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Abstract

Large language models (LLMs) are the
foundation of many AI applications today.
However, despite their remarkable proficiency
in generating coherent text, questions linger
regarding their ability to perform fine-grained
linguistic annotation tasks, such as detecting
nouns or verbs, or identifying more complex
syntactic structures like clauses in input
texts. These tasks require precise syntactic
and semantic understanding of input text,
and when LLMs underperform on specific
linguistic structures, it raises concerns about
their reliability for detailed linguistic analysis
and whether their (even correct) outputs truly
reflect an understanding of the inputs. In this
paper, we empirically study the performance of
recent LLMs on fine-grained linguistic annota-
tion tasks. Through a series of experiments, we
find that recent LLMs show limited efficacy in
addressing linguistic queries and often struggle
with linguistically complex inputs. We show
that the most capable LLM (Llama3-70b)
makes notable errors in detecting linguistic
structures, such as misidentifying embedded
clauses, failing to recognize verb phrases, and
confusing complex nominals with clauses. Our
results provide insights to inform future ad-
vancements in LLM design and development.

1 Introduction

Large Language Models (LLMs) have revolution-
ized NLP by achieving remarkable performance
on a wide range of tasks and applications, includ-
ing zero-shot inference (Weller et al., 2020; Brown
et al., 2020); solving math problems (Wei et al.,
2022); representing human emotions (Li et al.,
2024); and serving as planners (Huang et al., 2022),
conversational agents (Ouyang et al., 2022), or text-
to-code convertors (Sun et al., 2023). Neverthe-
less, despite recent studies (Shen et al., 2021; Yu
et al., 2023; Chen et al., 2024) aiming to understand
Transformers (Vaswani et al., 2017) as the building
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Figure 1: Distribution of linguistic complexity in two
widely-used NLP datasets. The plots show (a): a strong
skew toward linguistically simple examples in the Penn
Treebank and (b): a concentration around moderate
complexity in CoNLL 2000, which highlights an over-
representation of easier or medium-difficulty samples
in the datasets.

block of LLMs, there is a lack of systematic eval-
uation of their ability in performing fine-grained
linguistic annotation tasks.

Recent work studied LLMs from different lin-
guistic perspectives, including grammar learning
with small models (Huebner et al., 2021), effect
of pre-training on learning linguistic properties
like the depth of parse tree or verb tense (Ala-
jrami and Aletras, 2022), the role of individual
neurons in POS tagging and chunking tasks (Dur-
rani et al., 2020), and the effect of prompt design
for detecting linguistic properties (Blevins et al.,
2023). However, existing evaluations are based
on NLP datasets where linguistically “easy” ex-
amples (see Section 2) are overrepresented. For
instance, Figure 1 shows histograms of the lin-
guistic complexity of samples in two widely-used
NLP datasets: Penn Treebank (Marcus et al., 1993)
and CoNLL 2000 (Tjong Kim Sang and Buchholz,
2000). The skewed distribution toward linguis-
tically easy or medium examples can artificially
inflate performance on NLP tasks1 and prevent true

1This phenomenon has challenged the NLP community
across natural language inference (NLI), POS tagging, and
parsing tasks, where models show human-level performance,
while lacking cognitive ability to address these tasks. For
example, recent work by Sinha et al. (2021) shows that BERT
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evaluation of models in NLP. We mitigate this bias
by reducing the effect of overrepresented examples,
i.e., categorizing samples based on their linguis-
tic complexity and uniformly sampling data from
distinct groups for a more reliable assessment.

We investigate the following research questions:
(1): how accurately can recent LLMs detect com-
plex linguistic structures in input text? (2): which
linguistic structures represent the blind spots of
recent LLMs–meaning the most challenging for
them? (3): how does the performance of LLMs
vary across different levels of linguistic complexity
of inputs? We answer these questions by designing
an empirical study for LLMs. The contributions
of this paper are in examining recent LLMs’s abil-
ity to detect specific linguistic structures across
varying levels of linguistic complexity, providing
meaningful insights into their limitations and bi-
ases, and highlighting potential avenues for future
improvements.

Experimental results show that recent LLMs
have limited efficacy in addressing linguistic
queries, particularly struggling with complex lin-
guistic structures such as complex nominals and
T-units. In particular, Llama3-70b and GPT-3.5 are
the most capable models among evaluated LLMs,
while still making mistakes on simple linguistic
queries. In addition, the performance of all evalu-
ated LLMs often substantially fluctuates as sample
complexity varies.

2 Background

Linguistic Complexity: quantifies the variabil-
ity and sophistication in productive vocabulary,
grammatical structures, and fluency in text data.
It has been extensively investigated in psycholin-
guistics literature (Wolfe-Quintero et al., 1998;
Zareva et al., 2005; Lu, 2010; Housen et al., 2019;
Biber et al., 2020); and examined in quantifying
language proficiency (Yannakoudakis et al., 2011;
Lu, 2012), readability assessment and text simpli-
fication (Feng et al., 2009; Xu et al., 2015; Xia
et al., 2016; Lee et al., 2021), and improving NLP
tasks (Wei et al., 2021).

Lexical Complexity: is concerned with lexical
density, sophistication, and variation. Lexical den-
sity is often quantified by the extent of information-
carrying words in inputs. Lexical sophistication

is invariant to random word order permutation in case of NLI,
which can be attributed to the high prevalence of linguistically
easy samples in NLI datasets (Elgaar and Amiri, 2023b).

measures the proportion of sophisticated or infre-
quent words in texts. Lexical Variation refers to the
diversity of vocabulary in text. Examples include
type-token ratio (Templin, 1957) and its variations
including D-measure (Malvern et al., 2004), which
determines lexical variation of text by finding the
curve that best fits the actual relationship between
types and tokens in input text.

Syntactic Complexity: determines variability
and sophistication in grammatical structures. A
sentence like “the mouse ate the cheese” can be
converted to its well-formed yet complex counter-
part “the mouse the cat the dog bit chased ate the
cheese,” which forces readers to suspend their par-
tial understanding of the sentence by encountering
subordinate clauses that substantially increase the
cognitive load of the sentence. Syntactic complex-
ity measures the length of production units at the
clausal, sentential, or T-unit levels; the amount of
subordination, e.g. number of clauses per T-unit;
the amount of coordination, e.g. number of coor-
dinate phrases per clause or T-unit; and the range
of surface and particular syntactic and morphologi-
cal structures, e.g. frequency and variety of tensed
forms (Wolfe-Quintero et al., 1998; Ortega, 2003).

Linguistic Knowledge of LLMs Blevins et al.
(2023) designed structured prompting to assess the
linguistic capabilities of LLMs. They provided
each LLM with fully labeled demonstrations, and
a query sentence and its partially tagged version.
Each predicted label was appended to the partially
tagged query along with the next word to itera-
tively tag the full query. They found that GPT-3.5
is robust to arbitrary label selections and ignores
labels conflicting with its prior knowledge, indi-
cating that the models can learn general linguistic
knowledge during pre-training, rather than simply
memorizing the data. Alajrami and Aletras (2022)
empirically compared linguistically-motivated (e.g.
masked language modeling (Devlin et al., 2019))
and non-linguistically motivated (e.g. masked first
character prediction (Yamaguchi et al., 2021)) pre-
training objectives for BERT on linguistic probing
tasks (Linzen et al., 2016; Warstadt et al., 2020).
They found the two objectives achieve similar per-
formance. Clark et al. (2019) showed that attention
heads in transformers attend to boundary tokens,
positional offsets, and whole sentence; while Voita
et al. (2019) showed that attention heads mainly
handle positions, syntax, and rare words. Dur-
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Please output any [Linguistic Structure]
in the following sentence: 
"I have my coffee with milk and sugar."

LLM AnnotationsTrue Annotations
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Figure 2: Workflow for finding linguistic blind spots of LLMs. As illustrated in Appendix A, GPT and other LLMs
have good knowledge of our target tasks and the relevant terminology used in the prompts. [Linguistic Structure] in
the prompts indicate any of the lexical or syntactic structures listed in Appendix C.

rani et al. (2020) compared linguistic knowledge
learned by LMs at neuron level. They narrowed
down neurons to a specific subset, located in lower
hidden layers for lexical knowledge and in higher
layers for semantic knowledge. Finally, Sharma
et al. (2023) found that learning non-linguistic
knowledge (e.g. numerical skills) sacrifices the
linguistic knowledge of LLMs, and Ettinger (2020)
found that BERT underperforms on commonsense,
pragmatic inference, and negation tasks.

3 Finding Linguistic Blind Spots

We evaluate LLMs on recognizing specific linguis-
tic structures (see below). For this purpose, we
use gold linguistic annotations, lexical complexity
analyzer from (Lu, 2012), and syntactic complex-
ity analyzer from (Lu, 2012) to quantify linguistic
complexity of samples. We note that the estima-
tions provided by these tools have perfect agree-
ment (based on Cohen’s Kappa) with estimations
provided by more recent linguistic complexity anal-
ysis tools (Lee et al., 2021; Lee and Lee, 2023).

Linguistic Structures: we consider different lev-
els of granularity: word-level structures like
nouns, verbs, adjectives, adverbs, prepositions, con-
junctions, numerals, determiners, punctuation, par-
ticles, and words that cannot be assigned a part-
of-speech (POS) tag; phrase-level structures like
noun phrases (NP), verb phrases (VP), adjective
phrases (ADJP), adverb phrases (ADVP), conjunc-
tion phrases (CONJP), complex nominals (CN);
and sentence-level structures like clauses (C), de-
pendent clauses (DT), T-units (T), and complex
T-units (CT). Appendix C lists these structures.

Data Sampling Strategy The overrepresentation
of easy and medium examples shown in Figure 1

suggests that the linguistic capability of LLMs
may have been overestimated in existing litera-
ture (Blevins et al., 2023; Yang and Tu, 2022; Shen
et al., 2018). For fair evaluation across the linguis-
tic complexity spectrum, we divide samples into
eight groups of increasing linguistic complexity, de-
termined using (Lu, 2010, 2012), and uniformly at
random sample from each group, leading to a total
number of 8×125 = 1k samples, denoted as U . For
comparison, we also randomly select 1k samples
from the dataset, which shows similar distribution
to the original distribution, denoted as R.

Prompting Strategies: we use zero-shot prompt-
ing to assess LLMs’ ability to identify individual
linguistic structures in input text in a question-
answering format, see Figure 2. We also investi-
gate other prompting techniques, such as manually
optimizing instructions, chain-of-thought (CoT)
prompting (Wei et al., 2022) and structured prompt-
ing (Blevins et al., 2023). However, in a small scale
experiment, the alternative approaches did not re-
sult in consistent performance improvement over
the zero-shot approach. This could be because
LLM’s current pretraining does not fully capture
the complex syntactic and semantic information of
inputs required for fine-grained linguistic annota-
tion. Instead, they might rely heavily on surface-
level patterns, which limits the impact of more
advanced prompting strategies.

4 Experimental Setup

Dataset & Evaluation: We use the CoNLL
2000 (Tjong Kim Sang and Buchholz, 2000) subset
of the Penn Treebank corpus (Marcus et al., 1993)
(Wall Street Journal (WSJ) sections 15, 16, 17, 18,
20), which provides ground truth POS tags and syn-
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LLM Sampling P R F1

Llama3-70b R 31.3 30.8 29.2
Llama3-70b U 28.2 27.5 26.1

Llama3-8b R 24.0 26.8 23.2
Llama3-8b U 21.8 24.0 20.8

GPT-3.5 R 21.6 26.1 21.2
GPT-3.5 U 20.4 23.5 19.5

Llama2-70b R 13.4 21.4 14.7
Llama2-70b U 11.8 18.4 12.8

Mixtral-8x7b R 11.0 25.4 13.0
Mixtral-8x7b U 10.2 22.5 11.8

Mistral-7b R 7.4 15.2 8.0
Mistral-7b U 6.9 13.5 7.5

Llama2-7b R 7.0 9.8 7.4
Llama2-7b U 7.0 9.7 7.3

Gemini R 1.2 1.2 1.0
Gemini U 1.2 1.2 1.1

Table 1: Average performance in identifying linguistic
structures. We compute precision, recall, and F1 for
each sample, and average them across all samples to as-
sess LLM performance in detecting linguistic structures.

tactic annotations. We use standard pre-processing
to convert POS tags to Universal POS tags (Blevins
et al., 2023). Following previous work (Blevins
et al., 2023), we compute precision, recall, and F1
score for each sample, and average them across all
samples to evaluate LLM performance in recogniz-
ing linguistic structures.

Large Language Models: We use several robust
LLMs including GPT-3.5 (Ouyang et al., 2022)
(gpt-3.5-0613), Gemini-Pro 1.0 (Team et al.,
2023), Llama3 (7B, 13B, 70B) (Touvron et al.,
2023), Llama2 (7B, 13B, 70B), and Mistral (7B,
8x7B) (Jiang et al., 2023, 2024).

5 Main Results

5.1 Deficient Linguistic Performance of LLMs

Tables 1 show significant performance differences
between LLMs when tasked with identifying lin-
guistic structures across different sampling strate-
gies. Despite outperforming other LLMs by a
large margin, Llama3-70b, Llama3-8b, and GPT-
3.5 have considerably low performance in identi-
fying linguistic structures. Among the evaluated
LLMs, Llama3-70b performs the best, with aver-
age precision, recall, and F1 score of 31.3, 30.8,
and 29.2 on randomly selected samples (R), and
28.2, 27.5, and 26.1 on uniformly selected samples
(U ). However, these results are substantially lower

than that of traditional models with significantly
smaller sizes (Manning et al., 2014).

In addition, Gemini, Llama-2 and Mistral show
poor performance across all settings, indicating that
many linguistic structures are indeed a blind spot
for these LLMs. Larger scales of Llama2 and Mis-
tral show slightly better performance, but still lim-
ited compared to GPT-3.5 and Llama3. These mod-
els often recognize the entire sentence as a phrase,
can’t distinguish between noun phrases (NPs) and
verb phrases (VPs), and show poor performance in
detecting clauses. Surprisingly, Gemini lacks the
ability to identify linguistic structures, with an aver-
age F1 score close to 0. Through manual analysis,
we find that Gemini often misinterprets linguistic
queries with harmful content, see Section 6.2.

5.2 Task Complexity

We find all evaluated LLMs show stronger ca-
pability in detecting simpler linguistic structures
(e.g. word-level) than more complex structures (e.g.
sentence-level). Specifically, GPT-3.5 achieves
an average F1 scores of 37.5 (U) and 34.4 (R)
on word-level structures, but close to zero F1 on
phrase-level and sentence-level structures, see Ta-
ble 2. For some complex structures including
verb phrase (VP), complex nominal (CN), depen-
dent clause (DC), T-unit (T), and complex T-unit
(CT), all LLMs have close to zero F1 score. This
might be because these complex structures require
a model to detect simpler structures (e.g. POS tags)
and build on them in a compositional manner to cor-
rectly identify the more complex ones. Our results
show that LLMs can accomplish simpler linguis-
tic tasks but fail to perform complex ones, which
mainly require knowledge about compositionality.

GPT-3.5 Performance: As shown in Table 2,
word-level structures such as nouns, verbs, and
punctuation are generally better annotated by GPT-
3.5, while phrase-level and sentence-level struc-
tures, particularly verb phrases (VP), clauses (C),
and complex T-units (CT), have significantly lower
performance. These high-level structures are in-
deed blind spots for existing LLMs, due to their
complexity and linguistic understanding required
to accurately identify them. Overall, GPT-3.5 tends
to perform better on R than on U across most
word-level and phrase-level structures. Specifically,
on randomly selected samples, GPT-3.5 achieves
average F1 scores of 37.5, 4.0, and 0.0 on word-
level, phrase-level, and sentence-level structures
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respectively. On U , GPT-3.5 achieves lower aver-
age F1 scores of 34.4 for word-level structures, 4.2
for phrase-level structures, and remains at 0.0 for
sentence-level structures. These results indicates

Structure Sampling P R F1

Word-level Structure

PUNC R 82.5 77.4 77.4
PUNC U 86.1 79.5 80.9
NOUN R 71.6 65.6 66.1
NOUN U 67.6 64.3 62.9
VERB R 61.4 61.4 55.9
VERB U 53.9 51.0 47.7
DET R 56.4 56.2 50.7
DET U 50.3 47.9 43.4
ADP R 48.7 60.1 50.2
ADP U 42.0 47.7 41.6
ADJ R 26.5 43.7 29.1
ADJ U 22.7 32.9 23.1
ADV R 25.1 37.0 26.6
ADV U 25.8 33.4 25.8
PRON R 18.0 35.1 20.1
PRON U 17.0 32.7 18.8
PRT R 8.5 34.7 12.7
PRT U 8.1 30.8 11.6
CONJ R 30.3 30.9 29.1
CONJ U 28.8 28.8 27.0
NUM R 31.5 29.8 29.7
NUM U 30.3 28.6 28.6
Average R 38.6 44.8 37.5
Average U 36.2 40.2 34.4

Phrase-level Structure

ADVP R 6.0 22.8 8.1
ADVP U 6.5 20.4 7.9
NP R 11.5 14.0 11.8
NP U 12.3 14.1 12.2
ADJP R 1.2 5.9 1.8
ADJP U 1.7 5.8 2.1
VP R 2.2 3.3 2.3
VP U 2.7 3.6 2.7
CONJP R 0.0 0.0 0.0
CONJP U 0.0 0.0 0.0
CN R 0.0 0.1 0.0
CN U 0.0 0.0 0.0
Average R 3.5 7.7 4.0
Average U 3.9 7.4 4.2

Sentence-level Structure

C R 0.1 0.3 0.1
C U 0.0 0.1 0.1
DC R 0.0 0.0 0.0
DC U 0.0 0.1 0.0
T R 0.0 0.0 0.0
T U 0.0 0.0 0.0
CT R 0.0 0.0 0.0
CT U 0.0 0.0 0.0
Average R 0.0 0.0 0.0
Average U 0.0 0.0 0.0

Table 2: Linguistic annotation performance of GPT-3.5
across different linguistic structure groups. We compute
precision, recall, and F1 for each sample, and average
them across all samples to assess LLM performance in
detecting linguistic structures.

the model’s relative strength in handling word-level
structures but its significant limitation on more
complex structures.

5.3 Linguistic Complexity

Performance Drop on Complexity-Balanced
Samples: We observe significant differences in
LLMs’ performances on R and U , as determined
by a t-test at 95% confidence interval. All evalu-
ated LLMs (GPT-3.5, Gemini, Llama3, Llama2,
Mistral) show significant decrease in performance
on uniformly selected samples (U) compared to
randomly selected ones (R). The only exceptions
are Gemini and Llama2-7B, which is likely due to
their already low performance on both R and U .
For GPT-3.5, the performance drops from an F1
score of 21.2 to 19.5, with significant p-value of
1e-7. We note that although the performance con-
sistently and significantly decreases across models
from R to U, the absolute drop is small to modest.
This may be due to the already low overall per-
formance ceiling on these tasks, where even small
differences are meaningful; the models’ relative
robustness to certain types of linguistic complex-
ity, despite persistent weaknesses on edge cases
and harder structures; or the prevalence of easier
(word-level) structures compared to more complex
(phrase- or sentence-level) ones in the set of lin-
guistic structures we investigate.

Linguistic Complexity Fluctuation: We find
that LLMs’ performance fluctuate with increas-
ing linguistic complexity of inputs, as shown in
Figure 3 for GPT-3.5; see performance of other
LLMs in Appendix B Figures 9–15. Specifically,
the performance of GPT-3.5 improves initially but
then declines on structures like verbs, nouns, pro-
nouns, adjectives, and adverbs as linguistic com-
plexity increases, with F1 scores ranging from 0 to
50. This suggest that expert-defined linguistic com-
plexity (Lu, 2010, 2012) may not align with how
LLMs view complexity, which is an underexplored
topic. Interestingly, for other structures like punc-
tuation (PUNC), we observe the opposite perfor-
mance trend. This is likely due to the unique nature
of these linguistic structures as punctuation marks
typically follow more predictable and less com-
plex rules compared to other linguistic structures
like verbs or nouns. In addition, performance trend
vary substantially across different LLMs and scales.
For instance, Llama3-70b consistently shows an in-
verted U-shaped (

⋂
) performance pattern, while
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Figure 3: Performance of GPT-3.5 on texts of increasing linguistic complexity. GPT-3.5 achieves close to zero
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Figure 4: Confusion matrix of POS tagging on GPT-3.5.
Darker indicates larger value. Diagonal/off-diagonal ele-
ments represent correct/wrong predictions respectively.

Llama2-70b have unique trends on noun and punc-
tuation, which indicate model-specific challenges
with different linguistic structures.

POS Tag Errors in GPT-3.5: Figure 4 shows a
confusion matrix that assess the POS tags gener-
ated by GPT-3.5 Most of the errors stem from the
model’s failure to detect specific tags, denoted as
“MISSING.” The higher occurrence of MISSING
cases is likely due to the increased complexity and
linguistic knowledge required for these tasks–the
need to identify and label all instances of linguistic
structures in inputs. In addition, GPT-3.5 often con-
fuses different POS tags with pronouns. This could
be because pronouns often appear in diverse con-
texts where their function can be easily confused
with other POS tags, such as determiners or nouns.
In addition, GPT-3.5 (and other LLMs) tend to rely
on surface-level patterns rather than deep linguis-
tic understanding. Pronouns frequently co-occur
within sentences, and the model may overgeneral-
ize their patterns to other words.

Entity NOUN VERB ADJ ADV ADP CONJ DET

# Dup. 334 370 93 156 526 400 635
# Succ. 0 1 0 0 5 1 2

Table 3: GPT-3.5 performance on samples that contain
multiple instances of the same linguistic structure. Dup.
indicates number of such texts (out of 1K) for each
structure and Succ. indicates cases where all instances
of the same POS tag are retrieved.

5.4 Multiple Structures and False Positives

When a samples contains multiple occurrences of
the same linguistic structure, such as nouns, LLMs
often struggle to retrieve all instances of of those
structures. Table 3 shows that GPT-3.5 consistently
fails to identify all nouns in any of the 334 samples
containing more than one noun. This limitations ex-
tends beyond open-class words to closed-class tags
such as prepositions (ADP), conjunctions (CONJ)
and even determiners (DET).

We also observe that when a particular linguistic
structure is absent in a given sample, LLMs still fre-
quently make inaccurate predictions of its presence.
Specifically for GPT-3.5, we find that in 6,892 out
of 21,000 queries (33.9%), GPT-3.5 generates false
positive predictions. Figure 5 shows the distribu-
tion of such errors across POS tag categories. The
results show that GPT-3.5 often predict the exis-
tence of numerals (NUM), conjunctions (CONJ)
and pronouns (PRON) when they are not present in
the inputs. We conjecture that this behavior is due
to biases in training data where certain words or
structures co-occur frequently and the model learns
to predict the presence of these words or structures
based on relevant patterns in the training data, even
when they don’t exist in the input. For instance, if a
sentence discusses quantities, the model might pre-
dict numerals. Therefore, false positive predictions
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Figure 5: Distribution of false positive predictions by
GPT-3.5 for absent linguistic structures in input. All
evaluated LLMs show very similar distribution

for linguistic structures is common. In addition,
all LLMs achieve higher recall than precision, es-
pecially all scales of LLaMA (see Table 1), again
indicating that LLMs tend to retrieve more false
positives than false negatives.

5.5 Model Capacity

We observe that models with higher capacity show
slightly better performance. We evaluate the effect
of model capacity, measured by the number of pa-
rameters, in performing fine-grained linguistic an-
notation tasks by comparing two scales of Llama3,
Llama2, and Mistral, see Table 1. All models show
improved or maintained linguistic performance as
their capacity increases. However, it’s noteworthy
that the performance advantage may not be sig-
nificant enough compared to the increase of scale.
Specifically, using a 10 times larger Llama3 and
Llama2 only boosts F1 score by 5.8 and 5.0, and 7.3
and 5.5 on randomly and uniformly sampled data
respectively. The performance gain is also smaller
on uniformly sampled inputs across all LLMs, due
to the diverse inputs with various linguistic com-
plexity, which outweighs model scale.

5.6 Dense model vs. Sparse model

Scaling up LLMs with Mixture-of-Experts
(MoE) (Shazeer et al., 2017) in a sparse manner
is a more efficient approach than dense scaling.
We find that MoE can effectively boost LLM
performance, see Mixtral 8x7b vs. Mistral-7b
in Table 1. The performance of the MoE-based
model–Mixtral 8x7b–is also comparable to that
of Llama2-70b, a dense model of similar scale.
This suggests that sparsity in LLMs is not a key
or limiting factor in their fine-grained linguistic
annotation ability.

6 Discussion

6.1 Limitations and Failure Cases
We identify significant limitations in the perfor-
mance of the evaluated LLMs when responding
to linguistic queries. Since GPT-3.5 is one of the
most capable models with instruction-following ca-
pabilities in the evaluated LLMs, we mainly focus
on its limitations. GPT-3.5 may fail on linguis-
tically easy examples. For instance, it does not
detect any of the 34 nouns that appear in the eas-
iest linguistic examples in our dataset. GPT-3.5
(and most evaluated LLMs) may occasionally skip
tokens in their responses. For example, they may
skip tagging nouns or punctuation in inputs, which
reduces their overall performance. They also gener-
ate ill-formatted outputs, including missing tags
or corrupted parse trees. This is unexpected given
that GPT-3.5 have a good knowledge about the def-
inition of the linguistic tasks and required format;
see Appendix A, Figures 6–8. GPT-3.5 (and most
evaluated LLMs) may generate biased outputs.
We find that the evaluated LLMs are biased to out-
put common tokens and concepts, such as nouns
and pronouns, while neglecting uncommon ones.
Table 4 provides several example outputs. The first
two show the tendency of GPT-3.5 to misclassify
familiar structures such as nouns as adjectives or
adverbs (first row) or verbs (second row). In addi-
tion, in may skip generating tags, see highlighted
words “The” and “from” in Table 4. Note that the
third example also shows GPT-3.5 mislabels many
tokens, frequently replacing the correct POS tags
with “PRON” or other incorrect tags.

6.2 Quality of Alignments
The LLMs we consider for this study have
instruction-following capabilities. However, their
performances in following linguistic-related in-
structions vary considerably. We find that GPT-3.5
tends to follow instructions better than other LLMs
evaluated in our experiments. On the other hand,
LLaMA-2 and LLaMA-3 generate irrelevant out-
puts including auxiliary text and special characters
such as “\” and “>”, even if we explicitly prompt
them not to generate such characters. We note that
the base model of GPT-3.5 has been fine-tuned on
code data, which helps the model understand struc-
tured and instructional input. In addition, reinforce-
ment learning from human feedback (RLHF) (Sti-
ennon et al., 2020) is a more effective method to
align LLMs for following instructions than fine-
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Type Expected output Output by GPT-3.5

Easy example He-PRON remains-VERB chief-ADJ executive-
NOUN officer-NOUN .-PUNC

He-PRON remains-VERB chief-ADJ
executive-ADJ officer-ADV .-PUNC

Confusion

The-DET consensus-NOUN calls-VERB for-ADP
a-DET 0.5-NUM %-NOUN increase-NOUN in-
ADP September-NOUN personal-ADJ income-
NOUN and-CONJ a-DET 0.3-NUM %-NOUN
gain-NOUN in-ADP consumption-NOUN .-PUNC

The-PRON consensus-NOUN calls-VERB for-
PRON a-PRON 0.5-ADJ %-PUNC increase-VERB
in-PRON September-NOUN personal-MISSING
income-MISSING and-PRON a-PRON 0.3-ADJ
%-PUNC gain-VERB in-PRON consumption-
NOUN .-PUNC

Skip token

The-DET department-NOUN has-VERB collected-
VERB over-ADV $-PUNC 6.5-NUM million-NUM
from-ADP brokers-NOUN so-ADV far-ADV and-
CONJ recommended-VERB more-ADJ than-ADP
30-NUM of-ADP them-PRON for-ADP criminal-
ADJ prosecution-NOUN .-PUNC

The department-NOUN has-PRON collected-
VERB over-PRON $-PRON 6.5-PRON million-
PRON from brokers-NOUN so-PRON far-PRON
and-PRON recommended-VERB more-PRON than-
PRON 30-NOUN of-PRON them-PRON for-PRON
criminal-PRON prosecution-PRON .-PUNC

Table 4: Summary of inaccurate, low quality and erroneous linguistic content generated by GPT-3.5.

tuning with conversation data (Zheng et al., 2023)
and instruction tuning (Chung et al., 2022). In
addition, GPT-3.5 has a much larger number of
parameters, much larger capacity, than our other
evaluated LLMs.

We find that Gemini rejects 24,630 prompts due
to safety concerns related to sexual content, hate
speech, harassment. Since we prompt Gemini to
perform linguistic tasks, we conclude Gemini mis-
interpret linguistic queries with harmful contents,
and it may have been superficially aligned (Zhou
et al., 2023) to restrict its ability when process-
ing sensitive words in the prompt. It is also
over-aligned in terms of security-related content,
leading to degenerated and undesired behavior.

Furthermore, we find that small scales of
LLaMA-2 and Mistral do not follow instructions.
They sometimes simply echo back the input sen-
tence without linguistic annotation, responding
they don’t understand what the task is, or ask for
the input to be processed. We hypothesize that
this is strongly correlated with the distribution of
instruction-tuning data, where linguistic instruc-
tions do not appear frequently.

6.3 Differences among Prompting Strategies

Prompting format and strategies differ in how they
elicit knowledge from LLMs. However, we find
that on identifying linguistic structures, adding in-
context examples (Brown et al., 2020), CoT (Huang
et al., 2022) or ReAct (Yao et al., 2023) provide
only trivial performance gain over the plain prompt
(0.05, 0.02 and 0.03 in F1 score respectively). We
hypothesize that identifying linguistic structures,
especially the complex ones, requires fundamental

understanding of syntax and semantics, while CoT
and ReAct focus on eliciting reasoning capabilities
of LLMs, which is not sufficient.

6.4 Potential Solutions
Addressing the above limitations and biases re-
quires developing effective data curation and train-
ing strategies using a linguist-in-the-loop process.
Linguistically equitable and diverse datasets with
balanced presence of linguistic structures (that
specifically avoid overrepresentation of linguisti-
cally easy samples) are essential for NLP and for
analyzing and understanding LLMs from a linguis-
tic perspective. In what follows, we provide several
avenues for investigating the above limitations.

Direct Training: Fine-tuning LLMs with tar-
geted challenging examples, like those carrying
complex sentence structures, or augmenting data
to increase exposure to challenging examples can
improve LLM’s performance on fine-grained lin-
guistic annotation tasks (Nguyen et al., 2024).
The resulting computational costs can be allevi-
ated through Parameter-Efficient Fine-Tuning tech-
niques (Hu et al., 2022; Su et al., 2023).

Better Instructions: Designing linguistic in-
structions with sufficient context information to
improve contextual understanding can potentially
guide the model in handling complex structures.
However, it would be challenging to generalize
instructions to all linguistic structures and LLMs.

Curriculum Learning: LLM’s performance on
challenging linguistic structures could be improved
by gradually training through a linguistic curricu-
lum (Elgaar and Amiri, 2023a). A curriculum is a
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planned sequence of learning materials (a training
paradigm) and an effective one can make learn-
ing efficient and effective for humans (Nishimura,
2018; Tabibian et al., 2019) and computers (Ben-
gio et al., 2009). Curriculum learning techniques
can present progressively increase the complexity
of the linguistic structure of training samples, e.g.
starting with easier structures before more complex
ones to potentially improve LLM’s performance on
fine-grained linguistic annotation tasks.

Retrieval Augmented Generation: Incorporat-
ing documents with relevant linguistic knowledge
retrieved from trustworthy sources can complement
LLMs’ knowledge (Lewis et al., 2020). For exam-
ple, definitions of complex syntactic structures such
as clauses and T-units can be retrieved to support
more accurate analysis and generation. However,
care must be taken to mitigate potential biases intro-
duced within retrieval models (Ziems et al., 2024;
Cheng and Amiri, 2025).

Tool Learning: LLMs can be trained to use
tools (Schick et al., 2023), either by updating their
parametric knowledge or interacting with tools di-
rectly. Training LLMs to use external linguistic
tools, such as those discussed in this work (Lu,
2010, 2012; Lee et al., 2021; Lee and Lee, 2023),
can potentially improve LLMs’ capabilities on fine-
grained linguistic tasks by complementing their
internal representations with structured linguistic
knowledge.

Human-in-the-Loop: Using a linguist-in-the-
loop approach can provide a valuable feedback for
refining model outputs. Expert input can help cor-
rect linguistic errors, mitigate biases, and guide
the model toward more accurate and interpretable
language understanding (Parrish et al., 2021).

7 Conclusion

We empirically study the ability of recent LLMs
in annotating linguistic structures at different lev-
els of linguistic complexity. Our study determines
how accurately recent LLMs can detect complex
linguistic structures in input text, which linguistic
structures represent the blind spots of recent LLMs
(the most challenging for LLMs), and how the per-
formance of LLMs varies across different levels of
linguistic complexity of inputs. Our findings show
a tendency to overestimate the linguistic capabili-
ties of LLMs in previous research, which mainly
stems from the prevalence of linguistically easy

examples in NLP datasets. To address this gap,
we uniformly sample data from different linguistic
complexity groups, to improve the reliability of
evaluating LLMs’ performance. Among all evalu-
ated LLMs, Llama3-70b, Llama3-8b, and GPT-3.5
show relatively better performance in responding
to linguistic queries–though overall performance
remains low. We outline several potential solutions
to address these limitations.

Limitations

Although we carefully developed and experimented
with different prompting strategies, prompting can-
not fully replace methods that directly analyze
model’s probability distributions over outputs (Hu
and Levy, 2023; Kuribayashi et al., 2024). In addi-
tion, we did not investigate the ability of LLMs
on a wider range of linguistic queries. For ex-
amples, linguistic structures related to discourse
complexity (Feng et al., 2010; Guinaudeau and
Strube, 2013; Bedi et al., 2015), which deter-
mines the complexity of higher-level structures
and flow of language beyond individual phrases
or sentences, need to investigated. Finally, un-
derstanding why a closed-source LLM produces
a specific output can be challenging. This is a
key challenge for deeper understanding of LLMs
through theoretically-motivated linguistic probing
techniques (Linzen et al., 2016; Warstadt et al.,
2020; Hu et al., 2020), and limits our ability in
providing insights into their potential weaknesses.
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A GPT’s Knowledge on Target tasks

As illustrated in Figures 6–8, we asked relevant
questions from GPT 3.5 about the target linguistic
tasks of this study. The responses clearly indicate
that GPT 3.5 have knowledge about the universal
dependencies dataset and the universal POS tag set,
the CoNLL 2000 shared task and its format, and
the Penn Treebank dataset and the format of its
syntactic structures.

B Detailed Results

B.1 Performance of all LLMs
We present the performances of all LLMs in Fig-
ure 9–15.

B.2 Performance across linguistic complexity
spectrum

We present the performance-sample complexity
plot for all models in Figure 9-Figure15. These
results suggest that LLM’s linguistic capability
largely depends on the linguistic complexity of
their inputs, and existing work may have over-
estimated the linguistic capability of LLMs. How-
ever, it’s crucial to note that linguistic complexity
as understood by humans and machines may differ
significantly. Indeed, there are particular linguistic
structures where model performance surprisingly
escalates with increasing complexity. Understand-
ing the reason for such model behaviors require
understanding their learning dynamics and is the
subject of our future work.

C Linguistic indices

Table 5 presents the 45 linguistic indices in our
study.

Do you have knowledge of the Universal Dependencies dataset and its associated Universal 

POS tag set?

Yes, I have knowledge of the Universal Dependencies dataset and its associated Universal 

POS (Part-of-Speech) tag set. Universal Dependencies (UD) is a cross-linguistically 

consistent treebank annotation project that aims to provide a universal representation for 

the grammatical structure of sentences across different languages.

The Universal POS tag set is a set of part-of-speech tags that are used to annotate words in 

sentences. It is designed to be language-independent, meaning that the same set of POS 

tags is used for all languages in the Universal Dependencies project. This makes it easier to 

compare and analyze linguistic data across different languages.

The Universal POS tag set includes tags for various grammatical categories, including:

NOUN - Nouns

VERB - Verbs

ADJ - Adjectives

ADV - Adverbs

PRON - Pronouns

DET - Determiners

ADP - Adpositions (prepositions and postpositions)

CONJ - Conjunctions

NUM - Numerals

PART - Particles (words that have a grammatical function but don't fit into other categories)

PUNCT - Punctuation marks

X - Other (for words that cannot be categorized into the above tags)

Each word in a sentence is assigned one of these POS tags to indicate its grammatical role in 

the sentence. This standardized tag set is used in the annotation of the Universal 

Dependencies treebanks for various languages, making it easier for researchers to work with 

multilingual linguistic data and develop language-independent natural language processing 

tools.

�.

�.

�.

�.

�.

�.

�.

�.

�.

��.

��.

��.

Please POS tag the following sentence using Universal POS tag set:

I have my coffee with milk and sugar.

Here's the sentence "I have my coffee with milk and sugar" with Universal POS tags:

I: PRON

have: VERB

my: DET

coffee: NOUN

with: ADP

milk: NOUN

and: CONJ

sugar: NOUN

Each word in the sentence is tagged with its corresponding Universal POS tag based on its 

grammatical role in the sentence.

•

•

•

•

•

•

•

•

Regenerate

Send a message

ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT September 25 Version
?

Figure 6: GPT’s responses to our questions about uni-
versal dependencies dataset and its associated universal
POS tag set.

Granularity Name Notation

Word Nouns Num_NN
Word Verbs Num_VB
Word Adjectives Num_JJ
Word Adverbs Num_RB
Word Prepositions/Subordinates Num_IN
Word Coordinating Conjunction Num_CC
Word Determiner Num_DT

Phrase Noun Phrases Num_NP
Phrase Verb Phrases Num_VP
Phrase Adjective Phrases Num_ADJP
Phrase Adverb Phrases Num_ADVP
Phrase Preposition Phrases Num_PP
Phrase Conjunction Phrases Num_CONJP
Phrase Quantitative Phrases Num_QP
Phrase Complex Nominal Num_CN

Sentence T-Units Num_T
Sentence Complex T-Units Num_CT
Sentence Clause Num_C
Sentence Dependent Clause Num_DC
Sentence Fragment Clause Num_FC

Table 5: Linguistic indices we use in the study.
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Do you have knowledge of the CoNLL 2000 shared task and its format?

Yes, I have knowledge of the CoNLL 2000 shared task and its format. The CoNLL 2000 

shared task is a popular competition in the field of natural language processing (NLP) and 

computational linguistics. It focuses on the task of chunking, which is a subtask of shallow 

parsing. The goal of chunking is to identify non-overlapping phrases in a sentence, such as 

noun phrases (NP), verb phrases (VP), and prepositional phrases (PP).

Here's some information about the CoNLL 2000 shared task and its format:

Data Format: The dataset used in CoNLL 2000 consists of English text. Each sentence in 

the dataset is tokenized and tagged with its part-of-speech (POS) information. Additionally, 

each word in the sentence is labeled with a chunk tag indicating the phrase to which it 

belongs.

Chunk Tags: The chunk tags used in CoNLL 2000 are typically in the IOB format (Inside, 

Outside, Beginning). For example:

B-NP: Beginning of a noun phrase

I-NP: Inside a noun phrase

B-VP: Beginning of a verb phrase

I-VP: Inside a verb phrase

O: Outside any chunk

Evaluation: The performance of chunking systems in the CoNLL 2000 shared task is 

typically evaluated using the F1 score, which takes into account precision and recall. The F1 

score is a measure of the system's ability to correctly identify chunks in the text.

Training and Testing Sets: The CoNLL 2000 dataset is divided into training and testing sets. 

Participants in the shared task use the training data to train their chunking models and then 

evaluate the models on the provided test data.

Shared Task: The CoNLL 2000 shared task was organized as a competition to encourage 

the development of accurate chunking systems. Participants would submit their systems, 

and the organizers would evaluate and rank the systems based on their performance on the 

test data.

The CoNLL 2000 shared task played a significant role in advancing research in shallow 

parsing and NLP, and it provided a benchmark dataset for evaluating chunking systems. 

Researchers have since used similar formats and evaluation metrics in subsequent NLP 

shared tasks and competitions.

�.

�.

•

•

•

•

•

�.

�.

�.

Please chunk the following sentence in CoNLL 2000 shared task format:

I have my coffee with milk and suga

Sure, I can chunk the sentence "I have my coffee with milk and suga" in CoNLL 2000 shared 

task format:

I   O

have O

my  B-NP

coffee I-NP

with O

milk B-NP

and I-NP

suga O

In this example:

"I have" and "with milk and suga" are not part of any chunk, so they are labeled as "O" 

(Outside).

"my coffee" is a noun phrase (NP), so "my" is labeled as "B-NP" (Beginning of NP) and 

"coffee" is labeled as "I-NP" (Inside NP).

"milk and suga" is also a noun phrase (NP), so "milk" is labeled as "B-NP" and "and suga" is 

labeled as "I-NP".

mathematica Copy code

•

•

•

Regenerate

Send a message

ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT September 25 Version

Default (GPT-3.5)

?

Figure 7: GPT’s responses to our questions
about the CoNLL 2000 shared task and its
format.

Do you have knowledge of the Penn Treebank dataset and the format of its syntactic 

structures?

Yes, I have knowledge of the Penn Treebank dataset and the format of its syntactic 

structures. The Penn Treebank is a widely used corpus in natural language processing and 

computational linguistics, especially for tasks related to parsing and syntactic analysis. It 

consists of a large collection of English texts with manually annotated syntactic tree 

structures.

The syntactic structures in the Penn Treebank dataset are represented using a notation 

known as "Penn Treebank format" or "Penn Treebank bracketing." In this format, a sentence 

is parsed into a tree structure, with each word or phrase in the sentence represented as a 

node in the tree. The nodes are enclosed in brackets, and the tree is typically read from left 

to right.

Here's a basic example of a Penn Treebank syntactic structure for a simple sentence:

(S

  (NP (DT The) (NN cat))

  (VP (VBD chased)

    (NP (DT the) (NN mouse))))

In this example, "(S" represents the start of the sentence, "(NP" represents a noun phrase, "

(VP" represents a verb phrase, "DT" stands for determiner, "NN" stands for noun, and "VBD" 

stands for past tense verb. The structure of the tree reflects the hierarchical relationships 

between words and phrases in the sentence.

The Penn Treebank dataset includes a wide range of annotated texts, from news articles to 

literature, and it has been used for various natural language processing tasks, including 

syntactic parsing, part-of-speech tagging, and more. Researchers often use this dataset to 

train and evaluate syntactic parsers and other language processing models.

scss Copy code

Generate textual representation of the constituency parse tree of the following sentence 

using Penn Treebank tag set:

I have my coffee with milk and sugar.

Certainly! Here's the constituency parse tree for the sentence "I have my coffee with milk and 

sugar" using the Penn Treebank tag set:

(S

  (NP (PRP I))

  (VP

    (VBP have)

    (NP

      (PRP$ my)

      (NN coffee)

      (PP

        (IN with)

        (NP

          (NN milk)

          (CC and)

          (NN sugar)))))))

In this parse tree:

"(S" represents the start of the sentence.

"(NP" represents a noun phrase, and "(PRP I)" represents the pronoun "I."

"(VP" represents a verb phrase, and "(VBP have)" represents the verb "have."

"(PRP$" represents a possessive pronoun, and "(NN coffee)" represents the noun "coffee."

"(PP" represents a prepositional phrase, and "(IN with)" represents the preposition "with."

Inside the prepositional phrase, we have another noun phrase with the nouns "milk" and 

"sugar," connected by the coordinating conjunction "(CC and)."

This tree structure reflects the grammatical and syntactic relationships within the sentence 

"I have my coffee with milk and sugar" using Penn Treebank notation.

scss Copy code

•

•

•

•

•

•

Regenerate

Send a message

ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT September 25 Version
?

Figure 8: GPT’s responses to our questions
about the Penn Treebank dataset and the for-
mat of its syntactic structures.
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Figure 9: Performance of Gemini with respect to linguistic complexity.
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Figure 10: Performance of LLaMA3-70b with respect to linguistic complexity.
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Figure 11: Performance of LLaMA2-70B with respect to linguistic complexity.
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Figure 12: Performance of Mixtral-8x7B with respect to linguistic complexity.
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Figure 13: Performance of LLaMA3-8B with respect to linguistic complexity.
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Figure 14: Performance of LLaMA2-7B with respect to linguistic complexity.
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Figure 15: Performance of Mistral-7B with respect to linguistic complexity.
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