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Abstract

Recent advancements in retrieval-augmented
generation have demonstrated impressive per-
formance on the question-answering task. How-
ever, most previous work predominantly fo-
cuses on text-based answers. Although some
studies have explored multimodal data, they
still fall short in generating comprehensive mul-
timodal answers, especially step-by-step tuto-
rials for accomplishing specific goals. This
capability is especially valuable in application
scenarios such as enterprise chatbots, customer
service systems, and educational platforms. In
this paper, we propose a simple and effective
framework, MuRAR (Multimodal Retrieval and
Answer Refinement). MuRAR starts by gener-
ating an initial text answer based on the user’s
question. It then retrieves multimodal data rel-
evant to the snippets of the initial text answer.
By leveraging the retrieved multimodal data
and contextual features, MuRAR refines the ini-
tial text answer to create a more comprehensive
and informative response. This highly adapt-
able framework can be easily integrated into
an enterprise chatbot to produce multimodal
answers with minimal modifications. Human
evaluations demonstrate that the multimodal
answers generated by MuRAR are significantly
more useful and readable than plain text re-
sponses. A video demo of MuRAR is available
at https://youtu.be/ykGRtyVVQpU.

1 Introduction

The emergence of retrieval-augmented generation
(RAG) techniques (Lewis et al., 2020; Gao et al.,
2023) and large language models (LLMs), such as
GPT models (Brown et al., 2020; OpenAI, 2023),
Gemini (Anil et al., 2023), and Llama (Touvron
et al., 2023), has significantly transformed the field
of question answering (QA) and improved the qual-
ity of responses generated by AI assistants. How-
ever, the current generation of AI assistants has lim-
itations in delivering comprehensive multimodal
answers to user questions, especially step-by-step

tutorials on accomplishing specific goals. This
capability is particularly valuable in enterprise sce-
narios, where critical information can often be ex-
tracted from product documentation that includes
multimodal data. In such cases, images, tables, and
videos are often crucial for understanding com-
plex, domain-specific topics. Enhancing AI assis-
tants with the ability to incorporate multimodal
information can, therefore, significantly improve
user comprehension and engagement (Zhang et al.,
2024; Singh et al., 2021). This improvement offers
several benefits, including increased productivity,
reduced barriers to entry, higher product adoption
rates, enhanced creativity, and improved user expe-
riences.

Previous work (Talmor et al., 2021; Kumar et al.,
2020; Joshi et al., 2024) has primarily focused on
leveraging various techniques to better understand
multimodal data as input and generate plain text an-
swers to a given query. In another scenario (Singh
et al., 2021; Wu et al., 2023), the output may consist
of either a text answer or a text answer accompa-
nied by a retrieved image or video appended at the
end. However, the existing solutions fail to ade-
quately address the challenges posed by complex
questions that require illustrating multiple steps to
achieve a goal and integrating various multimodal
content within the answer.

In summary, the main challenges are: a) How
to retrieve the relevant multimodal data that are
related and helpful to answer the user questions,
and b) How to generate a coherent multimodal an-
swer that integrates the retrieved multimodal data.
To address these challenges, we present MuRAR

(Multimodal Retrieval and Answer Refinement).
This simple and effective framework generates co-
herent multimodal answers containing retrieved
multimodal data, such as images, videos, and ta-
bles. Our framework comprises three main compo-
nents: text answer generation, source-based multi-
modal retrieval, and multimodal answer refinement.

https://youtu.be/ykGRtyVVQpU
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The text answer generation component retrieves
relevant text documents based on the user’s query
and generates an initial text answer using an LLM.
The source-based multimodal retrieval component
retrieves multimodal data that are relevant to the
text answer snippets in the initial text answer. Fi-
nally, the multimodal answer refinement compo-
nent prompts an LLM to generate the final answer
by integrating the retrieved multimodal data with
the initial text answer.

We implemented and applied this framework
on an enterprise-level AI assistant. To verify the
framework’s effectiveness, we evaluated the quality
of the multimodal answers on a human-annotated
dataset of 300 questions and answers. The human
evaluation results show that the MuRAR framework
effectively retrieves useful and relevant multimodal
data while maintaining answer readability. Further-
more, the multimodal answers were consistently
preferred over plain text answers. Our framework
can be adapted to other enterprise-level AI assis-
tants by collecting topic-specific multimodal data
and fine-tuning a topic-specific text retrieval model.
This work is, to our knowledge, the first to address
the problem of generating coherent multimodal an-
swers to user questions.

2 Design of MuRAR

Formally, given a user question q as input and a
set of multimodal data D = {DS , DI , DT , DV },
where {DS , DI , DT , DV } denote collections of
text document snippets, images, tables, and videos,
respectively, the objective is to generate a multi-
modal answer Amm = F (S, I, T, V ). Here, F
denotes a function that organizes a set of retrieved
multimodal data (S, I, T, V ) ∈ D, relevant to the
user’s question, into a coherent and informative
answer.

To achieve a high quality Amm, we propose
MuRAR, as illustrated in Figure 1. The text an-
swer generation component uses a RAG-style ap-
proach (Lewis et al., 2020; Gao et al., 2023),
first retrieving relevant text document snippets
S = {s1, s2, ..., sn} ∈ DS based on user query
q and then generating an initial text answer At by
prompting an LLM. Next, we retrieve multimodal
data, namely, I = {i1, i2, ..., im} ∈ DI , T =
{t1, t2, ..., tk} ∈ DT , and V = {v1, v2, ..., vl} ∈
DV that are relevant to the text answer. Finally, the
multimodal answer refinement component gener-
ates a final multimodal answer Amm by incorpo-

rating the retrieved multimodal data into the initial
text answer.

Notably, directly prompting or using techniques
such as chain-of-thought (Wei et al., 2022) with
LLMs for tasks involving both text and multimodal
data is ineffective for two reasons. First, the com-
plexity of the task overwhelms the LLM as it
needs to determine which data to reference, decide
whether to display multimodal data and figure out
where to place it within the answer. Additionally,
this complexity results in low-quality multimodal
answers.

2.1 Text Answer Generation

Our text answer generation component follows the
RAG-style approach. Specifically, we fine-tuned
a pre-trained text embedding model (Reimers and
Gurevych, 2019) on an in-house annotated dataset,
which includes labels indicating whether a text doc-
ument snippet si is relevant to a user query q. The
fine-tuned embedding model is then applied to the
text document snippets DS to create vector indexes
using FAISS (Johnson et al., 2019). These vector
indexes serve as a database for retrieving relevant
text document snippets by calculating the cosine
similarity between the user query q and each text
document snippet si. For each user query q, the top
five relevant text snippets are selected. An LLM
is then prompted with the user query q and the
retrieved top five text snippets to generate initial
text answer At. The detailed prompt is provided in
Appendix A.4.

2.2 Source-Based Multimodal Retrieval

The source-based multimodal retrieval component
involves two steps: source attribution and section-
level multimodal data retrieval.

Source Attribution. The initial text answer At is
segmented into multiple sentences, with each sen-
tence representing a continuous text answer snippet
a[i,j] spanning from the i-th token to the j-th to-
ken in At. Each text answer snippet a[i,j] is then
compared to every text document snippet in DS

by calculating the cosine similarity between their
embeddings. The text document snippet si with the
highest cosine similarity score is identified as the
source for a[i,j]. Notably, if the highest similarity
score is below 0.6, no source is assigned to a[i,j].
These text answer snippets and their sources are
the foundation for retrieving multimodal data.
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Figure 1: The architecture of the MuRAR framework.

Section-Level Multimodal Data Retrieval. For
each text answer snippet a[i,j] and its corresponding
source si, we first locate the original web document
containing si. We then identify the section where si
resides and collect all multimodal data within that
section. This approach significantly reduces the
search space for multimodal data and improves the
precision of the retrieval results. The multimodal
data may include images, tables, and videos. Mul-
timodal data are represented using contextual and
LLM-generated text features. The contextual text
features are derived from the paragraphs before and
after the multimodal data. For the LLM-generated
text features, we utilize the image captions gener-
ated by GPT-4 and the “alt” text attribute extracted
from the raw document HTML for images. For ta-
bles and videos, we use summarized table content
and summarized video transcripts generated by the
LLM, respectively.

To efficiently encode these text features, text em-
beddings are computed using the same fine-tuned
embedding model employed for text document re-
trieval. The multimodal data included in the mul-
timodal answer are retrieved based on the cosine
similarity between the text answer snippet a[i,j]
and the text embeddings of multimodal data. Only
the highest-ranked multimodal data are selected for
a text answer snippet. However, the same multi-
modal data may occasionally be selected for mul-
tiple text answer snippets, resulting in duplication
within the multimodal answer. To address this, we
only keep the multimodal data with the highest
similarity score from the retrieval results.

2.3 Multimodal Answer Refinement

After retrieving the multimodal data, an LLM is
prompted to refine the initial text answer into a

multimodal answer. The prompt includes the user
question q, initial text answer At, and retrieved
multimodal data accompanied by their contextual
text features.

To guide the LLM to generate multimodal an-
swers, placeholders are inserted into At after the
textual answer snippets corresponding to retrieved
multimodal data. Each placeholder includes the
URL of the multimodal data and its contextual text
features, ensuring the LLM incorporates relevant
information while minimizing the risk of gener-
ating irrelevant details and hallucinations. Addi-
tionally, the prompt includes several illustrative
question-answering examples to demostrate how
multimodal data should be integrated into the fi-
nal answer. An example prompt is provided in
Appendix A.4. The LLM is instructed to replace
the placeholders with appropriate descriptions and
modify the text answer snippets to produce a co-
herent and readable multimodal response. Finally,
for display in the user interface, the URLs for mul-
timodal data are converted into HTML elements,
enabling users to interact with the multimodal con-
tent directly.

3 User Interface

We implemented the MuRAR framework and inte-
grated it into a prototype version of the AI assistant
within Adobe Experience Platform.1 As illustrated
in Figure 2, when a user queries the AI assistant
(A), for example by asking, "What is a good tutorial
for creating a schema?", MuRAR retrieves relevant
text snippets (B) from documents on Adobe Expe-
rience League2 and generates an initial text answer.

1https://experienceleague.adobe.com/en/docs/experience-
platform/ai-assistant/home

2https://experienceleague.adobe.com/en/docs
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Figure 2: The interface of AI Assistant demonstrating multimodal answers is constructed by combining multimodal
data retrieval and answer refinement.

Subsequently, source attribution is applied to each
text answer snippet (C) to identify potential mul-
timodal data candidates. Next, MuRAR retrieves
the most relevant multimodal data (D1 and D2),
which, in this case, include a screenshot of the
Schemas Workspace and a video tutorial explaining
the schema creation process. Finally, MuRAR inte-
grates the relevant multimodal data into the initial
text answer through multimodal answer refinement.
Notably, the multimodal elements are interactive:
when a user clicks on an element, a pop-up window
appears, displaying the multimodal data in full size
for detailed viewing.

4 Data Collection

We curated two datasets to support the develop-
ment of the MuRAR framework and facilitate human
evaluation. A multimodal document dataset was
created to serve as D for developing the MuRAR

framework. Additionally, a multimodal question-
answering dataset was collected and annotated for

use in human evaluation.

4.1 Multimodal Document Dataset
The multimodal document dataset was collected
from 2,173 web documents from Adobe Experi-
ence League 3. As summarized in Table 1, the
dataset contains four modalities: text, image, table,
and video. The textual data includes both plain
text and tabular content, while the visual data com-
prises images and videos. Additional details about
the data collection process can be found in Ap-
pendix A.1.

The text content was scraped from web doc-
uments and tokenized using the GPT-2 tok-
enizer (Radford et al., 2019). Each document was
segmented into smaller snippets ranging from 11 to
1,500 tokens, resulting in a total of 18,071 text snip-
pets. For image data, we extracted image URLs
along with their surrounding textual context, which
includes the text preceding the image (pre-image

3https://experienceleague.adobe.com/en/docs

https://experienceleague.adobe.com/en/docs
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Modality Metric Value

Text Count 18,071
Avg content tokens 192

Image
Count 6,320
Avg context tokens 238
Avg caption tokens 94

Video
Count 253
Avg context tokens 91
Avg summary tokens 33

Table
Count 2,644
Avg context tokens 160
Avg table tokens 223

Table 1: Multimodal dataset statistics.

context) and the text following it (post-image con-
text). To enrich the dataset with more text features
for multimodal retrieval, GPT-4 was used to gener-
ate captions for the images, resulting in 6,320 anno-
tated image entries. Tables were extracted in JSON
format, along with their associated contextual text.
As with the image data, the contextual text for ta-
bles includes the text preceding and following the
table. This process yielded 2,646 table entries. For
video content, we collected video URLs, contex-
tual text, and transcripts. In cases where transcripts
were unavailable, videos were downloaded, and
Whisper (Radford et al., 2023) was used to gen-
erate transcripts from the audio. GPT-4 was then
employed to summarize these transcripts, resulting
in 253 video entries. For all modalities, additional
metadata were gathered, including the titles of the
web document and the headings of the sections
where the multimodal data were located.

4.2 Multimodal Question Answering Dataset

To construct a multimodal question-answer dataset,
we collected 764 real customer questions and ap-
plied MuRAR to generate answers. Among these,
306 questions were answered with multimodal data.
For human evaluation, we randomly sampled 150
questions from this subset of 306 to assess the qual-
ity of the generated answers. To analyze the impact
of different backbone LLMs on the quality of multi-
modal answers, we conducted a comparative study
using GPT-3.5 and GPT-4. For each model, we
generated 150 text-based and multimodal answers,
resulting in a total of 300 question-answer pairs.
This evaluation enabled us to compare the effec-
tiveness and coherence of multimodal responses
across the two models, providing insights into how

the choice of LLM influences performance.

5 Human Evaluation

To assess the effectiveness of our multimodal
question-answering system, we conducted a human
evaluation study in two phases: (1) single-model
evaluation and (2) pairwise comparison. The single-
model psychometric evaluation was designed to
measure three key metrics: usefulness, readability,
and relevance of the multimodal answer. For the
pairwise comparison, we used a preference-based
ranking to determine the overall user preference
between text-only and multimodal responses. No-
tably, we did not assess the quality of the text con-
tent itself but rather the added value of integrating
multimodal data into the text answers.

5.1 Study Setup

We compiled a dataset of 300 question-answer
pairs, evenly distributed between outputs from
GPT-3.5 and GPT-4 models. For each question,
both text-only and multimodal answers were gen-
erated. To evaluate the quality of these outputs,
we recruited eight expert annotators, all holding
advanced degrees in computer science with sub-
stantial experience in natural language processing
(NLP). The annotation process was conducted on
LabelStudio (Tkachenko et al., 2020-2022), with
each question-answer pair evaluated by at least
three experts.

5.2 Evaluation Schema

The annotators were asked to rate each multimodal
answer on a 5-point Likert scale (1 being lowest,
5 being highest) for the following metrics, which
were adapted from (Pradeep et al., 2024):

• Usefulness: This metric measures the extent to
which multimodal elements contribute to the user’s
comprehension of the text content. High scores in-
dicate that the multimodal output provides valuable
additional information, clarifies complex concepts,
or illustrates key points in ways that significantly
aid understanding.

• Readability: This assesses how well the mul-
timodal elements are integrated with the text, con-
sidering factors such as placement, size, and for-
matting. High scores indicate seamless integration
that enhances the overall reading experience.

• Relevance: This measures how closely the
multimodal elements relate to the content of the



131

text. High scores indicate that the multimodal out-
put directly supports or illustrates the textual con-
tent.

Model

Metric GPT-3.5 GPT-4 Average

Usefulness 3.34 3.60 3.47

Readability 3.49 3.76 3.63

Relevance 3.66 3.90 3.78

Preference Rate 0.82 0.90 0.86

Table 2: Evaluation results for multimodal answers gen-
erated by GPT-3.5 and GPT-4.

After rating the multimodal answers, annota-
tors were asked to indicate their overall prefer-
ence between the text-only version, the multimodal
version, or if they found them equally effective
(“Same”).

5.3 Results

Psychometric Evaluation Results. The psycho-
metric evaluation focused on three key aspects: use-
fulness, readability, and relevance. As shown in
Table 2, when examining the answers generated
by both GPT-3.5 and GPT-4, the usefulness metric
achieved an average score of 3.47, while readability
and relevance scored 3.63 and 3.78, respectively.
These scores, all above the midpoint of the scale
as reflected in Figure 3, suggest that our approach
performs well in producing useful, readable, and
relevant output. Qualitative feedback from anno-
tators further supports this conclusion, indicating
that the multimodal answer provides informative
additions to the text, is understandable through its
placement, and remains relevant to the associated
content. In addition, the average preference rating
of 0.86 demonstrates a strong overall preference
for our method compared to the text-only alterna-
tive. When comparing GPT-3.5 with GPT-4, we
found that using GPT-4 as the backbone LLM in-
creased all the metrics, showcasing its superior per-
formance in generating high-quality, multimodal
content within our framework.

Inter-Annotator Agreement. To assess annota-
tion reliability, we calculated two inter-annotator
agreement (IAA) measures (Table 3). Krippen-
dorff’s alpha (Krippendorff, 2011) was 0.4179 over-
all, indicating moderate agreement across all an-
notators. However, Cohen’s kappa (Cohen, 1960)

Agreement Metric

Metric&Model K-αnormal K-αcombined C-κ

Overall 0.4179 0.3437 0.7100

UsefulnessGPT-3.5 0.4150 0.3468 0.6879
UsefulnessGPT-4 0.5424 0.4993 0.7900
Usefulnessall 0.4758 0.4164 0.7383

ReadabilityGPT-3.5 0.3418 0.2147 0.6852
ReadabilityGPT-4 0.3187 0.2502 0.7048
Readabilityall 0.3424 0.2374 0.6968

RelevanceGPT-3.5 0.3369 0.2958 0.6459
RelevanceGPT-4 0.4465 0.3664 0.7291
Relevanceall 0.3925 0.3323 0.6872

Table 3: The inter-annotator agreement among the eight
annotators.

Model

Metric GPT-3.5 GPT-4 GPT-3.5 & GPT-4

Usefulness 0.9741 0.9059 0.9496

Readability 0.7686 0.7059 0.7500

Relevance 0.8576 0.8301 0.8519

Table 4: Standard deviation of evaluation metrics for
multimodal answers generated by GPT-3.5 and GPT-4.

between the top two annotators was 0.71, suggest-
ing substantial agreement when excluding outlier
data points. To investigate this discrepancy, we
conducted further analyses. The standard devia-
tion ranged from 0.8519 to 0.9496, indicating a
relatively tight distribution of scores (Table 4). An
annotator-specific analysis (Table 5) revealed that
Annotators 2 and 4, accounting for 26% and 5.8%
of annotations, respectively, had lower average
scores compared to others. Annotator 2 averaged
3.0619 (SD = 0.5648), while Annotator 4 averaged
3.3836 (SD = 0.253). These findings suggest that
the lower Krippendorff’s alpha may be attributed
to systematic differences in scoring patterns among
a subset of annotators rather than widespread dis-
agreement. It is worth noting that while annotators
were provided with in-depth instructions, they did
not undergo formal training.

In conclusion, despite some variability in IAA
results, the high Cohen’s kappa for the top anno-
tators, combined with strong psychometric evalu-
ation scores and preference ratings, supports the
overall reliability and effectiveness of our approach.
The MuRAR framwork demonstrates clear benefits
over text-only alternatives, providing valuable en-
hancements to textual content.
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Figure 3: Distribution of score counts for GPT-3.5, GPT-4, and the combined results of GPT-3.5 and GPT-4.

5.4 Limitations
We analyzed the errors and mistakes made by the
MuRAR framework during our human evaluation.
We identified some issues in the multimodal re-
trieval component. Although source attribution
ensures precision, it can result in low recall, i.e.,
relevant multimodal data for a text answer snip-
pet may not be in the same section or even the
same web document. Additionally, readability can
be affected by the multimodal answer refinement
component. For instance, multimodal data may
contain duplicated information already explained
in plain text. This repetition can negatively im-
pact the readability and clarity of the multimodal
answer, making it less effective for users.

6 Conclusion and Future Work

We introduced MuRAR, a framework designed to
enhance text-based responses by incorporating
images, tables, and videos. Human evaluations
showed that MuRAR’s multimodal answers are more
useful, readable, and relevant than text-only re-
sponses. The system integrates text answer gener-
ation, source-based multimodal retrieval, and an-
swer refinement to produce coherent multimodal
answers. Future work will focus on two key ar-
eas: improving the quality of multimodal answers
and enhancing the user experience. To improve the
quality of multimodal answers, we plan to incorpo-
rate a broader range of multimodal documents to
expand the dataset, train a custom LLM to replace
reliance on proprietary models such as GPT-3.5,
and address the relatively low recall performance
in multimodal data retrieval. To enhance the user
experience, future developments could include fea-
tures such as enabling videos to jump directly to
time segments relevant to the user’s question and

providing a more intuitive and seamless interaction
for users.

7 Ethical Considerations

Content Appropriateness. The MuRAR frame-
work integrates diverse data modalities, such as
images and videos, into answers. The multimodal
data used in this work is sourced from the Adobe
Experience Platform, a business-focused document
repository considered free from harmful content.
However, our framework is designed for flexibility
and can be applied to a wide range of multimodal
question-answering systems and data sources. This
flexibility introduces the risk of retrieving inappro-
priate, offensive, or irrelevant material from poorly
regulated or curated sources. Such content could
harm users or erode trust and safety. To address
this risk, it is essential to implement robust mecha-
nisms for filtering, validating, and contextualizing
multimodal content.

Privacy Concerns. Multimodal data retrieval
could inadvertently expose sensitive information.
Although the data source used in this work consists
of enterprise-level documents devoid of sensitive
content, the flexible nature of the MuRAR frame-
work allows integration with diverse data sources,
where privacy concerns may arise. Privacy-
preserving techniques are essential to protect sen-
sitive user and organizational data during retrieval
and integration, ensuring compliance with regula-
tions and maintaining trust.
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A Appendix

A.1 Multimodal Scraper Design

Our multimodal scraper design collects vari-
ous fields and metadata from Adobe Experience
League for images, videos, and tables. For images,
we gather the link to the image and the surrounding
context, specifically the text between the previous
and current image and between the current and next
image. The metadata collected includes the title
of the document, the header of each section con-
taining the image, and the URL of the document.
For videos, the fields collected include the URL of
the video, the context text before the video, and the
video transcript. The metadata gathered is similar,
including the document title, section headers, and
document URL. For tables, we collect the table
content in the form of a JSON string, the context
text before the table, and the document URL. Ad-
ditional metadata includes the document title and
the header of each section containing the table.

A.2 Human Evaluation Metrics

Usefulness Usefulness measures how much the
multimodal elements contribute to the user’s com-
prehension of the text content.

• 1 - Not at all useful: Multimodal elements pro-
vide no additional understanding or actively con-
fuse the user.

• 2 - Slightly useful: Multimodal elements offer
minimal enhancement to understanding.

• 3 - Moderately useful: Multimodal elements
provide some additional clarity or information.

• 4 - Very useful: Multimodal elements signifi-
cantly enhance understanding of the text.

• 5 - Extremely useful: Multimodal elements
are crucial for full comprehension of the text.

Readability Readability assesses how well the
multimodal elements are integrated with the text.

• 1 - Severely impairs readability: Multimodal
elements are poorly placed, causing significant dis-
ruption to reading flow.

• 2 - Somewhat impairs readability: Multimodal
elements are not well-integrated, causing minor
disruptions.

• 3 - Neutral impact on readability: Multimodal
elements neither enhance nor impair the reading
experience.

• 4 - Enhances readability: Multimodal elements
are well-placed, supporting smooth reading flow.
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Annotator Answers Usefulness Readability Relevance Preference (Multi-Modal / Text Only / Same)

No.1 294 3.6463 3.8367 4.0170 207 (70.41%) / 41 (13.95%) / 46 (15.65%)

No.2 237 2.8861 3.0295 3.2700 115 (48.52%) / 81 (34.18%) / 41 (17.30%)

No.3 259 3.7452 3.8340 3.8764 205 (79.15%) / 28 (10.81%) / 26 (10.04%)

No.4 53 3.0566 3.5094 3.5849 30 (56.60%) / 16 (30.19%) / 7 (13.21%)

No.5 9 4.1111 4.4444 4.4444 9 (100.0%) / 0 (0.0%) / 0 (0.0%)

No.6 22 4.0000 4.0909 4.1818 19 (86.36%) / 2 (9.09%) / 1 (4.55%)

No.7 24 4.2500 4.2083 4.6250 23 (95.83%) / 0 (0.0%) / 0 (0.0%)

No.8 2 4.0000 4.5000 4.5000 2 (100.0%) / 0 (0.0%) / 0 (0.0%)

Table 5: Per-annotator average scores and preference.

• 5 - Significantly enhances readability: Mul-
timodal elements are perfectly integrated, greatly
improving the reading experience.

Relevance Relevance measures how closely the
multimodal elements relate to the text content.

• 1 - Completely irrelevant: Multimodal ele-
ments have no apparent connection to the text.

• 2 - Mostly irrelevant: Multimodal elements
have only a tenuous connection to the text.

• 3 - Somewhat relevant: Multimodal elements
relate to the text but not be entirely on-point.

• 4 - Highly relevant: Multimodal elements
clearly support and illustrate the text content.

• 5 - Perfectly relevant: Multimodal elements
are essential to the text, providing crucial illustra-
tions or data.

Preference Grading Annotators also indicate
their overall preference between the text answer
and the multimodal answer:

• Text Only: Choose this if you believe the text
alone would be more effective without the multi-
modal elements.

• Multi-Modal: Select this if you think the com-
bination of text and multimodal elements provides
the best experience.

• Same: Choose this if you feel text-only and
multimodal versions are equally effective.

A.3 Additional Human Evaluation Results

Due to space constraints, we include additional
human evaluation results in the Appendix. The
average score and preference per annotator are pre-
sented in Table 5.

A.4 Prompts

Please note that the actual prompts used in the
system development differ from the prompts shown

below. These are simplified versions that capture
the essence of the prompt design.

Prompt for Text Answer Generation The
prompt for text answer generation can be found
in Figure 4.

Figure 4: Prompt for text answer generation.

Prompt for Multimodal Answer Refinement
The prompt for multimodal answer refinement can
be found in Figure 5.

Figure 5: Prompt for multimodal answer refinement.


