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Abstract

This paper sets out the first web-based tran-
scription system for the Irish language - Fothei-
dil, a system that utilises speech-related Al
technologies as part of the ABAIR initiative.
The system includes both off-the-shelf pre-
trained voice activity detection and speaker
diarisation models and models trained specif-
ically for Irish automatic speech recognition
and capitalisation and punctuation restoration.
Semi-supervised learning is explored to im-
prove the acoustic model of a modular TDNN-
HMM ASR system, yielding substantial im-
provements for out-of-domain test sets and di-
alects that are underrepresented in the super-
vised training set. A novel approach to capital-
isation and punctuation restoration involving
sequence-to-sequence models is compared with
the conventional approach using a classification
model. Experimental results show here also
substantial improvements in performance. The
system will be made freely available for pub-
lic use, and represents an important resource
to researchers and others who transcribe Irish
language materials. Human-corrected transcrip-
tions will be collected and included in the train-
ing dataset as the system is used, which should
lead to incremental improvements to the ASR
model in a cyclical, community-driven fashion.

1 Introduction

Artificial intelligence (AI) has become a perva-
sive part of today’s world. While Al undoubtedly
brings many benefits, these benefits are felt primar-
ily by speaker communities of the world’s major
languages. Speakers of minority languages have
not been adequately serviced with technology that
works for them and is appropriate for their needs.
Automatic speech recognition (ASR), the pro-
cess of automatically transcribing speech into text,
is a prime example of this disparity. While mod-
ern systems for English or Chinese approximate,
or even improve upon, the performance of hu-
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man transcription, for most languages Speech-
to-Text does not exist. One of the largest barri-
ers to developing ASR systems for minority lan-
guages is a lack of large, transcribed speech cor-
pora. Recently, approaches leveraging large un-
labelled speech corpora, such as semi-supervised
learning (Zhang et al., 2020; Radford et al., 2023)
and self-supervised learning (Baevski et al., 2020)
have achieved state-of-the-art performance for com-
mon ASR benchmarks, and were beneficial for low-
resource languages (DeHaven and Billa, 2022).

Speech-to-Text integrated technologies like au-
tomatic closed captioning on platforms such as
YouTube and TikTok have been widely adopted
by users of major languages. However, lesser-
resourced languages are not included in such ser-
vices. In light of this gap, we present Fotheidil' -
a freely available web-based transcription system
for the Irish language that utilises various speech-
related Al components to transcribe long audio and
video files. The structure of the paper is as follows:
Section 2 outlines relevant background informa-
tion; Section 3 details the system Interface; and sec-
tion 4 describes the transcription pipeline, and the
experiments carried out to improve Irish ASR per-
formance using semi-supervised learning (SSL), as
well as experiments carried out to train a Capitali-
sation and Punctuation Restoration (C&PR) model,
which improves the legibility of the ASR outputs
for the end-user; and finally, Section 5 contains the
discussion and conclusions.

2 Background
2.1 Irish language

Irish, a Goidelic or Gaelic language, is a member
of the Celtic branch of the Indo-European language
family. Today, the Gaelic languages are spoken
in small communities scattered mostly along the
western seaboard of Ireland and the western islands
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of Scotland. The almost extinct Manx, which is
currently being revived, is also a Goidelic language
and is spoken on the Isle of Man.

The Irish language is highly inflected and has
a complex phonological system. The language is
diverse in its dialects and accents, with three re-
gional dialects of Ulster (Ul), Connaught (Co) and
Munster (Mu) and further sub-dialects, as well as
the accents of non-native speakers i.e., learners and
new speakers (Nn). The dialects vary significantly
in terms of pronunciation, vocabulary and gram-
mar and the phonology and syntactic structure of
non-native speakers can often approximate that of
English. Speaker variety is used here to describe
the dialect or accent of a speaker.

2.2 ABAIR

The ABAIR initiative has been developing speech
technology and applications to close the technol-
ogy gap for the Irish language. Synthetic voices
for the 3 major dialects of the languages of Ulster
(Ul), Connacht (Co) and Munster (Mu) have been
developed, with plans to expand this to further sub-
dialects. Additionally, speech recognition systems
for Irish have been developed with a sociolinguistic
focus, by ensuring that we have adequate coverage
of the different varieties of the language where
possible and by evaluating our systems for their
performance on speakers of different varieties.

2.3 Automatic Speech Recognition

ASR, the task of converting speech into text, has
seen significant progress in recent years, due to ad-
vances in deep learning, access to hardware such as
graphical processing units (GPU) and the increas-
ing use of very large speech corpora. There are two
conventional approaches to ASR - the traditional,
modular approach, where the speech-to-text task
is broken into the distinct components of acous-
tic modeling, pronunciation lexicon, and language
modeling. The sub-modules are modeled indepen-
dently and then combined in a decoding graph as a
weighted finite-state transducer. In contrast, End-
to-End (E2E) systems handle the entire speech-to-
text task within a single model, directly learning
the mapping from audio to text without the need for
separate modules, offering a more streamlined but
data-intensive approach. While E2E systems have
surpassed modular systems in most performance
benchmarks for ASR, the need to use large training
corpora makes them less suitable for low-resource
languages (Lonergan et al., 2024).
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2.3.1 Semi-supervised learning

One of the most significant bottlenecks to the
development of speech recognition for an under-
resourced language is the availability of transcribed
audio material to train an ASR system in a super-
vised manner. However, untranscribed speech is
more readily available, due to the increasing prolif-
eration of audio and video materials on the internet.
Semi-supervised learning (SSL) is a paradigm that
seeks to incorporate large unlabelled datasets in
the learning framework to reduce the reliance on
a large amount of labelled data. Among various
SSL techniques applied to ASR, Noisy Student
Teacher training (NST) has gained significant atten-
tion, achieving state-of-the-art performances across
various datasets (Zhang et al., 2020; Park et al.,
2020). Moreover, it has improved performance in
code-switching ASR (Xi et al., 2024) and in low-
resource ASR (Li and Vu, 2024).

Noisy Student Teacher training: in NST train-
ing, a teacher model is trained with the available la-
belled data. This model is used to generate pseudo-
labels for the unlabelled dataset, which is combined
with the labelled data to create a new training set for
the student model. Noise is introduced to the new
training set, forcing the student model to learn to
reproduce the teacher model’s outputs under noisy
conditions, steering the model to learn more robust
features that may better match the variability of
real use.

2.4 Capitalisation and Punctuation
Restoration

The output of the ASR system consists of raw text,
using just lowercase characters, without punctua-
tion symbols, acronyms or digits. This format is
not very suitable in terms of readability and thus an
additional processing is needed to restore proper
capitalization and punctuation. Typically, capitali-
sation and punctuation restoration (C&PR) systems
are word-level classifiers which implement either
two separate classifiers for capitalisation and for
punctuation, or a joint one. A review on these
systems can be found in Pais and Tufig (2022).

In the case of Irish language, while punctuation
rules are analogous to other western languages,
capitalisation has its particularities, due to intial
mutation, which is indicated orthographically by
attaching different particles at the beginning of a
word. These particles are one or two letters and are
always written in lowercase, while the word keeps



its original capitalisation: i nGaeilge (in Irish), on
bhFrainc (from France).

These specific cases are not covered by word
level capitalisation models for other languages,
which usually have just two classes indicating if the
initial letter of the word should be lower or upper-
cased. There are also character level capitalisation
systems, but they perform worse and they are not
SO common.

Besides capitalisation and punctuation, the read-
ability of the text is improved if numbers are
written in digits instead of their textual form and
acronyms are written in their condensed form in-
stead of as they have been uttered by the speaker.
Additionally, the use of specific symbols like per-
centage, currency, ordinal markers is also desirable.
These fully formatted texts are often referred to as
rich transcriptions.

3 Interface

User experience (UX) has been a key concern for
the development of the Fotheidil interface. Users
of the platform are likely to experience significant
wait times while the files they uploaded undergo
processing and recognition. These wait times have
been shown to exhibit a negative logarithmic rela-
tionship with user satisfaction (Egger et al., 2012;
Reichl et al., 2010). Mitigating the negative effects
of long loading times in UX is typically tackled in
two ways: speeding up processing; and reducing
the user’s frustration or perception of wait times.
Increasing the processing speed is largely depen-
dent on available hardware but can be aided by
efficient infrastructure design. Reducing users’ per-
ception of waiting times can be achieved on the
front end through effective use of loading visuali-
sations (Kim et al., 2017). A description of both is
provided below, with reference to Figure 1.

3.1 Backend

Three main back-end functionalities are hosted on
separate Virtual Machines (VMs) to avoid com-
petition for CPU resources. Media processing
is carried out on one VM, voice activity detec-
tion, speaker diarisation and ASR on another, with
database storage on a third. When a user up-
loads a media file, it is first directed to the Media
Server where the audio is stripped/converted to a
wav file with a 16000 Hz sampling rate and video
compression takes place if necessary. The con-
verted wav file is then sent to the Recognition VM
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Figure 1: Infrastructure Diagram

where speaker diarisation and recognition models
are hosted. Updates on the progress for each of
the processes with potentially long wait times are
continuously stored on the database.

Real Time Communication (RTC) between the
front end and the database enables the user to view
progress for each of these back-end processing
steps. The main dashboard for interacting with,
and editting, the processed data is shown in Fig-
ure 2. Users are able to edit the text, times and and
speaker as well as download the output in pdf, docx
or srt format.

4 Transcription Pipeline and Experiments

The transcription pipeline is a multi-step process,

which brings together different systems to tran-

scribe long audio files into text. The choice of the

models used in some of these steps is made by

weighing up their performance and efficiency.
The process is as follows:

i. Upload audio or video file.

ii. Extract or convert audio to 16kHz mono wav.
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Figure 2: Main User Interface

iii. Voice activity detection to create segments.

iv. Speaker diarisation to assign speaker labels
within speech segments.

v. Continuous segments of same speaker are
joined.

vi. Segments are decoded with ASR system.
vii. ASR output is enhanced using a C&PR model.

While there are better performing alternatives
that make use of GPUs, our web-based service
is limited to CPU usage only. The voice activity
detection and speaker diarisation systems are off-
the-shelf, pretrained models and are detailed briefly
in Sections 4.1 and 4.2, while the ASR and Punctu-
ation and Capitalisaion models, which have been
trained specifically for Irish, and these experiments
are described in Sections 4.3 and 4.4.

4.1 Voice Activity Detection

Voice activity detection is the process of finding
speech segments within an audio file. The voice
activity detection (VAD) module used is Silero-
VAD (Silero Team, 2024) - a robust, lightweight,
pre-trained model. While PyAnnote is the con-
ventional off-the-shelf choice for both VAD and
speaker diarisation, it requires a GPU to be used ef-
ficiently. Silero-VAD offers a CPU only alternative
with competitive VAD performance.

4.2 Speaker Diarisation

The goal of speaker diarisation is to assign a
speaker label to each speech segment. A pretrained
Kaldi-based speaker diarisation x-vector (Snyder
etal., 2018) model that is trained using augmented
VoxCelebl and VoxCeleb?2 datasets is used as part
of this pipeline. The model has a reported EER
performance of 3.7% on the Speakers in the Wild
speaker identification test set.

4.3 Automatic Speech Recognition

Modular ASR approaches are often more suited to
low-resource domains, as they do not require the

2https://kaldi-asr.org/models/m8

same amount of data as E2E approaches. Addi-
tionally, modular systems are optimised to run effi-
ciently on the CPU. Therefore, Kaldi-based DNN-
HMM ASR models are used in our system and in
the following experiments.

A baseline supervised model My is trained using
the supervised training set of 398h as described
in Section 4.3.1 and detailed in Table 6 in the
Appendix. To explore the usefulness of SSL for
Irish ASR, a version of the approach outlined in
Manohar et al. (2018), modified to include the nois-
ing element of NST, is tested in these experiments.
The teacher model My, is used to decode the unla-
belled set of 3230h in an undeterminised fashion,
preserving the full decoding lattices. These lattices
are rescored using a large n-gram language model
(LM) and the best path through the rescored lattices
is found. The best paths are taken as pseudo-labels
and are combined with the supervised training set
to create a semi-supervised training set. The stu-
dent model M; is trained with the semi-supervised
training set using the noising technique Spectral
Augment (Park et al., 2015).

4.3.1 Data

The supervised acoustic training set comprises var-
ious datasets, as described in Table 6 in the Ap-
pendix with a breakdown of duration by speaker
variety. Recordings used for ABAIR synthetic
voices of the three dialects are used, totaling 41.4h
(Syn). MileGlér (MG) is an initiative for record-
ing Irish speakers in the field and online using
dialect-specific prompts, and a portion of 17.3h
of this set is used. Additionally, two spontaneous
speech (SS) corpora are combined, the large Cor-
pas na Cainte Beo and the smaller Combhra, total-
ing 259.7h. Audiobooks consisting of both profes-
sional and home recordings make up 36.6h. Caint
Chonamara® (CCh), is a collection of conversations
that was recorded in the Conamara area in 1964,
representing rich dialectal speech of the Co dialect.
Biilidchdn Béaloidis Arann (BBhA) is a folklore

3https://www.sksk.de/index.php/de/
veroeffentlichungen-2/materialien/
33-caint-chonamara
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collection of conversational speech from the Aran
Islands*. Datasets SS, AB, CCh and BBhA were
aligned using the alignment protocol set out in
Lonergan et al. (2024).

The unsupervised acoustic data consists of
broadcast recordings from four Irish language
radio shows featured on Raidi6 na Gaeltachta:
Barrscéalta, which mainly features speakers of Ul
Irish; Adhmhaidin, which primarily contains speak-
ers of the Co dialect; An Saol O Dheas which
largely features Mu speakers; and Nuacht a hAon,
which has a mix of dialects. These recordings
are downloadable in MP3 format from Raidié na
Gaeltachta’s podcast page. Silero-VAD, as de-
scribed in Section 4.1, is used to find speech chunks
for decoding and resulted in 3230h. A breakdown
in duration by radio show is provided in Table 8 in
the Appendix.

Five test sets are used to evaluate the system and
details for these sets are given in Table 9 in the
Appendix. The first two are portions of MG and
SS taken from the training set corpora, ensuring no
data leakage, and can be considered as in-domain
tests. These sets are 10.2h and 28.2h in length
respectively and their speaker variety breakdown
in duration is detailed in Table 7 in the Appendix.
Two additional out-of-domain test sets are the Irish
test portions of CommonVoice (CV) (Ardila et al.,
2020) and Fleurs-R (FL) (Ma et al., 2024) datasets.
The quality of these datasets is markedly poor.
Both datasets feature predominately non-native
(Nn) speakers, and the texts for FL seem to be
machine-translated English texts, which contain
many foreign proper nouns. However, as they are
publicly available and out-of-domain, we have in-
cluded them here. They are 0.6h and 2.2h long re-
spectively. Finally, 10 minutes each from the four
radio shows (0.7h) from which the unsupervised
dataset is created, were hand-labelled by the au-
thors and are used here for evaluation (HL). While
these do not appear in the unsupervised set, there
is overlap in terms of speakers and likely content.

The text corpus of 36.6 million words used for
LM training is comprised of normalised versions of
the New Corpus of Ireland (Kilgarriff et al., 2006)
(c. 30m words), the Bible (c. 0.1m words), Irish
language Wikipedia texts (2.9m) and the supervised
training set texts (4.6m).

*https://bba.duchas.ie/en/about/bba
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4.3.2 Experiment

The acoustic model (AM) in the baseline ASR sys-
tem My is a Time-Delay Neural Network (TDNN)
(Peddinti et al., 2025), trained using the 398h su-
pervised train set (see Table 6) for 4 epochs. The
initial alignment is produced by a triphone GMM-
HMM trained with standard MFCC features, ap-
plying linear discriminative analysis (LDA), max-
imum likelihood linear transformation (MLLT),
feature space maximum likelihood linear regres-
sion (fMLLR) and speaker adaptive training (SAT).
The features for training the TDNN model are 40-
dimensional high-resolution MFCCs stacked with
100-dimensional online extracted i-vectors. Two
widely used on-the-fly data augmentation tech-
niques for ASR — speed perturbation (Ko et al.,
2015) with factors of 0.9, 1 and 1.1, and spectral
augmentation (Park et al., 2015) were applied to
augment the AM training data. The TDNN model
consists of 6 TDNN layers with a hidden dimension
size of 768. A pronunciation dictionary based on
the Global rules, as described in Qian et al. (2022)
and Lonergan et al. (2023a), which capture cross-
dialect variation in the pronunciation of phonemes
and morphemes, is used, along with a 4-gram LM,
trained using the text corpus described in the last
paragraph of Section 4.3.1.

As described in Section 4.3, pseudo-alignments
for the unsupervised data are acquired by decoding
the data using My, rescoring the undeterminised
decoding lattices and finding the best path for each
utterance. Rescoring is done using a 5-gram LM
trained with the same texts described in Section
4.3.1. The resulting unsupervised and supervised
alignments are combined with equal weighting.
These semi-supervised alignments are then used to
train M; with SpecAug for 6 epochs, with the same
AM structure, lexicon and LM as M.

Recurrent neural network LMs (RNNLM) are
beneficial in rescoring n-best lists generated by an
ASR system (Xu et al., 2018). An RNNLM is
trained on the text corpora listed in Section 4.3.1
and is used in these experiments. Where results
including RNNLM are reported, they are labelled
as (+LM).

4.3.3 Results

The WERs for in-domain test sets MG and SS have
a relative improvement of 9% and 2% respectively
with M. For the out-of-domain test sets CV and
FL, the performance improves by 14% and 7% rel-
atively. For HL, which more closely matches the


https://bba.duchas.ie/en/about/bba

MG SS CV FL HL
My 141 273 275 519 221
M; 12.8 267 2377 485 16.1
+LM | 109 240 196 445 14.1

Table 1: ASR performance breakdown of models M
and M; of test sets and RNNLM rescoring (+LM).

Overall Ul Co Mu Nn
My 14.1 185 14.0 10.8 132
M; 12.8 153 13.1 102 126
+LM | 109 127 116 88 104

Table 2: ASR performance breakdown by speaker vari-
ety of MileGlér test set.

unsupervised data, there is a more dramatic rela-
tive performance improvement of 27%. RNNLM
rescoring improves performance across the board
and is complementary with the improved, semi-
supervised acoustic model. Table 2 provides a
breakdown of the performance on the MG set by
speaker variety. The starkest improvement brought
by the SSL approach to MG is the relative WER
reduction of 17% for Ul speakers.

From these results, it is clear that SSL most sig-
nificantly impacts performance on out-of-domain
datasets, or domains more similar to the unsuper-
vised training set (i.e. HL). Another noteworthy
result is the boost in performance of Ul speakers,
which is the least represented of the three dialects
in the supervised training set (see Table 6). Pre-
vious studies on Irish dialect bias in ASR have
shown that the Mu and Co dialects reinforce each
other in terms of performance, whereas Ul, being a
more distant dialect, is an outlier (Lonergan et al.,
2023b). The improvement can be explained by
Ul being well represented in the unsupervised set,
indicating that such dialect bias can be alleviated
using SSL. The improvements could be increased
further by repeating this experiment multiple times,
using the student of a previous experiment as the
teacher for the next, or by increasing the size of the
unlabelled dataset.

4.4 Capitalisation and Punctuation
Restoration

In this work, we propose a novel approach to tackle
the punctuation and capitalisation task, namely, a
sequence-to-sequence (S2S) approach which will
target all the rich transcription features in an unified
way. The input for such a model is uncapitalised
and unpunctuated i.e., as close as possible to the
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actual output of the ASR system. The output is
the same text in its rich transcription format with
correct capitalisation and punctuation, while also
including digits and acronyms. The conventional
approach is to use a classifier, which for each word
in the input text, predicts whether the word should
be followed by punctuation or should be capitalised,
however as the input and output texts do not have a
one-to-one word correspondence, a S2S architec-
ture is more appropriate.

To that aim, our proposed model is a transformer
based machine translation model, implementing
the original model by Vaswani et al. (2017), which
is based on attention mechanisms. We used the
MarianNMT implementation (Junczys-Dowmunt
et al., 2018) of this architecture.

For comparison purposes we have also tested
a baseline system using a classification model
(CLAS), Nvidia’s Nemo Punctuation and Capitali-
sation Model’. This model features two token-level
classifiers on top of a pre-trained BERT LM. For
each word in the input text, the model predicts a
punctuation mark that should follow the word, if
any, and predicts also if the word should be capital-
ized or not. The output text is then regenerated ap-
plying the classification results to each input word.
The classes of the original capitalisation model are
expanded to include two additional classes for 2nd
and 3rd letter capitalisation. The punctuation clas-
sifier has been trained with seven classes: commas,
periods, question marks, exclamation marks, semi-
colons, colons and none.

44.1 Data

A text corpus of 5 million Irish sentences has been
used to train the model. This corpus consists of
the Irish section of the Paracrawl corpus (PC_ga)
(Esplaetal., 2019), and the already mentioned New
Corpus of Ireland (NCE), the Bible (BI) and the
spontaneous speech corpus texts from the super-
vised training set, excluding the sentences used for
testing (SS). The details are shown in table 11.
Four additional datasets have been used for eval-
vation: The Irish Language part of the FLoRes
evaluation dataset (FO) (NLLB Team et al., 2022),
commonly used for machine translation evalua-
tion for low resourced languages and the MiléGlér
(MG), Fleurs-R (FL) and CommonVoice (CV) eval-
uation datasets, employed also for the evaluation

5https: //docs.nvidia.com/nemo-framework/
user-guide/latest/nemotoolkit/nlp/punctuation_
and_capitalization.html
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of the ASR. The details of these databases are sum-
marised in Table 10 in the Appendix.

The original text corpora were cleaned to create
the training and evaluation datasets, removing non-
standard characters, brackets, curly brackets and
parenthesis, and standardising the use of spaces,
quotes and so on. This clean text is the ground truth
that will be used as target dataset in the case of our
machine translation model. It will be referred as
rich transcription (RT) dataset.

In order to obtain an input text as similar as pos-
sible to plain text output of an ASR system, the
ground truth target was processed by the normali-
sation module of the Abair (Murphy et al., 2023)
speech synthesis system. The normaliser converts
every digit, acronym and some symbols into pro-
nounceable texts, keeping the punctuation and cap-
italisation of the text. We will refer to this dataset
as normalised rich transcript (NR). This dataset is
used as ground truth to train the classifier system.
The normalised text is then stripped out from any
non-alphabetic character and lower cased, obtain-
ing the input dataset (IN) for both of the systems.

4.4.2 Experiment Set-up

The proposed S2S model has a transformer archi-
tecture, with 8 heads, 6 encoding and 6 decoding
layers, transformer dropout of 0.1 and tied embed-
dings. The training was done using label smooth-
ing of 0.1, learning rate of 3 - 10~*, warm-up stage
and early stopping using cross-entropy, perplexity,
BLEU detok, and CE-mean-words as validation
metrics and a beam size of 6.

The baseline classifier system used the standard
architecture of the NeMo model. It was trained
using Google’s pretrained BERT-base-uncased®.

As the approach is a sequence to sequence task,
to evaluate the systems, our main metric is a mod-
ified word error rate that uses the rich transcript
as ground truth (instead the usual uncapitalised,
unpunctuated text). We will denote it as WER,
to distinguish it from the usual WER in ASR. We
are also using character error rate (CER) to mean
calculated with the rich transcript as target. Along
with these metrics, we also use the BLEU score
(Post, 2018), a common machine-translation metric
which measures the similarity between generated
and reference translations using n-grams.

6https://huggingface.co/google—bert/
bert-base-uncased
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S2S CLAS
Capt Punct WER,;| Capt Punct WER,
FO [ 098 096 7.87 | 097 096 7.93
MG | 098 095 836 | 097 095 9.69
CV | 097 089 15.17 | 096 0.89 16.68
FL | 097 096 827 | 097 0.96 853
ALL| 098 095 840 | 097 095 9.38

Table 3: Capitalisation and punctuation accuracy and
WER, using normalised rich transcripts (NR) as target.

4.4.3 Experiments and Results

We have performed two experiments to evaluate
the proposed model using two metrics. Firstly, we
compare the S2S approach with the baseline classi-
fier approach. Due to the more limited capabilities
of the classifier, and to allow a fair comparison of
the performance of both models, we have used the
normalised rich transcripts (NR) datasets as targets
and the lower-cased, punctuation removed versions
as input (IN). In this setup the input and output text
are exactly the same with the only difference of
punctuation marks and capitalisation.

The main metric used for comparison here is
accuracy. This gives a general idea of the per-
formance of the systems although the classes are
severely unbalanced. The results in Table 3 show
the accuracy and resulting WER,. of both classi-
fiers: capitalisation and punctuation. Both systems
perform well with the proposed S2S system show-
ing slightly higher accuracy and better WER .

The second experiment setup reflects the actual
use case of the restoration system: plain text at
the input (the IN dataset) and full rich transcrip-
tion (RT) at the output. Table 4 presents 3 groups
of results: No C&P correspond to the compari-
son between the input (IN) and target outputs (RT)
without any C&PR system and gives an idea of the
disparity of both datasets, defining the maximum
error level (or minimum BLEU) that will be cor-
rected by the restoration systems. S2S and CLAS
groups correspond to the results of both systems.

The results show that both systems are effective
in C&PR, obtaining important reductions in the
WER|,c and CER metrics. Our proposed S2S sys-
tem reduces the WER,. and CER by more than
50% and improves the BLEU more than 20 points
for all datasets. S2S clearly outperforms the base-
line classifier in this experiment, because it not
only restores the casing and punctuation more ef-
fectively, but also changes digits or acronyms to a
textual output that is closer to the target rich tran-
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No C&PR S2S CLAS
WER,. CER BLEU | WER,. CER BLEU | WER,. CER BLEU
FO 22.2 7.7 64.7 7.9 1.9 85.1 13.62 531 80.1
MG 18.5 5.0 66.1 8.34 1.69 88.4 10.18 225  84.7
Ccv 25.6 5.7 61.4 1829 494 829 16.78 3.19 799
FL 21.7 7.2 64.1 8.52 199 843 1333 483 803
ALL | 19.7 5.8 65.5 8.50 1.83 874 11.29 3.14 83.6

Table 4: C&PR performance with rich transcription (RT) as target.

ASR No C&PR S2S

WER | WER,. CER BLEU | WER,. CER BLEU
MG | 109 | 26.11  9.65 552 1878 676 723
CV | 196 | 4043 1659 455 3475 15.63 630
FL | 445 | 5458 3035 249 50.70  28.65 319

Table 5: Performance of the S2S C&PR system on ASR generated text with rich transcriptions (RT) as target.

scription. The error rates for S2S are below 9%
for all the databases, except CV. This database con-
tains a large number of very short, fragmentary
sentences with inconsistent casing and punctuation,
which may be interpreted as titles.

Finally Table 5 shows the effect of applying the
S2S system to the actual output of the ASR. The in-
put text is the plain text generated by the M (+LM)
ASR model. The WER of these texts compared
to the uncapitalised and unpunctuated references
as shown previously in Table 1 is shown in the
column ASR for readability. The results in col-
umn No C&PR show the WER,,c of the same texts
when they are compared to the rich transcription.
The columns under S2S show the results when the
restoration system is applied. The final WERs are
always lower than the accumulated WERs of the
ASR and the S2S, suggesting that the degradation
in the input text generated by the ASR does not
impact in the performance of the S2S system.

5 Conclusion and Future Work

This paper constitutes an important step towards
democratising speech-related Al technologies for
the Irish language and its speakers. The ASR exper-
iments have demonstrated that SSL learning is an
attractive solution to improve performance for out-
of-domain datasets and underrepresented dialects
in the supervised training set. As stated, this im-
provement can be increased by iteratively repeating
this process or increasing the size of the unlabelled
dataset. Future work will explore SSL further.
The S2S model offers an elegant solution to the
C&PR problem, improving significantly over the
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baseline due to its ability to effectively deal with
the lack of a one-to-one relationship between the
outputs of an ASR system and the rich transcrip-
tions. The S2S model could additionally be trained
using the output texts of the ASR systems so that it
will be able to correct of some of the ASR errors.
Furthermore, it can be trained to convert specific
keywords, such as punctuation symbol names, cur-
rency or units, which would be very useful for
dictation applications.
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A Appendix: Additional Tables

Full Ul Co Mu Nn
Syn |414 222 88 104 -
MG 173 3.1 5.6 34 52
SS 259.7 555 1049 954 3.9
AB 36.6 103 2.5 146 92
CCh |25 - 250 - -
BBhA | 179 - 179 - -
Total | 3979 91.1 164.7 123.8 183

Table 6: Duration breakdown in hours of ASR training
set by speaker variety.

| Total Dur () Ul Co  Mu Nn
MG | 102 25 34 30 13
SS | 282 75 104 103 -

Table 7: Duration breakdown by speaker variety of
MileGlér and Spontaneous Speech test sets.

Dialect Dur (h)
Adhmbhaidin | Co 779.0
Barrscéalta Ul 1002.4
Saol O Dheas | Mu 993.9
Nuacht mix 400.0
Total - 3230.0

Table 8: Duration in hours and dialect information of
unsupervised set by radio show

| MG SS CV FL HL
#Utts | 8423 19266 516 548 198
Dur(h) [ 102 282 06 22 07

Table 9: Number of utterances and total duration of test
sets.

#lines #words #chars
FO | 1012 25772 163254
CV | 515 3423 19617
FL 548 13634 86282
MG | 8423 98463 559675

Table 10: Features of the databases used for evaluation
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#lines #words #chars
PC_ga | 3.2 63.1 417.2
NCE 1.8 30.4 181.5
BI 0.3 0.8 4.5

SS 1.4 3.6 20.6

Table 11: Features of the databases used for training the
Cap&Punct systems (numbers in millions)
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