
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 77–90
May 3, 2025 ©2025 Association for Computational Linguistics

Quantifying Semantic Functional Specialization in the Brain Using
Encoding Models of Natural Language

Jiaqi Chen*

MRC Laboratory of Molecular Biology
jc2130@cam.ac.uk

Richard J. Antonello*

Columbia University
rja2163@columbia.edu

Kaavya Chaparala
Johns Hopkins University

kchapar1@jh.edu

Coen Arrow
University of Western Australia

coen.arrow@research.uwa.edu.au

Nima Mesgarani
Columbia University

nima@ee.columbia.edu

Abstract

Although functional specialization in the brain
- a phenomenon where different regions pro-
cess different types of information - is well
documented, we still lack precise mathemati-
cal methods with which to measure it. This
work proposes a technique to quantify how
brain regions respond to distinct categories of
information. Using a topic encoding model,
we identify brain regions that respond strongly
to specific semantic categories while respond-
ing minimally to all others. We then use a
language model to characterize the common
themes across each region’s preferred cate-
gories. Our technique successfully identifies
previously known functionally selective re-
gions and reveals consistent patterns across sub-
jects while also highlighting new areas of high
specialization worthy of further study.

1 Introduction

The theory of functional specialization states that
different brain regions have evolved to process dif-
ferent types of information. This is apparent at
a high level – for instance, the occipital lobe is
heavily involved in processing visual information,
whereas the temporal lobe is implicated in pro-
cessing auditory stimuli. There is also evidence to
support the theory at a lower level where smaller
regions of interest (ROIs) are active in processing
even more specific information. Examples of such
ROIs include fusiform face area (FFA), which is
selective for facial features, or places in parahip-
pocampal place area (PPA). These discoveries have
relied on ‘contrast’ studies that observe how brain
regions respond to specific categories. While suc-
cessful contrast studies have been influential, this
approach also depends heavily on educated guesses
about where in the brain to look and what to look
for.

*Equal contribution.

In this study, we propose an intuitive technique
to identify and quantify functional specialization
across the brain. We show that our method can cor-
rectly identify ROIs previously observed to have
high semantic functional specialization, and that
it can additionally identify several new ROIs with
high functional selectivity throughout cortex for
further study. We further demonstrate that this
method can be used to explicitly recover known
selectivity properties of well-documented regions
such as the location-selective retrosplenial cortex
(RSC) and the body-selective extrastriate body area
(EBA), as well as for its newly-proposed regions.
We additionally explore the degree to which our
method generalizes across individuals, demonstrat-
ing that our observations are largely consistent
across three subjects.

2 Related Work

Functional specialization has been studied in set-
tings like vision (Kamps et al., 2016; Julian et al.,
2016; Taylor et al., 2007; Calvo-Merino et al.,
2010; Leibo et al., 2015; Saleem et al., 2018;
Howard et al., 1996), language (Fedorenko et al.,
2011), auditory processing (Perani et al., 2010; Ter-
vaniemi et al., 1999), and motor function (Wilson
et al., 2014). Previous work identifying areas of
high functional specialization typically focuses on
locating lateral asymmetries (Wang et al., 2014;
Zilles and Amunts, 2015). However regions can
be functionally specialized without being asym-
metric, as is the case for regions like retrosple-
nial cortex (Mitchell et al., 2018; Burles et al.,
2017), parahippocampal place area (Epstein and
Kanwisher, 1998; Epstein, 2005), occipital place
area (Kamps et al., 2016; Dilks et al., 2013), and
extrastriate body area (Astafiev et al., 2004).

Researchers have also uncovered more direct
links between semantics and brain activity by devel-
oping encoding models to predict neural responses
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from continuous linguistic features. Mitchell et al.
(2008) showed that different semantic categories
(e.g., tools versus animals) elicit distinct spatial
activation patterns in the brain, and a model trained
on corpus-derived semantic features could forecast
fMRI responses to previously unseen words. Later
investigations built on this approach by applying
distributed semantic representations to more com-
plex, real-world language inputs (Huth et al., 2016;
Jain and Huth, 2018; Caucheteux et al., 2023; An-
tonello et al., 2023). Utilizing high-dimensional
word embeddings or semantic spaces derived from
modern LLMs, these encoding models can capture
brain responses to entire sentences and stories and
generalize to numerous concepts. In this work, we
build upon recent studies that use encoding models
to generate and test interpretable hypotheses about
semantic selectivity in the brain (Singh et al., 2023;
Antonello et al., 2024).

3 Methods

3.1 fMRI Data

We used publicly available functional magnetic
resonance imaging (fMRI) data collected from 3
human subjects as they listened to 20 hours of En-
glish language podcast stories over Sensimetrics
S14 headphones. The stories came from podcasts
such as The Moth Radio Hour, Modern Love, and
The Anthropocene Reviewed. Each 10-15 minute
story was played during a separate scan. Subjects
were not asked to make any responses, but simply
to listen attentively to the stories. For encoding
model training, each subject listened to roughly 95
different stories, giving 20 hours of data across 20
scanning sessions, or a total of ~33,000 datapoints
for each voxel in the brain.

MRI data were collected on a 3T Siemens Skyra
scanner at The University of Texas at Austin
Biomedical Imaging Center using a 64-channel
Siemens volume coil. Functional scans were col-
lected using a gradient echo EPI sequence with
repetition time (TR) = 2.00 s, echo time (TE) =
30.8 ms, flip angle = 71°, multi-band factor (si-
multaneous multi-slice) = 2, voxel size = 2.6mm x
2.6mm x 2.6mm (slice thickness = 2.6mm), matrix
size = 84x84, and field of view = 220 mm. Anatom-
ical data were collected using a T1-weighted multi-
echo MP-RAGE sequence with voxel size = 1mm
x 1mm x 1mm.

In addition to motion correction and co-
registration (LeBel et al., 2022), low-frequency

voxel response drift was identified using a 2nd or-
der Savitzky-Golay filter with a 120 second win-
dow and then subtracted from the signal. The mean
response for each voxel was subtracted and the re-
maining response was scaled to have unit variance.

All subjects were healthy and had normal hear-
ing. The experimental protocol was approved by
the Institutional Review Board at The University
of Texas, Austin. Written informed consent was
obtained from all subjects.

3.2 Topic Encoding Model
A topic model was pre-trained on the entire story
data. Given a list of word sequences for every two-
second interval of the podcasts, we used sliding
windows of [2, 4, . . . , 20] seconds. We trained 10
separate topic models on a different sliding win-
dow length each and then merged the topics to yield
the final topic model, which had Tn = 463 topics.
The multi-scale topic model was used to ensure the
topic model generalized well across varied seman-
tic timescales. In total, this training took ∼50 CPU
node-hours.

Each model was based on the BERTopic tech-
nique (Grootendorst, 2022). Each string was
embedded using sentence embedding model "all-
MiniLM-L6-v2". Uniform Manifold Approxi-
mation and Projection (UMAP) was used to re-
duce the embedding dimension. The reduced em-
beddings were then clustered using Hierarchical
Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) (McInnes et al., 2017).

Each cluster is associated with the the initial
strings from each of the two-second intervals repre-
sented in the cluster. We manipulate these strings
to extract a common semantic theme to describe
the cluster. Initially, a bag-of-words is generated
for each topic. The bags-of-words are then all
concatenated into a single string and further re-
duced with class-based Term-Frequency Inverse-
Document-Frequency (c-TF-IDF). The final repre-
sentation reduction used KeyBERT(Grootendorst,
2020). The resultant meta-topics provide each clus-
ter with a semantic theme common to all of its
members.

The trained topic model encodes the story data,
annotating the dataset using the general encoding
methodology described in Antonello et al. (2021).
Each 16 word phrase from the story dataset was fed
through the topic model and was scored according
to how likely each phrase is a member of each topic.
The context length of 16 words was selected to bal-
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Figure 1: Functional Selectivity Detection Pipeline: Functional selectivity for a given meta-topic is generated
using an automated pipeline. (A) 10 topic models are trained on strings of varying lengths derived from the
stimulus dataset using a hierarchical clustering algorithm. (B) The topics generated are merged via cosine similarity,
resulting in a single final topic model of Tn topics. (C) Story segments are fed into the newly generated merged
topic model to build topic embeddings for the stimulus. (D) FIR delays are added to the topic embeddings,
yielding our final stimulus matrix X . The BOLD response is temporally aligned with the time-delayed stimulus
to produce our response matrix Y . (E) Bootstrapped ridge regression is used to generate weights β that map the
stimulus to the voxelwise response. (F) We calculate the Pearson skewness of each voxel to find voxels with
high functional selectivity. (G) An LLM is prompted to automatically determine which topics from the merged
topic model correspond to a chosen meta-topic. (H) A counterfactual analysis is performed, where we observe
which functionally selective voxels have their Pearson skewness reduced when the voxels from the corresponding
meta-topic are excluded. The final flatmap shows the resulting drop in skewness for the "Places" meta-topic,
demonstrating that the method correctly identifies RSC, OPA, and PPA as places-selective regions.

ance good performance of the model with a need
to keep the topic labels relatively contemporaneous
with the immediate content. These topic probabil-
ities were then used as features for the encoding
model. These features were then downsampled
using Lanczos downsampling and finite impulse
response (FIR) delays of 2, 4, 6 and 8 seconds were
applied to model the hemodynamic response func-
tion (HRF) of the BOLD signal. A linear projection
from these downsampled, time-delayed features to
the measured BOLD response was then trained us-
ing bootstrapped ridge regression. That is, let X be
the stimulus features derived from our topic model
and let Yv be the measured BOLD response for a
given voxel v. For each voxel, we found linear
weights βv by optimizing

min
βv

(Yv −Xβv) + λ||βv||2 (1)

where || · ||2 denotes the L2-norm and λ is a
regularization parameter.

3.3 Skewness as a Marker of Functional
Selectivity

With βv computed for every voxel, we used it to de-
termine which brain voxels are highly selective for
a small number of topics. To do this, we measured
the voxelwise Pearson skewness of βv. Intuitively,
Pearson skewness is high when most of the weight
in βv is allocated to a small number of its elements.
These highly-skew weights are more likely to be
driven by the existence or nonexistence of a narrow
number of topics in a given context. As functional
selectivity is just the property of being selective for
a narrow number of topics, high-skew voxels are
by definition highly functionally-selective.

With highly-selective voxels identified, we seg-
mented them into local clusters based on their cor-
tical proximity. Contiguous sets of voxels of high
skewness were grouped into proposed ROIs. For
a given region R, the weights βv corresponding
to the voxels in that region are then averaged and
we observe topics with the highest weights in the
averaged βR. If those topics shared a semantic cat-
egory (for instance, if they are all "number words"),
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fROI Meta-topic Avg. voxel correlation Avg. voxel skew

VIP Numbers and quantities 0.21 0.81
EBA Limbs and body parts 0.12 0.35
RSC Places and locations 0.08 0.47

ITG Conversation and dialogue 0.24 0.45

pPCu Family members 0.21 0.51
dPCC Movement and actions 0.10 0.49
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Figure 2: Analyzing Functional Selectivity (A) A cortical flatmap of voxels with high functional-selectivity using
our skewness metric. The ventral visual stream has the highest overall functional-selectivity, whereas the frontal
lobe has comparatively lower selectivity. (B) Individual topic responsiveness, according to our linear mapping β is
visualized for the retrosplenial cortex. Most of the skewness in the distribution is derived from topics relating to
location or time. Responses to these topics are substantially higher for RSC than other semantic categories. (C)
Average voxel correlations and skewnesses for several fROIs are shown. Corresponding meta-topics are determined
via post-hoc analysis of the most prominent topics. (D) Regions selective for the assorted meta-topics are visualized
according to their relative selectivity. Voxels are colored according to how much omitting that set of meta-topics
reduces overall skewness in that voxel. Bottom: Visualizes more novel, more poorly understood selectivities derived
from our method. Meta-topics in (D) are colored according to the legend in (C).
Top: Visualizes well-understood semantic functional selectivities.

we concluded that the corresponding ROI is func-
tionally selective for that category.

To map the putative functional organization of
a semantic category or meta-topic, we prompted
an LLM (GPT-4) (OpenAI, 2023) to select the top
6% of topics from the list of generated topics that
semantically aligned most with the provided meta-
topic. These output topics were checked for cor-
rectness and the top 20 (~4%) topics were selected.
Voxel-wise, Z-scored Pearson skewness was then
recalculated with and without the chosen topics.
Since the average voxel had a z-scored skewness of
zero, voxels selective for the meta-topic have high
skew magnitudes when the meta-topic topics are
included, but regress to zero once the topics were re-
moved. The difference between the z-scored skews
is the number of standard deviations from the mean
skew that the meta-topic provides for the voxel.

We define the voxel-level Pearson skewness for
any set of topic indices Ω ⊆ {1, . . . , Tn} as

sv(Ω) =

∑
i∈Ω

(
βv,i − β̄v(Ω)

)3
(∑

i∈Ω
(
βv,i − β̄v(Ω)

)2)3/2
(2)

where β̄v(Ω) = 1
|Ω|

∑
i∈Ω βv,i.

After z-scoring these skewness values across
voxels (so that the mean voxel has zero z-scored
skewness), the contribution of a chosen meta-topic
M is then

∆skewv(M) = Z
(
sv(Ωall)

)
− Z

(
sv(Ωall\M)

)
,

(3)

where Ωall = {1, . . . , Tn} is the full set of topics.
This skewness differential is used to measure the

degree to which voxel v is selective for the selected
meta-topic. If a voxel has high-initial skewness,
and then that skewness is substantially reduced
when topics from a given meta-topic are excluded,
we conclude that that voxel is functionally selective
for the associated meta-topic. The full pipeline
for functional selectivity detection is depicted in
Figure 1.

3.4 Analyzing Meta-topic Specificity

Following the application of our functional selec-
tivity pipeline to our data, we observed a small
number of regions with apparently strong semantic
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Figure 3: Investigating Meta-topic Precision for Novel Regions For each of our three subjects (Top: UTS01,
Center: UTS02, Bottom: UTS03), we visualize the meta-topic selectivity of familial people vs. non-familial
people (Left) and body parts in motion vs. not in motion (Right), In each case, we find that the selectivity of the
corresponding region is precisely captured by the chosen meta-topic (i.e. familial people for pPCu; moving body
parts for dPCC) and not its antithesis.

functional selectivity, according to our metric, that
did not appear to have a strong basis in prior litera-
ture. To determine the meta-topic specificity these
novel ROIs, we provided GPT-4 with a theme one
level broader than the ROI’s proposed meta-topic
and analyzed the previously missed topics. For
example, if an ROI is found selective for family
members, we prompted GPT-4 to select the top 6%
of topics that are most aligned with people but do
not reference family. Analysis on the skewness
differential was then repeated for the top 20 top-
ics of this new, broader meta-topic. This process
ensures that the meta-topic selected possesses the
highest level of granularity for which that ROI is
functionally selective.

3.5 Measuring Anatomical Consistency

To validate the generality of the anatomical obser-
vations made from the topic selectivity encoding
models, we follow a methodology similar to that of
Huth et al. (2016) in observing the semantic tiling
of the cortex with respect to our topic space. In
particular, we perform PCA along the topic axis
of our linear mapping for one subject (UTS03) to
get a set of orthogonal principal components that
maximally explain the variance along that axis. We
then project these components to the voxel space
for every subject, by computing the dot product
of the topic components with the specific linear
encoding weights for that subject. The anatomi-
cal alignment of the resulting projection between
subjects determines the degree to which observa-
tions derived from our topic encoding models are
population trends.
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4 Results

Figure 2 shows the results of applying our func-
tional selectivity mapping protocol to a single sub-
ject from our fMRI dataset. Additional results for
the other two subjects in our study are presented in
Appendix A. Results are highly consistent across
the subjects in our dataset, suggesting that the func-
tional selectivities described here are population-
level trends.

Figure 2a shows the voxels described as func-
tionally selective according to our topic skewness
metric. We find that many regions previously iden-
tified as functionally selective are correctly labeled
as such by our skewness metric. The highest func-
tional selectivity is observed along a band of the
higher ventral visual stream, which includes re-
gions like occipital place area, extrastriate body
area, and borders interparietal sulcus. We observed
comparatively smaller amounts of functional selec-
tivity in regions outside the ventral visual stream,
such as the prefrontal cortex. This may suggest
that the presence of local visual representations is
a strong driver of selectivity, supporting grounding
theories of cognition (Barsalou, 2008) that sug-
gest that neural representations are "grounded" in
sensorimotor information. Additionally, the result
replicates prior work suggesting a visio-semantic
alignment that occurs at the border of visual cor-
tex (Popham et al., 2021).

Figure 2b demonstrates the process of isolating
the functional selectivity of one such ROI through
the example of a set of voxels located in RSC.
We replicate the established result that this ROI is
highly selective for "place semantics", as suggested
by prior literature (Mitchell et al., 2018). Most top-
ics with the highest weight on these voxels are se-
mantically associated with locations, travel, or tem-
poral concepts. The top three topics for this set of
voxels (New York, North/South Pole, Los Angeles)
are all prominent geographical locations. We addi-
tionally note a further time-semantics component
to some of the most selective topics (e.g. afternoon,
night, day), suggesting that RSC is further impli-
cated in the processing of temporal information,
not just spatial information. Additional analysis
of the temporal profiles of the topics suggests that
this is not due to place- and time-related topics co-
occurring naturally in the stimuli, but instead due
to separate and independent effects for both meta-
topics. (Appendix Figure 7 and Appendix Table
1).

Figure 2c further shows this process applied
to six selected fROIs, with the meta-topics asso-
ciated with their functional selectivities. Average
predictive performance and voxel skew for the vox-
els in these regions are also shown. All selected
regions have high skewness and most have high
prediction performance relative to the average cor-
tical voxel. Meta-topic descriptions are consistent
with prior literature, and we correctly identify the
functional selectivity of regions such as extrastriate
body area (EBA), ventral interparietal area (VIP)
and parahippocampal place area (PPA). It is note-
worthy that while selectivity in areas like EBA has
been established previously using visual contrasts,
our method replicates these findings purely from
linguistic input, further supporting those claims in
a modality distinct from prior work.

Figure 2d shows the cortex-wide meta-topic
selectivity for the concepts of three previously-
established functionally-selective regions: RSC,
EBA and VIP. We find several other less well-
described functional selectivity regions, such as
an area near inferior temporal gyrus (ITG) cortex
that is selective for "conversation" words, an area
in posterior precuneus (pPCu) that is selective for
"family"-related words, and an area that is selective
for words describing movement or physical actions
of body parts, which is located in dorsal posterior
cingulate cortex (dPCC). Voxels are colored ac-
cording to how much that voxel’s skewness would
change if the corresponding meta-topic’s weights
were removed.

Given that we found the existence of these newer
regions surprising owing to their unusual speci-
ficity, we examined the degree to which the de-
scriptors of newly described regions were precise.
For the posterior precuneus and dorsal cingulate
ROIs, Figure 3 looks at the effect of subtly altering
the meta-topic we have associated with each region.
Remarkably, we find that for pPCu, topic selectiv-
ity is no longer observed in the region when we
choose a meta-topic of "non-familial" people. Sim-
ilarly, the dorsal cingulate is not selective for body
part actions that do not involve active movement.
These effects are consistent across all 3 subjects in
our study, further supporting the claim that these
descriptors are indeed accurate summaries of the se-
mantic functional selectivity of these regions. We
believe these results strongly warrant further in-
vestigation given their surprising consistency and
specificity.
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Figure 4: Population-level Topic Selectivity For each of our three subjects, the top 3 principal components of
the topic model space for UTS03 are computed and then projected into the respective voxel space using the linear
encoding model weights. The final projection is plotted, where each color channel denotes a single principal
component from the topic space (Red: PC1, Green: PC2, Blue: PC3). We see largely consistent anatomical
alignment across subjects, suggesting that topic-level selectivity generalizes to population-level trends.

Finally, we analyzed whether the weights from
our topic encoding models were largely subject-
specific, or generalized across the population. Fig-
ure 4 shows the result of the principal component
analysis of our topic encoding models. We see
strong anatomical alignment across subjects, with
especially prominent laterality patterns. For exam-
ple, linear combination of PC1 and PC2 (yellow) is
more observable in left temporal cortex, whereas
a linear combination of PC1 and PC3 (pink) is
more observable in right temporal cortex. Most im-
portantly, this strong anatomical alignment across
three subjects provides good support for the claim
that the topic encoding models are largely consis-
tent across individuals and are therefore not heavily
influenced by subject-level differences.

5 Discussion and Limitations

Unlike today’s computers, which are no more than
collections of billions of identical and function-
ally equivalent transistors, the brain is no compu-
tational monolith. Despite this well-known fact,
remarkably little effort has gone into designing
methods to automatically detect and characterize
this functional selectivity, especially in the realm
of language semantics. To this day, functional se-
lectivity is primarily analyzed through painstaking
and tedious "contrast studies" in which subjects
are exposed to carefully curated experiments, in
order to narrow down the functional selectivity of

a region. Here, we show that by utilizing modern
machine learning techniques, we can detect and
analyze functional selectivity in a vacuum.

Replicating prior studies (Mitchell et al., 2018;
Burles et al., 2017; Astafiev et al., 2004), our re-
sults show many regions of the brain are highly
selective for specific semantic categories, such as
places, conversations, or body parts. We further
explore evidence for functional selectivity of less
well-understood regions like posterior precuneus
and dorsal posterior cingulate cortex, showing that
they are selective for the highly specific concepts
of family members and movement-based actions
respectively. We find this surprising, but are able
to show that this selectivity is consistent across
subjects and actually requires this level of speci-
ficity. We show that functional selectivity is most
heavily distributed along the ventral visual stream,
but is also present to a lesser degree in areas such
as prefrontal cortex. The functional selectivity we
detect tends to be more biased toward concrete
concepts over abstract ones, suggesting that more
abstract concepts are less likely to have uniquely
specialized regions. Nevertheless, this ongoing
work has several limitations. Firstly, the proximity-
based process of clustering voxels into fROIs is
still rudimentary and could be supplemented with
a more nuanced approach that directly takes into
account similarity in voxel weights. Next, the meta-
topic classification that is currently performed by
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an LLM could be subject to additional validation on
its agreement with human classification. Further
work should also be pursued into understanding
individual subject-level differences in functional
selectivity to determine the degree to which these
observations hold across the population. The rel-
ative data-efficiency of our method could provide
a more fruitful perspective into these differences
across subjects.

What can functional selectivity tell us about the
nature of human intelligence? We often find that,
outside of the ventral visual stream, most functional
selectivity is closely related to the non-semantic
role of adjacent regions. For example, the seman-
tic selectivities of dPCu (movement and actions)
and ITG (conversations) are closely associated with
their non-semantic roles (motor planning and au-
ditory processing). We find such "functional coin-
cidences" to be persuasive evidence in support of
cognitive grounding, the notion that cognitive rep-
resentations are "ultimately grounded in bodily, af-
fective, perceptual, and motor processes" (Pezzulo
et al., 2013), rather than "computation on amodal
symbols in a modular system" (Barsalou, 2008).
In a model of intelligence based on grounded cog-
nition, functionally-selective regions would likely
benefit from their proximity to areas specialized in
related low-level processes. Further research into
the mapping of functional selectivity could one day
help to reveal the underlying organizational drivers
of cortical structure.
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A Supplementary subject data

Here we reproduce Figure 2 for the other two subjects that we examined. We observe similar selectivity
patterns throughout the cortex.

Figure 5: Replication of Figure 2 for UTS01. The same meta-topics and color key are used for (C) as in Figure 2D.
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Figure 6: Replication of Figure 2 for UTS02. The same meta-topics and color key are used for (C) as in Figure 2D.
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B Meta-topic data

The 20 topics that comprise each meta-topic are listed in Figure 8. This includes the six meta-topics
that relate to an ROI (‘numbers and quantities’, ‘limbs and body parts’, ‘places and locations’, ‘family
members’, ‘movement and actions’ and ‘conversation and dialogue’) and the two broader-level meta-topics
that were used to determine ROI specificity in Section 3.4 (‘people excluding family’ and ‘body parts
without movement’).

To test whether topics within a meta-topic tended to be predicted at similar timepoints in each story,
we calculated pair-wise correlations between all 463 topics based on their probability scores per TR. To
minimize the effect of noise from low-probability scores, only the top 10% of scores within each TR were
used in this calculation while the bottom 90% were set to zero. Then, maximum-distance hierarchical
clustering on pairwise correlations was used to group the topics into 102 clusters. Figure 7 shows these
pair-wise correlations, with the topics reordered to visualize the clusters in their hierarchical order.

This data was used to determine whether the co-existence of more than one topic theme in an ROI’s
apparent topic selectivity is likely due to an actual functional selectivity, or an artifact of topic co-
expression in the same sentences in the story data. For example, the data suggests RSC to be indeed
functionally selective for both temporal topics (cluster 22) and geographical topics (clusters 71 and 92),
as the inter-cluster correlations for cluster 22 are significantly lower than the intra-cluster correlations
(Figure 7 and Table 1).

Figure 8 shows the correlation matrix subsetted to display values relevant to the listed meta-topic topics
only. The involvement of many different clusters within each meta-topic similarly suggests our results on
ROI functional selectivity (Figures 2 and 3) to not be heavily dependent on topic co-expression.
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Figure 7: Biclustering results on the 463 topics of the final topic model. The x- and y-axis are symmetrical, with
each row and column organized in hierarchical order following maximum-distance clustering. Clusters highlight
topics that tend to occur near each other in time (i.e. occur within the same sentence) in the story data. Three
clusters that contain the top RSC topics shown in Figure 2B have been highlighted in red, and the topics contained
listed under Table 1.
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Cluster Topics

22

afternoon_saturday_evening
lights_light_bright
sleep_sleeping_slept
wake_terrifying_right
clock_morning_time

71

trip_traveled_travel
come home_came home_home
camp_park_meet
london_road_night
escort_father_family
staying_stayed_stay
ticket_tickets_flight
funeral_celebrating_family
train_walked_travel

92

new york_york city_york
los angeles_angeles_los
distance_miles_away
alabama_texas_state
north_war_south
beach_sand_florida
america_united states_states
streets_east_street
pole_north_south
grass_mile_state
alabama_state_going

Table 1: List of topics contained in the clusters labeled in Figure 7.
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nineteen ninety_ninety_nineteen
sixteen_age_eighteen

minutes later_weeks later_minutes
years ago_years later_ago

dollars_billion_dollar
distance_miles_away

patient_number_numbers
century_centuries_decade

costs_cost_cheap
pounds_weight_heavy

tall_height_length
average_millions_lot people

percent_half_roughly
increase_increased_rising

week_weeks_month
clock_morning_time

radiation_flying_thirty
numbers_number_sort

settled_contract_nineteen ninety
holes_hole_using

Numbers and quantities (VIP)
patients_doctor_dr
women_woman_female
donald_trump_donald trump
john_dies_funeral
groups_group_people
meeting_meet_met
king_kingdom_leader
david_frank_michael
sam_james_mr
charles_thomas_famous
group_groups_members
uncle_michael_mike
jesus_bible_church
tom_family_mom
average_millions_lot people
audience_crowd_talking
teacher_counselor_gonna
administration_michael_mike
young man_young_men
bob_mr_charles

People excluding family

staring_looked said_mirror
hair_head_heads

fingers_hands_touched
sit_sitting_seat
legs_leg_arms

brain_consciousness_mental
stood_standing_stand

pain_painful_hurt
eye_eyes_fake

bodies_body_bones
pounds_weight_heavy

kissed_leaned_guys
grab_grabbed_grabs

objects_object_bodies
belly_neck_lips

woman_beauty_female
brain_suffered_cancer
doctor_plastic_hands

shoes_pair_store
bodies_dirt_base

Limbs and body parts (EBA)
bus_truck_driving
went_just went_just going
flight_flying_fly
walking_walk_walked
fingers_hands_touched
sit_sitting_seat
speed_faster_fast
walks_stops_suddenly
stood_standing_stand
mountain_climbed_peak
run_running_ran
turn_turning_turns
falling_fall_falls
grab_grabbed_grabs
loose_ground_falling
pass_passing_passed
fast forward_forward_ahead
follow_followed_following
jump_jumped_height
push_pushing_pushed

Movement and actions (dPCC)

china_countries_america
new york_york city_york

living room_bedroom_apartment
hotel_bathroom_bar

los angeles_angeles_los
alabama_texas_state

mountain_climbed_peak
club_city_near

north_war_south
beach_sand_florida

america_united states_states
london_road_night
streets_east_street

downstairs_upstairs_floor
moon_planet_earth
park_shape_theme

camp_park_room
pole_north_south

train_walked_travel
alabama_state_going

Places and locations (RSC)
staring_looked said_mirror
hair_head_heads
legs_leg_arms
brain_consciousness_mental
pregnant_birth_having
pain_painful_hurt
eye_eyes_fake
test_tests_study
blood_bloody_wound
bodies_body_bones
pounds_weight_heavy
objects_object_bodies
belly_neck_lips
woman_beauty_female
blind_dog_guide
brain_suffered_cancer
shoes_pair_store
bodies_dirt_base
photo_image_pictures
energy_health_healthy

Body parts without movement

father_dad_parent
child_daughter_children
marriage_married_wife
families_family_parents

daughters_daughter_mrs
grandmother_cousin_woman

mom_mother_dad
best friend_friends_friend

pregnant_birth_having
sam_james_mr

gay_straight_sex
uncle_michael_mike

tradition_traditional_culture
tom_family_mom

boyfriend_respect_special
escort_father_family

wedding_license_official
unit_care_technical

brothers_brother_knock
funeral_celebrating_family

Family members (pPCu)
said yes_said yeah_uh said
silence_quiet_screaming
conversation_conversations_talking
know know_um know_yes know
encouraging_said yeah_said like
okay okay_okay_ok
questions_ask_asks
wanna tell_gonna tell_tell
didn understand_don understand_understand
word_words_term
really don_don really_don know
sorry_just say_don uh
responded_response_respond
didn mean_means_meant
like_know say_like said
sounds like_fellow_sounds
whispered_crying_telling
hi_hello_hey
started talking_lived_life
frank_said_thinking

Conversation and saying things (ITG)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8: The topics comprising each meta-topic and their pairwise correlation scores. X-axis and y-axis labels are
symmetrical. White borders and topic colors show the different cluster groups. Correlation scores were calculated
by comparing the prediction profiles of each topic over all TRs.
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