-words
distribution, where 3y ,, is the probability of ob-
serving word w,, given topic tx:

/Bk = [ﬁk,vavz 1,...,V], (1)
Brw = Plwy|ty), (2)
Document-to-topic assignments. Each docu-

ment is represented as a mixture of topics:

6, = lbuk=1. K, @
P(ty | ca), )

where 6, and 0, are the topic-based vector and
probability of topic ¢; for document cg.

For training, we use TARS,® a software that
supports interactive, user-in-the-loop topic mod-
eling within CASE’s common representation. TARS
includes algorithms such as LDA-MALLET (Mc-
Callum, 2002) (Bayesian-based), CTM (Bianchi
et al., 2021c¢,b), and BERTopic (Grootendorst, 2022)
(neural-based). Models can also be trained using
other implementations and subsequently mapped
to CASE’s structure. We exclude newer LLM-based
implementations (LLMs) (Lam et al., 2024; Pham
et al., 2024; Reuter et al., 2024) because they either
disregard or poorly approximate word-topic and
document-topic distributions, which are essential
for CASE’s indexed information.

Oar =

2.2 Selection of most relevant documents

Selecting the most representative documents for a
given topic is crucial for the correct interpretation

*https://github.com/Intel CompH2020/topicmodeler
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of the topics. This is usually done based on the
documents with the highest 6 values for the topic.
However, CASE implements a newly proposed cri-
terion:

1 &
S3a41 = o > Brawas Wi € {woli—i.  (5)
=1

Here, 534, represents the average of the topic-
word distribution values for all words in document
d for topic k, normalized to account for document
length. S34, is thus large for documents contain-
ing many words that fit well with topic k. We
expect the proposed method to provide more rep-
resentative documents than the @ criterion, as the
latter may select documents containing words that
are not very representative of the target topic (small
Bk.v), as long as no other topic fits better these
words, whereas 53, ;, is robust to this situation.

2.3 Architecture

CASE is a multi-container application (see Fig. 2,
“Python Dockers”) that builds on an Apache Solr
search engine in SolrCloud* mode for data storage
and retrieval. A Python-based RESTful API serves
as intermediate between the Solr engine and the
user (or frontend service) to provide a series of
endpoints for indexation and exploitation of both
collections and topic models. The Inferencer API
computes topic representations for new texts.

2.4 Corpus and topic information indexation

SolrCloud mode utilizes collections of shards/cores
to create logical indexes. A Document (the basic
unit stored and indexed within a collection) con-
tains one or more Fields, akin to rows and columns
in a traditional database. For CASE, we define three
collection types (see Fig. 3):

Corpus. Each dataset of text documents is asso-
ciated with one Corpus collection, and contains
corpus-related metadata, as well as topical docu-
ment representations, and pair-to-pair similarities
for each model associated to the corpus.

Model. Each topic model is stored in a different
Model collection, representing its topics as Solr
documents. Each model is associated with a Cor-
pus collection (its training dataset).

4SolrCloud is chosen over User-Managed mode to auto-
mate shard creation for large document corpora, removing the
need for manual configuration by the end user.

Topic N fields
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Doc #1 related fields * —
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Figure 3: Organization of Solr Collections: Corpora
contains one document per ingested corpus; each Cor-
pus collection stores information on the documents text
and metadata, as well as document-related topic infor-
mation; each topic model requires also its own collec-
tion and is associated to just one Corpus collection.

Endpoint Description
getModelInfo Retrieve statistics for all topics in a model
getBetasTopicById Retrieve the 3y, for the indicated model and

topic
Retrieve the list of most similar topics (and
their similarity) to a given topic

getMostCorrelatedTopics

getThetasDocById Retrieve the topic representation for a particu-
lar document

inferDoc Infer the topic representation for a provided
text fragment

getDocsWithHighSim Get the most similar documents to the one
provided based on topic representation

getTopicsLabels Retrieve the labels for all topics in a model

getTopicTopDocs Retrieve the ids of the most representative doc-

uments for a given topic

Table 1: Selection of endpoints available at the system
RESTful APIs. The endpoints included in the table are
associated to queries related to topic model exploitation.

Corpora. Each element of the collection repre-
sents a distinct corpus, including its associated
models and metadata. Only one Corpora collection
can exist per CASE deployment.

To store document-topic representations, we add
a new field to each document in the corpus col-
lection for every trained model. This field utilizes
Lucene’s payloads —custom binary data associated
with token positions and encoded in base64— to
store the representations, for which inverted in-
dexes are automatically created. Using this doc-
ument representation, along with Solr’s built-in
plugins for payload-based operations, enables effi-
cient storage, filtering, and retrieval of topic scores
associated with documents.

2.5 Functional description

To support information management and exploita-
tion from Solr and connected web services, CASE
includes two RESTful APIs. The first API handles
basic Solr operations, including collection manage-
ment (creation, indexing, deletion) and topic-based
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operations, such as filtering documents relevant for
a topic, or aggregating results, which can be effi-
ciently carried out benefiting from Solr inverted
indexes and caching implementations.

In addition to this, there are scenarios where
deriving the document-topic distribution for a user-
provided document not included in the dataset is
necessary. For this purpose, the second API (In-
ferencer API) provides endpoints using a wrapper
that supports topic inference using LDA-MALLET
and can be easily extended to other technologies,
such as CTM or BERTopic. While this endpoint can
function independently, it is primarily used as an
internal server within the TM API ecosystem.

Finally, we have developed two Java plug-ins for
Solr to enable semantic search based on the repre-
sentation of documents in the topic space. The first
plug-in allows to calculate the documents most
similar to a given text, while the second plug-in
exploits the pairwise distances among all indexed
documents, allowing to identify pairs of documents
very similar to each other. This process involves
calculating the complete similarity matrix during
the indexing phase, which scales quadratically with
the number of documents in the collection. To ad-
dress this, an approximation has been implemented
to improve scalability and efficiency.

Table 1 lists selected endpoints for queries us-
ing topic model information. Appendix §A shows
the complete lists of available endpoints at CASE’s
backend.

3 Case Studies

We demonstrate how CASE supports decision sup-
port systems in the STI domain through two real-
world use cases.

3.1 Topic-enriched aggregated indicators

Analyzing STI data is crucial for policy-making,
especially during the agenda-setting phase. Key
data sources include scientific abstracts, research
project summaries, and patents. This subsection
presents the analysis of scientific production in
Artificial Intelligence (Gago and Barroso, 2024)
and Cancer (Levi, 2024), two living labs (LLs)
from the H2020 IntelComp project.’

These living labs (LLs) validated IntelComp’s
tools, including CASE, by co-creating STI poli-
cies within their domains. Identifying policy ques-
tions is the first step toward determining STI policy

>https://intelcomp.eu/

needs (Markianidou et al., 2021). Using CASE,
the LLs addressed analysis of the research-related
datasets, providing relevant indicators for agenda
setting. For example, Fig. 4 represents the evolu-
tion of the number of papers per year and topic
in the Cancer domain. Based on this graph, stake-
holders can identify prevailing research trends (e.g.,
“Transcription and Molecular Mutations™), emerg-
ing or declining topics (e.g., the decline in publica-
tions from 2009 to 2010 and after 2019, probably
due to the financial crisis and the COVID-19 ir-
ruption, respectively), and potential research gaps
or areas of oversaturation to make decisions about
future funding or policy priorities.

Each living lab employed various datasets, in-
cluding one derived from OpenAIRE.® which in-
cludes metadata such as publication date, authors,
affiliations, and funding entities. The Al and Can-
cer datasets comprise 574, 346 and 2, 329, 760 pub-
lications, respectively, with Al publications identi-
fied using expert-validated keywords and Cancer
publications selected by domain experts.

Topic models were trained on these datasets us-
ing LDA-MALLET via TARS®. The number of top-
ics (K) was set to 25 after two domain experts
evaluated models with K € [10,40] for Al and
K € [25,50] for Cancer (see §3.2). LDA was cho-
sen over other TARS models for its superior topic
quality, as judged by project experts. The final
models were indexed in CASE’s Solr engine, along
with document metadata and topic information, en-
abling retrieval of aggregated indicators, such as:

I1. Number of publications per topic and year,
assigning each publication to all active topics.

I2. Same as I1, but with fractional counting, i.e.,
each publication’s contribution to its topics is
weighted by 3y .

I3. Number of publications per topic containing
terms deep learning (Al) / metastasis (cancer).

I4. Similar to I3, but using fractional counting.

Table 2 presents the calculation times and re-
source consumption (CPU and memory) for indi-
cators I1-14 across the Al and Cancer collections.
We compare Pandas filtering as a baseline for di-
rect computation with Solr queries to measure the
advantage of Solr’s built-in functionalities over

®https://graph.openaire.eu/
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Figure 4: Evolution of publication shares across topics from 2000 to 2020 in the Cancer domain. The topic model
was calculated with TARS, using LDA-MALLET for training. Labels were provided by ChatGPT and validated by

Cancer LL users.

Al - Pandas Al - Solr

Query  fime (s) CPU (%) Memory (MB) Time (s) CPU (%)  Memory (MB)
I 0.82+0.09 81.87+£7.25 4773.7+£93.1 0.08£0.015 118.95+66.39 1149.3+4.9
2 1954010 97.48+13.27 5548.9+146.5 0.49+0.009 102.99 +13.94 1208.4+4.7
I3 0754005 65324529  4404+0.00  0.009+0.001 82.04+40.8 1271.9+42.9
4 079+0.07 79.94+654  4404+0.00  0.0134£0.001 68.94+13.76  1308.1+3.2

Cancer - Pandas Cancer - Solr

Query  mime (s) CPU (%)  Memory (MB) Time (s) CPU (%)  Memory (MB)
11 2184016 5573+48.11 19444.8£168.6 0.2020.013 102.4+25.08  1319.6+1
2 7.06+022 96.29+10.14 20866.2+494.2 1.3540.19 10412+7.05 1324.3+£2.2
I3 1954016 97.69+15.32 18473.66+=0.00 0.008+0.001 60.22+21.64 1332.8+£0.2
4 2744033 9991+424  18627+27.5  0.02+£0.001 82.53+14.74 1337.8+£4.2

Table 2: Computation Time (s), CPU usage (%), and memory usage (MB) for indicators 11-14 using Pandas vs.
Solr-based Service across Al and Cancer datasets. Pandas statistics are derived by averaging the execution times
across 1000 runs of each query, with resource consumption measured at 1-second intervals. For Solr, the calculations
are based on 10 000 executions, aggregating the resource usage of all Docker containers involved in the CASE
process and monitoring also computational resource consumption every second.

Python data structures. To obtain comparable mea-
surements, all calculations were carried out on a
server with 96 Intel Xeon @ 2.10GHz CPUs. For
Pandas, the execution times are reported as the
mean and standard deviation over 1000 runs, with
CPU usage and RAM consumption monitored at 1-
second intervals throughout the process. Similarly,
for Solr, the same monitoring approach is used;
however, the number of runs is increased to 10 000
to obtain a reliable estimate of resource consump-
tion, considering the shorter execution times.

In all cases, Lucene’s inverted indexes allow for
a much faster filtering operation than Python. The
results show particularly significant gains for CASE
in the calculation of indicators I3 and 14, thanks to
Solr’s efficient term filtering capabilities. Notably,
CASE demonstrates excellent scalability for these
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indicators, with execution times remaining virtu-
ally constant as the dataset size increases. Indeed,
scalability stands out as one of the key advantages
of the Solr-based service, as CPU and memory con-
sumption remain almost unchanged when querying
the AI and Cancer datasets.

When comparing Solr to the Pandas implemen-
tation in terms of resource usage, Solr exhibits
slightly higher CPU consumption but significantly
lower memory requirements, which appear to be
mostly independent of the dataset size. Addition-
ally, fractional counting (12, I4) introduces a no-
ticeable CPU overhead in Pandas, whereas Solr
handles these calculations with minimal impact
on CPU or memory usage. This confirms the effi-
ciency of Solr’s payload-based approach for index-
ing document topics.



3.2 Ex-ante evaluation of research projects

This use case demonstrates the integration of CASE
within a complete system exploiting topic models
for the ex-ante evaluation of research projects, the
Evaluation Workbench (EWB). The service was
co-designed with Hcéres” in the context of Intel-
Comp’. While this study focuses on a dataset of
projects funded by Hcéres, the service can be eas-
ily extended for semantic exploration and search of
other text collections.

With the corpus and model information indexed
in the Solr database, deploying dashboards meet-
ing specific user requirements is straightforward
(see Figs. 6-12, and also the EWB demo video!!
in Appendix §B). The general view showcases
an interactive dashboard displaying various top-
ics within the model. Top keywords and a label
are displayed for each topic. Clicking on a topic
provides detailed information, including top defin-
ing words, word weights within the topic, topic
statistics (size, active document count, relevance,
and coherence), and a list with the most represen-
tative documents for the topic. Similar actions are
available in the temporal view, which is the direct
result of indicator 12 described in §3.1. All these
operations rely on CASE’s functionalities, in par-
ticular they activate the endpoints getModelInfo,
getBetasTopicBylId, getTopicsLabels.

Using the plugins discussed in §2.4, we can
also create similarity-based services. For example,
users can input a text fragment, and the service dis-
plays the most similar projects. This service uses
the InferDoc endpoint to calculate the topic repre-
sentation of the text and the getDocsWithHighSim
plugin for searching similar documents.

We conclude this subsection with an analysis of
the performance of the document selection criterion
S3 (see §2.2). Fig. 5 illustrates the performance
comparison between the § and S3 criteria for se-
lecting documents relevant to the identified topics.
For each topic, we selected 10 documents based on
each criterion and calculated the average number
of unique terms (left column) and total terms (right
column) from the topics’ top-10 relevant words that
appear in the selected documents.

It can be seen that the documents retrieved using
S3 consistently contain a similar number of unique
terms as those retrieved using 6, but a significantly
higher number of topic-relevant terms (as indicated
by the majority of topics lying above the diagonal).

"https://www.hceres.fr/en
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Figure 5: Average occurrences of the top 10 terms in
topics for the 10 most representative documents selected
according to larger 64,1 vs S34 . Each dot represents a
different topic. Left: average number of unique terms.
Right: average top-word occurrences.

In summary, S3 enables the identification of docu-
ments that align more closely with the top words
of each topic.

4 Future work

We plan to extend CASE functionality to support
additional features, such as:

Model updates. Currently, the system supports
updates to collections by either adding new doc-
uments using a pre-trained model or introducing
new topic models for an existing document collec-
tion. However, enabling functionality to update
an already indexed topic model when adding new
documents could be valuable. This would require
implementing queries that facilitate the training or
updating of the existing model and re-indexing the
document representations accordingly. When de-
ploying such functionality, the availability of GPUs
must be considered, as training or updating neural
models may become impractical without adequate
computational resources.

Contextual embeddings-based similarity. Re-
cent advances in language models and contex-
tual embeddings provide potentially more accurate
methods for calculating semantic similarity com-
pared to the current approach in the service, which
relies on the presence of topics in documents. Pre-
liminary implementations of this functionality are
already in place.
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Personalized dashboards. Solr can be used as
a backend to implement dashboards for navigating
and filtering topic-related information and other
metadata in its indexed datasets. While Solr pro-
vides efficient metadata filtering out-of-the-box,
filtering by topic information requires fractional
counting and specific plugins.

Natural language request processing with LLMs.
With the rise of conversational systems based on
LLMs, a natural extension would be to allow user
queries in natural language. This approach offers
a more intuitive and flexible information retrieval
mechanism, ensuring the system’s responses are
based on controlled data and methodologies.

5 Related Work

Several tools focus on visualizing topic models.
pyLDAvis? is widely used for representing topics in
2D space, allowing analysis of inter-topic distances,
topic content, and relevance. The Topic Model Vi-
sualization Engine (TMVE)® facilitates document
navigation and provides a corpus summary with
links to individual documents. stmBrowser enables
web-based exploration of Structural Topic Models
(STM) (Roberts et al., 2019), and David Mimno’s
JSLDA offers a similar platform for LDA models.
tsLDA builds upon jsLDA introducing new features
like hyperparameter optimization, intuitive visual-
izations, and streamlined workflows. dfr-browser'”
integrates topics, documents, words, and metadata
into a comprehensive visual field.

Despite their user-friendly designs, these tools
are not easy to deploy for users without program-
ming skills, and, apart frompyLDAvis, they are tied
to specific topic modeling libraries, limiting their
flexibility compared to an API-driven solution.

There is also some work on integrating topic
models with search engines to enhance information
retrieval. Hassan et al. 2011 applied LDA with
Lucene for indexing OCR-extracted documents,
representing topics as numeric fields in Solr docu-
ments, and using numeric range queries for topic
vectors. George et al. 2014 used LDA and latent
semantic indexing (LSI) to represent documents
in a topic space, improving retrieval by finding
document similarities in this space with various
ranking methods, but did not integrate topic-based

8hittps://github.com/bmabey/pyLDAvis

*https://github.com/ajbc/tmyv

https://github.com/agoldst/dfr-browser?tab=
readme-ov-file

similarity within Lucene. Chen and Xu 2016 devel-
oped the Educational Resource Retrieval Mecha-
nism (ERRM) using Lucene and LDA-based topic
indexing, demonstrating improved retrieval perfor-
mance. Rajapaksha and Silva 2019 proposed a hy-
brid semantic retrieval approach combining LDA,
community preferences, and collaborative filtering,
leveraging Lucene’s payloads for topic indexing
and re-ranking results based on topic content after
initial Lucene retrieval.

6 Conclusion

In this paper we have presented CASE, a Solr-based
system based for the joint indexing of metadata and
information from topic models. CASE allows effi-
cient implementation of functions such as search
or filtering by metadata and/or topics. Available
plugins provide semantic search based on text or
topic representations, including the possibility of
performing inference for texts provided by the user.

Two use cases in the field of STI demonstrated
the system’s versatility in supporting various ser-
vices, providing good scalability to work with large
document collections.
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Appendix

A Complete list of available endpoints in
TM RESTful API

The TM REST API is equipped with the following
functionalities, as shown in Figs. 7 and 8.

Generic Solr operations. Create/delete collec-
tion, list available collections, and generic queries.
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Corpora operations. Actions at the corpus level,
including creating and indexing corpora, deleting
and listing corpora, and managing fields for tex-
tual searches. This encompasses tasks such as
searching for documents with specific strings in
their titles, listing document collections (i.e., col-
lections storing corpus information for a specific
data collection), displaying metadata in a frontend
(if developed) for that corpus, and listing models
associated with a corpus.

Models operations. Actions at the model level,
including creating and indexing models, deleting,
and listing.

Queries to retrieve information from Solr.

The Inferencer API provides endpoints for infer-
ence, as well as for managing the inference models
created during the process (see Fig. 9).

B More on the ex-ante evaluation of
research projects

Figs. 10a and 10b display the interactive dashboard
illustrating the general and temporal evolution of
the topics identified by the selected model. By
clicking on any topic within these views, users can
access detailed information, including top defining
words, word weights within the topic, topic statis-
tics (size, active document count, relevance, and
coherence), and a list of the most representative
documents for the topic.

User studies revealed that users value the abil-
ity to perform an initial evaluation of topics and
mark those deemed valuable for a more thorough
evaluation later, as this saves time. To address this,
we incorporated user-specific information into the
Solr collections. Each user is assigned a unique
identifier, allowing us to index relevant topics for in-
dividual users through the Model collection. Based
on their selections, users can choose to visualize
either all topics or only those they have marked as
relevant (see Fig. 6), as showcased in Fig. 11 for
the General View.

A video showcasing CASE’s full integration with
a frontend for the ex-ante evaluation of STI funding
proposals in the H2020 IntelComp project’ (§3.2)
through the Evaluation Workbench (EWB) is also
available from the project’s YouTube channel.'!

https://www.youtube.com/watch?v=wIjwIsrTmFo&ab_
channel=FECYTciencia

Statistical Learning and Optimization +
Word Weight
v learning
statistical
data £k

(a) Add to relevant topics

Statistical Learning and Optimization —

Word Weight

v/ learning
statistical 56%
data 41%

(b) Remove from relevant topics

Figure 6: Users can manage the relevance of topics from
the detailed topic information view.
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Collections Generic Solr-related operations (collections creation and deletion, queries, etc.) ~
\m /collections/createCollection/ v}
‘m /collections/deleteCollection/ v}
\m /collections/listCollections/ v}
\m /collections/query/ v}

Corpora Corpora-related ions (i.e., i corpora)) ~
‘m /corpora/addSearcheableFields/ v:‘
‘m /corpora/deleteCorpus/ v:‘
‘m /corpora/deleteSearcheableFields/ v:‘
‘m /corpora/indexCorpus/ v}
\m /corpora/listAllCorpus/ v:‘
\m /corpora/listCorpusEWBdisplayed v:‘
\m /corpora/listCorpusModels/ v}
\m /corpora/listCorpusSearcheableFields/ v:‘

Models Modeis-related operations (i.e., index/delete models)) ~
\ /models/addRelevantTpcForUser/ v:‘
‘: B /models/deleteModel/ v:‘
‘: G50 /models/indexModel/ v:‘
[m /models/listAllHodels/ v}
‘: /models/removeRelevantTpcForUser/ v:‘

Figure 7: Complete list of endpoints used for managing generic Solr collections, along with specific endpoints for
handling our Corpus and Model collections, as displayed on the Swagger interface.

Queries Specfic Solr queries. A
[m /queries/getBOWbyDocsIDs/ v}
[m /queries/getBetasByWordAndTopicId/ v}
[m /queries/getBetasTopicById/ v}
[m /queries/getCorpusMetadataFields/ v:‘
[m /queries/getDocsSimilarToFreeText/ v:‘
‘m /queries/getDocsWithHi imWi yid/ v‘
\m /queries/getDocsWithString/ v:‘
\m /queries/getDocsWithThetasLargerThanThr/ v:‘
\m /queries/getLemmasDocById/ v}
\m /queries/getMetadataDocById/ v}
\m /queries/getModelInfo/ v}
[m /queries/getMostCorrelatedTopics/ v:‘
[m /queries/getNrDocsColl/ v:‘
[m /queries/getPairs0fDocsWithHighSim/ v}
[m /queries/getThetasAndDateAllDocs/ v}
[m /queries/getThetasDocById/ v}
[m /queries/getTopicTopDocs/ v:‘
[m /queries/getTopicsLabels/ v:‘
‘m /queries/getUserRelevantTopics/ v:‘

Figure 8: List of query endpoints for retrieving information from the Solr collections (Swagger interface).
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Inference operations A
\ /inference_operations/deleteInferenceModel/ v'
[m /inference_operations/inferCorpus/ v‘
‘m /inference_operations/inferDoc/ vk
‘m /inference_operations/listInferenceModels/ vk

Figure 9: List of endpoints available in the Inference API, as displayed on the Swagger interface.
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(b) Temporal View

Figure 10: Dashboards offering an overview of the topics in the HFRI collection. Each topic is depicted by a
differently colored square, with detailed information accessible by clicking on it. (a) General overview. Detailed
topic information can be accessed by clicking on it. The pop-up window shows topic statistics, the top defining
words, and its most representative projects. (b) Temporal evolution of the topics in the collection.
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Figure 11: Dashboard providing an overview of user-relevant topics within a specified collection. All functionalities
from the “All Topics” view (see Fig. 10a) are available.
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Figure 12: Service to retrieve documents indexed in Solr similar to a user-inputted document based on a trained
topic model. Users can then inspect the specific metadata of the retrieved documents.
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