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Abstract

Disorganized thinking is a key diagnostic in-
dicator of schizophrenia-spectrum disorders.
Recently, clinical estimates of the severity of
disorganized thinking have been shown to cor-
relate with measures of how difficult speech
transcripts would be for large language mod-
els (LLMs) to predict. However, LLMs’ de-
ployment challenges – including privacy con-
cerns, computational and financial costs, and
lack of transparency of training data – limit
their clinical utility. We investigate whether
smaller neural language models can serve as
effective alternatives for detecting positive for-
mal thought disorder, using the same sliding
window based perplexity measurements that
proved effective with larger models. Surpris-
ingly, our results show that smaller models are
more sensitive to linguistic differences associ-
ated with formal thought disorder than their
larger counterparts. Detection capability de-
clines beyond a certain model size and context
length, challenging the common assumption of
“bigger is better” for LLM-based applications.
Our findings generalize across audio diaries
and clinical interview speech samples from in-
dividuals with psychotic symptoms, suggesting
a promising direction for developing efficient,
cost-effective, and privacy-preserving screen-
ing tools that can be deployed in both clinical
and naturalistic settings.

1 Introduction

With an estimated prevalence of 15.2 in 100,000
persons (McGrath et al., 2008), schizophrenia-
spectrum disorders (SSDs) are debilitating condi-
tions that can lead to impaired social and occupa-
tional functioning, and poor healthcare outcomes
including early mortality (Laursen et al., 2014).
Formal Thought Disorder (FTD) – a breakdown
in the structure of an individual’s thinking – is a
diagnostic feature of schizophrenia (Kircher et al.,

*Equal contribution

2018), and is recognized by observing speech that
appears incoherent. Traditional evaluation of FTD
relies on clinical interviews and standardized rat-
ing scales, which require extensive training and can
be time-consuming. Natural language processing
(NLP) methods have emerged as promising com-
putational tools for automated evaluation of FTD.
These data-driven approaches can systematically
analyze linguistic patterns and discourse structure
in patients’ speech, offering objective quantitative
measures of semantic coherence that correspond
with clinical estimates of FTD severity (Elvevåg
et al., 2007; Corcoran et al., 2020; Xu et al., 2021;
Sarzynska-Wawer et al., 2021; Xu et al., 2022, inter
alia).

Among the language impairments detectable by
NLP methods, FTD represents a particularly com-
plex set of disruptions in thought and speech orga-
nization. Patients with FTD exhibit distinct think-
ing patterns including tangentiality (gradual topic
drift) and derailment (completely/partially unre-
lated thoughts), which may indicate a relative in-
sensitivity to global discourse context (Kuperberg,
2010a,b). Previous psycholinguistic and neurolin-
guistic studies in language comprehension have
shown an impaired ability to use global linguis-
tic context (e.g., information from early in longer
sentences) and relatively intact ability for local lin-
guistic context (e.g., information from shorter sen-
tences, local priming) in SSDs (Sitnikova et al.,
2002; Swaab et al., 2013). With recent advances in
neural language models (LMs) in particular, it is
now possible to measure dependence upon global
and local context in language production in SSDs.
Recent work (Sharpe et al., 2024) suggests that
disorganized speech can be characterized by com-
paring the global (probabilities estimated for ob-
served text when including proximal and distal con-
text) and local (probabilities estimated for observed
speech when including proximal context only) lex-
ical probabilities retrieved from GPT-3 (Brown
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et al., 2020) when applied to speech samples from
SSDs patients and neurotypical demographically-
matched controls. A key finding from this research
is that models that include longer context appear
better-equipped to recognize language from partic-
ipants with SSDs, in accordance with prior work
showing SSDs patients are less influenced by over-
all sentence context during text comprehension (Sit-
nikova et al., 2002).

Commercially-developed large language mod-
els (LLMs) such as GPT-3 are pre-trained on large
text corpora to enhance their linguistic capabili-
ties. However, their usage and deployment raise
concerns in clinical settings. Healthcare applica-
tions require stringent privacy protections, yet com-
mercial LLMs mostly operate through cloud-based
APIs, requiring the sharing of patient data with
third-party commercial services. Even services
compliant with the Health Information Portabil-
ity and Accountability Act (HIPAA) or European
counterpart General Data Protection Regulation
(GDPR), LLMs can present certain risks to patient
privacy especially when used for health-related pur-
poses outside of a healthcare environment (Marks
and Haupt, 2023). In addition to privacy concerns,
computational requirements and associated costs
of accessing commercial LLMs may also restrict
their application in clinical settings. Lastly, the
proprietary nature of commercial LLMs and a lack
of transparency regarding their training data make
it difficult to investigate or mitigate sources of bias.

While these limitations present challenges, there
is a pressing need to explore the potential of LLMs
in healthcare settings. Healthcare systems contin-
uously face significant workforce shortages, par-
ticularly in specialized areas requiring extensive
training (Thomas et al., 2009; Butryn et al., 2017).
Current diagnostic and monitoring approaches rely
heavily on in-person evaluations, creating bottle-
necks in patient care and limiting access to special-
ized services, especially in resource-constrained
settings. LLMs, if properly implemented with ap-
propriate privacy safeguards, could help address
these challenges by facilitating the development
of technology-assisted diagnostic and monitoring
tools, potentially improving the efficiency and ac-
cessibility of healthcare services.

Beyond these obstacles, we posit that commer-
cial LLMs’ extensive exposure to diverse linguistic
patterns drawn from the internet and other sources
– while beneficial for their remarkable text genera-
tion capabilities – may paradoxically reduce their

sensitivity to subtle linguistic differences. This
hypothesis is supported by recent works suggest-
ing that broad exposure to diverse linguistic data
leads LLMs to prioritize general patterns over fine-
grained linguistic sensitivity (Lee et al., 2024a;
Cong, 2024; Wilson et al., 2023), potentially dimin-
ishing their sensitivity to subtle deviations charac-
teristic of FTD. We hypothesize that smaller LMs,
such as those in the Pythia suite from EleutherAI
(Biderman et al., 2023), may exhibit enhanced
sensitivity to these linguistic phenomena. These
models, ranging from 70M to 12B parameters, are
trained on identical public datasets in the same or-
der. As they differ in size only, it is possible to
assess the extent to which they respond to nuanced
linguistic patterns differently with the constraints
in their capacity. In contrast, larger models’ poten-
tially excessive capacity to model complex textual
relationships may obscure these subtle linguistic
markers beneath layers of broader contextual un-
derstanding learned from vast amounts of data.

LMs’ sensitivity to linguistic manifestations can
be measured with perplexity (PPL). PPL is an in-
trinsic measure used to evaluate the performance
of language models on unseen data. The more dif-
ferent the input is from a LM’s training data, the
“harder” it is for the model to predict the next word,
resulting in higher PPL. Therefore, it is reasonable
to hypothesize that PPL may have some degree of
diagnostic utility, as has been documented by prior
work using PPL to evaluate cognitive impairment
in Dementia of the Alzheimer’s Type (Orimaye
et al., 2018; Fritsch et al., 2019; Cohen and Pakho-
mov, 2020; Li et al., 2022, 2024, inter alia) and
psychosis (Colla et al., 2022; He et al., 2024).

Building upon Sharpe et al. (2024)’s findings
with LLMs, our study seeks to assess smaller LMs’
sensitivity to linguistic patterns associated with pos-
itive FTD by analyzing PPLs derived from Pythia
models (exemplifying smaller LMs) and LLaMA
(Dubey et al., 2024) (exemplifying a LLM) across
both monologue and conversational speech sam-
ples from individuals with psychotic symptoms
and clinically diagnosed SSDs respectively, and
evaluating their correlation with the corresponding
clinical ratings.

The contributions of this work can be summa-
rized as follows: a) we provide empirical evidence
suggesting that smaller LMs are more sensitive
to linguistic patterns associated with FTD; b) we
demonstrate that the degree of sensitivity starts to
decline after models exceed a threshold of a certain

91



number of parameters, suggesting a diminishing
relationship between model size and detection ca-
pability; and c) the sliding window PPL approach
generalizes to both monologue and conversational
speech samples of individuals with psychotic symp-
toms and clinically diagnosed SSDs respectively,
suggesting its potential utility for screening and
monitoring of SSDs in diverse clinical settings.1

2 Related Work

2.1 FTD in schizophrenia

Traditionally, FTD is evaluated through clinically
administered rating scales such as the thought and
language index (Liddle et al., 2002) or thought and
language disorder (TALD) scale (Kircher et al.,
2014) in research settings, which captures the full
variety of FTD phenomenology including subjec-
tive experiences. It can also be more conveniently
evaluated through self-reporting scales (Barrera
et al., 2008). However, there are inherent prob-
lems associated with each approach: administering
the clinical scales is time-consuming and requires
specific training and expertise. Additionally, even
when the required expertise is readily available, the
clinical assessment only provides intermittent mea-
sures during office visits, making it difficult to paint
a continuous picture in a more ecological setting.
On the other hand, the self-reporting scale lacks ob-
jectivity because each patient may have subjective
views on the scale’s severity settings, and the abil-
ity to self-appraise may be impaired in psychosis.
These inherent problems and the advancement of
computational technologies have inspired the us-
age of NLP methods to evaluate and quantify the
severity of FTD.

2.2 Assessing FTD and SSDs with NLP
methods

Advancements in computational systems have in-
troduced innovative methods for automated FTD
assessment. A seminal approach by Foltz et al.
(1998) utilizes distributional similarity, specifically
measuring semantic relatedness between consecu-
tive text segments using latent semantic analysis
(LSA) (Landauer and Dumais, 1997) to measure
coherence, providing a proxy that was later used to
quantify the degree FTD. This method’s diagnostic
utility was demonstrated by Elvevåg et al. (2007),
who found significant differences in automated co-

1Our code is publicly available on https://github.com/
LinguisticAnomalies/small-lm-sliding-windows

herence metrics when comparing individuals with
schizophrenia to healthy controls, as well as among
patients with varying levels of thought disorder.

Building on this work, a subsequent study in-
tegrated LSA-based coherence metrics into a ma-
chine learning classifier that accurately predicted
psychosis onset in a small sample of at-risk youth,
achieving perfect leave-one-out cross-validation
accuracy (Bedi et al., 2015). An adapted version
maintained 83% accuracy in predicting psychosis
onset in a larger, independent dataset (Corcoran
et al., 2018). More recently, neural word embed-
dings (Mikolov et al., 2013), which represent words
as vectors derived from neural networks trained to
predict nearby words, have been explored as an al-
ternative to LSA for coherence analysis. Similarity
metrics from these embeddings showed promis-
ing results in aligning with clinical assessments of
thought disorder (Just et al., 2019, 2020).

With advances in NLP methods, recent studies
have used sentence embeddings from BERT (Bidi-
rectional Encoder Representations from Transform-
ers) (Devlin et al., 2019) to identify coherence dif-
ferences between transcripts from individuals with
SSDs and those from healthy controls (Tang et al.,
2021). As a transformer-based model, BERT gen-
erates context-specific representations of tokens by
dynamically incorporating information from sur-
rounding words, unlike LSA or neural word em-
beddings, which rely on static word representations
derived from all of the contexts a word is observed
in during training. Prior research also introduced
methods for assessing global coherence – estimat-
ing the relationship between a unit of text and the
overarching theme of a text – using these meth-
ods to improve coherence evaluation in automatic
speech recognition by extracting time series fea-
tures for machine learning (Xu et al., 2021, 2022).

With the emergence of autoregressive LMs,
some recent studies (Palaniyappan et al., 2023;
Fradkin et al., 2023; Sharpe et al., 2024) have exam-
ined the assessment of psychosis using such mod-
els to demonstrate that LMs can be utilized with
in-silico experimental research to gain better under-
standing of the linguistic manifestation of FTD. In
contrast to BERT, which is a bidirectional model
that utilizes tokens on both sides of a target token
for prediction, autoregressive LMs are designed to
predict only the next token in a sequence. While
BERT-derived representations are highly effective
for estimating semantic relatedness, autoregressive
LMs are specifically optimized for generating co-
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herent and fluent sequences of text, offering poten-
tial for developing alternative approaches to FTD
evaluation. However, these approaches have pri-
marily relied on such models without exploring
how model size and granular context windows af-
fect sensitivity to linguistic manifestations of FTD.

3 Methods

3.1 Data
AVH Dataset Speech monologue samples from
native English speaking participants who experi-
enced auditory verbal hallucinations (AVH) using
a smartphone application were collected during
the course of a previous study (Ben-Zeev et al.,
2020). Participants experiencing AVH were re-
cruited in-person and online, and prompted to de-
scribe their experiences of AVH and anything else
they would like to share or think would be helpful
for the research team to know. Informed consent
from participants was obtained through a rigorous
procedure involving triple confirmations from a
screening questionnaire. The study was approved
by the Institutional Review Boards (IRB) of the
University of Washington and Dartmouth College.
Two annotators labeled the manual transcripts of
the audio recordings for their degree of incoherence
based on the TALD scale, using the construct of de-
railment. The TALD score ranges from 0-4 and rep-
resents greater incoherence as the score increases.
The inter-rater agreement between annotators was
0.71, as measured by weighted Kappa. This set
contained samples with a mean TALD score of
1.18 and a standard deviation of 0.83. We select
310 recordings that: a) have manual transcriptions;
and b) are annotated with TALD. The transcript-
level demographic information for this dataset is
summarized in Table A.1 in the Appendix.

Clinical Interview Dataset This set contains
semi-structured clinical interviews of San Fran-
cisco Bay Area male outpatients diagnosed with
SSDs participating in a study of oxytocin con-
ducted independently at University of California,
San Francisco (UCSF) (Bradley et al., 2024). All
participants are provided with written informed
consent and study protocols were approved by the
IRB at the UCSF. Following a prior work (Poole
et al., 2000), the clinical assessments were con-
ducted by trained raters in the form of a compos-
ite score combining the conceptual disorganiza-
tion item (ranging from 1-7 with increasing sever-
ity) (Kay et al., 1987) from the Positive and Neg-

ative Syndrome Scale (PANSS) and the incoher-
ent speech item (ranging from 0-5 with increasing
severity) from the Comprehensive Assessment of
Symptom and History (CASH) (Andreasen et al.,
1992) to supplement the disorganized symptom
subscale and the measure of suicidality. To avoid
any potential confusion between these terms refer-
ring to different types of ratings, in the remainder
of this paper we will refer this score as composite
PANSS. We use manually transcribed interviews
from 39 participants with corresponding composite
PANSS between 2 and 8 (in the range of 0-12),
with a mean of 3.36 and a standard deviation of
1.80. The transcript-level demographic informa-
tion for this dataset is summarized in Table A.2 in
Appendix.

3.2 Language models

Pythia is the first LLM suite deliberately designed
to enable scientific research on LLMs. The Pythia
suite offers pre-trained decoder-only autoregressive
LMs ranging from 70M to 12B parameters. The
Pythia suite is trained on the Pile corpus (Gao et al.,
2020), which is a publicly available and curated
collection of English language. In particular, we
select Pythia checkpoints (70m, 160m, 410m, 1b,
1.4b, 2.8b, 6.9b, and 12b in parameter size) that are
pre-trained on a deduplicated Pile corpus contain-
ing approximately 207B tokens. We select these
checkpoints as deduplication has demonstrated its
benefits in LLM training process (Lee et al., 2022).
The Pythia suite largely follows the architecture
and hyperparameters of GPT-3, but differs in sev-
eral aspects: a) it uses fully dense attention layers;
b) it is pre-trained using Flash Attention (Dao et al.,
2022) for improved device throughput; and c) it
uses rotary positional embeddings (Su et al., 2024)
for a flexible mechanism to encode positional in-
formation.

We also compare Pythia suite with locally-
hosted LLaMA-3.1-405b (Dubey et al., 2024)
model, which is quantized with 4-bit precision us-
ing ExLlamaV22 (prior work indicates that quan-
tization does not significantly degrade model per-
formance (Lee et al., 2024b)). As initial experi-
mentation in previous work showed comparable
results to those obtained with the base model (with-
out instruction tuning), we use an instruction-tuned
model, hosted locally on a secure server.

2https://github.com/turboderp-org/exllamav2
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3.3 Global and sliding window PPLs

We compute PPL for a transcript using two ap-
proaches: a) a global PPL that evaluates the full
transcript as a single sequence; and b) a local PPL
using sliding windows of 8, 16, 32, 64, and 128
for the Pythia suite, and a sliding window of 64
for the LLaMA model, as prior work indicates that
restricting to a short input (e.g., context length of
128) can substantially improve the performance of
LMs (Press et al., 2021). The sliding window is
defined as a window of a corresponding number of
tokens moved sequentially through the transcript.
PPL is calculated for each window position as it
shifts one token at a time until reaching the end of
the transcript. If the transcript is shorter than the
designated sliding window, then we calculate the
global PPL for the transcript instead. As window
size increases, the sliding window PPL approach
allows the model to have more dynamic context
when making each prediction, resulting in a more
accurate approximation of the fully-factorized PPL
(i.e., the global PPL). This can be particularly use-
ful for evaluating spontaneous speech where the
context is more fragmented than with read speech
(Auer, 2009; Shriberg, 2001; Agmon et al., 2023;
Wang et al., 2010). To generate a transcript-level
measure, we use the maximum and the averaged
PPL across the estimated sliding window PPLs, in
addition to the global PPL for each transcript. For
each measure, we compare the Spearman ρ with
the TALD and composite PANSS scores for the
AVH and clinical interview datasets respectively.

We opt to use maximum sliding window PPL
as our primary transcript-level metric for detecting
incoherent language. The rationale for this choice
is evident in the distinct separation between tran-
scripts that exhibit mild derailment (with TALD
derailment < 3, labeled as 0) and those that ex-
hibit severe derailment (with TALD derailment ≥
3, labeled as 1 ) in the AVH dataset (Figure A.1 in
Appendix). Transcripts rated with TALD ≥ 3 con-
sistently exhibit higher maximum sliding window
PPL spikes across different model sizes (partic-
ularly visible with the sliding window length of
64), while transcripts rated below this threshold
maintain relatively stable, lower PPL patterns. We
observed a similar trend in Figure A.2 in Appendix,
the variation of PPL spikes across different sever-
ities of composite PANSS, suggesting that max-
imum sliding window PPL reflects disorganized

speech.3

4 Results

4.1 Global PPL as a proxy for FTD-related
linguistic patterns

As illustrated in Figure 1, smaller Pythia models
(Pythia-70m and Pythia-160m) consistently exhib-
ited higher global PPLs compared to their larger
counterparts across both the AVH and clinical in-
terview datasets. Larger models (6.9b and 12b pa-
rameters) tended to cluster together at lower PPLs,
suggesting diminishing effects on PPL estimation
as model size increases. We observed minimal cor-
relation (ρ < 0.01) between global PPL and TALD
(in the AVH set), and this was statistically insignif-
icant across all model sizes. While correlations
between global PPL and composite PANSS (in the
clinical interview set) were present (Spearman’s
ρ between 0.20 and 0.39), statistical significance
was achieved only for the larger models, includ-
ing Pythia-2.8b, Pythia-6.9b, and Pythia-12b, at
α = 0.1.

4.2 Sliding window PPL performance
4.2.1 The AVH dataset

Model Sliding windows

8 16 32 64 128

70m 0.366*** 0.375*** 0.427*** 0.440*** 0.370***

160m 0.369*** 0.360*** 0.426*** 0.451*** 0.378***

410m 0.347*** 0.336*** 0.430*** 0.458*** 0.378***

1b 0.329*** 0.328*** 0.431*** 0.458*** 0.367***

1.4b 0.331*** 0.305*** 0.423*** 0.486*** 0.388***

2.8b 0.315*** 0.316*** 0.435*** 0.464*** 0.365***

6.9b 0.319*** 0.310*** 0.420*** 0.475*** 0.370***

12b 0.317*** 0.307*** 0.421*** 0.470*** 0.372***

LLaMA – – – 0.457*** –

***p < 0.01, **p < 0.05, *p < 0.1

Table 1: The AVH dataset Spearman’s ρ between the
maximum sliding window PPL and TALD across model
size. Bold indicates the highest ρ for a model.

As shown in Table 1, all correlations between
maximum sliding window PPL and TALD scores
were statistically significant (p-value < 0.01)
across all model and sliding window sizes. The
strongest correlations consistently occurred with a
64-token sliding window, with coefficients peak-
ing at 0.486 for the 1.4b model, and remaining
moderately correlated with TALD scores for all

3Our experiments are conducted on 3 H100 GPUs.
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Figure 1: Global PPLs estimated by the Pythia suite. The shaded area represents 95% confidence intervals of the
global PPLs estimated from a pre-trained Pythia model.

model variants. Interestingly, the 4-bit quantized
LLaMA 405b model did not outperform the Pythia
suite, attaining a lower Spearman ρ of 0.457 on the
64-token sliding window.

Table A.3 in Appendix shows similar patterns of
correlation between averaged sliding window PPL
for a transcript and TALD scores. While all corre-
lations remain significant (p-value < 0.01) across
all model sizes and sliding windows, the correla-
tion coefficients are generally lower compared to
those for maximum sliding window PPLs. The 64-
token sliding window again emerged as the optimal
configuration, with correlation coefficients ranging
from 0.202 to 0.251. The 1.4b model achieved the
strongest correlation (ρ = 0.251), followed closely
by the 6.9b model (ρ = 0.249). The LLaMA model
achieved the highest correlation (ρ = 0.371) for the
sliding window of 64 tokens.

4.2.2 The clinical interview dataset

Model Sliding windows

8 16 32 64 128

70m 0.265 0.482*** 0.338** 0.356** 0.344**

160m 0.414*** 0.433*** 0.316* 0.354*** 0.325**

410m 0.385* 0.433*** 0.316* 0.354** 0.325**

1b 0.415*** 0.352** 0.380** 0.410*** 0.313*

1.4b 0.458*** 0.370*** 0.382** 0.418*** 0.326**

2.8b 0.425*** 0.385** 0.369** 0.428*** 0.348***

6.9b 0.478*** 0.352** 0.394** 0.414*** 0.368**

12b 0.441*** 0.313* 0.404** 0.412*** 0.357*

LLaMA – – – 0.249 –

***p < 0.01, **p < 0.05, *p < 0.1

Table 2: The clinical interview dataset Spearman’s ρ be-
tween the maximum sliding window PPL and modified
PANSS across model size. Bold indicates the highest ρ
for a model.

The patterns observed in Table 2 of the maxi-

mum sliding window PPLs on clinical interview
dataset vary compared to those from audio di-
ary data shown in Table 1. Pythia-70m with a
sliding window of 16 has the highest correlation
(ρ = 0.482, p-value < 0.01), while the Pythia-
6.9b model shows comparable performance with a
sliding window of 8 (ρ = 0.478, p-value < 0.01).
Unlike the patterns with TALD, the sliding win-
dow size of 64 tokens was not optimal across all
models, though it did yield strong correlations for
several model sizes, particularly with the Pythia-
2.8b model (ρ = 0.428, p-value < 0.01). Similarly,
we also observed that LLaMA achieved the low-
est and insignificant Spearman ρ with a 64-token
sliding window.

Table A.4 in Appendix shows more moderate
relationships for averaged sliding window PPLs in
the clinical interview data, with correlation coef-
ficients ranging from 0.248 to 0.360. The Pythia-
1.4b model demonstrated consistently strong per-
formance across all window sizes, achieving the
highest correlation coefficients of all models, with
its peak at a sliding window of 64 (ρ = 0.360, p-
value < 0.05). LLaMA achieved the lowest Spear-
man ρ in the sliding window of 64, despite this
being moderately significant.

4.3 The comparison of model sizes and sliding
windows

For TALD correlations (Table 1 and Table A.3 in
Appendix), larger sliding window sizes (32 and 64)
consistently showed stronger correlation as model
size increased. However, this trend was less evi-
dent with smaller sliding window sizes (8 and 16),
where the correlation coefficients remained rela-
tively stable across model sizes. In contrast, the
composite PANSS correlations (Table 2 and Ta-
ble A.4 in Appendix) exhibited a different pattern:
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smaller sliding window sizes (8 and 16) showed
more variation across model sizes with maximum
PPLs, with correlation coefficients fluctuating. For
example, with the sliding window of 8, the corre-
lation coefficients ranged from ρ = 0.265 to ρ =
0.478. The correlation coefficients with averaged
PPLs show more consistent behavior, as they gradu-
ally increase up to the 1.4b model across all sliding
window sizes before they plateau or slightly decline
with in larger models.

As can be observed in Table 1, which shows
the correlations between maximum PPL for a tran-
script and the TALD on the AVH dataset, all mod-
els exhibit a consistent pattern where correlation
coefficients generally increase with a sliding win-
dow of 8 and 16, peak at a sliding window of
64, and then decrease with a sliding window of
128. There is a similar trend in Table A.3, but
with more moderate increases and decreases. In
contrast, there are more variable patterns with the
clinical interview results shown in Table 2. Smaller
models (70m-410m) tended to achieve peak corre-
lations at smaller window sizes, while larger mod-
els show more distributed peaks across different
window sizes. The correlation between the aver-
aged sliding window PPL and composite PANSS
shows the most consistent pattern across window
sizes, as is particularly evident with the 1.4b model,
which maintains relatively stable correlations rang-
ing from ρ = 0.272 to ρ = 0.360 across all window
sizes. Notably, a sliding window of 128 consis-
tently produced the weakest correlations in both
datasets, suggesting that larger window size may
dampen the PPL response to local patterns as com-
pared with medium-sized windows. Interestingly,
there is also a general trend of diminishing effects
of sliding window size with both datasets, with the
correlation coefficients declining with larger mod-
els (e.g., billions of parameter size) at the same
sliding window size.

5 Discussion

Our key findings are as follows. First, our results
suggest LM PPL can potentially serve as an ob-
jective computational marker for capturing subtle
linguistic patterns associated with FTD. This aligns
with previous studies indicating that such abnor-
mal linguistic patterns manifest in ways that can
be quantitatively measured (Colla et al., 2022; He
et al., 2024; Xu et al., 2021, 2022; Sharpe et al.,
2024). Second, our results extend Sharpe et al.

(2024)’s work by examining fine-grained sliding
window PPLs to capture semantic variations across
longer sequences using models ranging from 70m
to 405b parameters for two model families. Our
results indicate that model size does not neces-
sarily correlate linearly with its capability for de-
tecting FTD-related linguistic manifestations. Fur-
thermore, our findings suggest that small/medium-
sized sliding windows consistently demonstrate op-
timal performance across different model sizes, in-
dicating an effective balance point between clinical
utility and computational efficiency. That perfor-
mance declines with larger windows may suggest
the approximate range within which contextual in-
consistencies manifest in FTD. These findings col-
lectively suggest that calibrated smaller LMs can
be at least as effective as their larger counterparts,
offering practical advantages for real-world deploy-
ment while maintaining clinically-validated and
robust performance in detecting FTD-related lan-
guage differences.

Our work also demonstrates a more nuanced re-
lationship between window size and the linguistic
manifestations of FTD. While prior work (Sharpe
et al., 2024) using GPT-3 indicates that differences
in lexical probability (i.e., the intermediate prod-
ucts of PPLs) differ more between cases and con-
trols with larger context windows (i.e., up to 50
tokens) for FTD, our work provides a more granu-
lar characterization of optimal sliding window sizes
for alignment with human ratings in both mono-
logue and conversational speech samples. This is
particularly important for detecting linguistic in-
consistencies that span across longer text segments,
an aspect of comprehension that prior research sug-
gests may be selectively impaired in people with
SSDs (Kuperberg, 2010a,b; Sharpe et al., 2024). In
addition, it reveals diminishing correlation coeffi-
cients at larger model and sliding window size, sug-
gesting an upper bound to the utility of increasing
both context window size and model size. Inter-
estingly, the clinical interview dataset shows more
variable optimal sliding window sizes across differ-
ent model scales, with smaller models performing
best at shorter windows and larger models show-
ing distributed peaks across different window sizes.
These varied patterns suggest that the manifestation
of FTD – particularly in conversational language –
may operate at multiple scales, rather than simply
becoming more apparent with larger contexts. This
in turn suggests that such LM-based methods may
require calibrated combinations of both model size
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and context window, rather than simply maximiz-
ing either dimension.

Our findings demonstrate the generalizability of
PPL-based computational and automated assess-
ment across both monologue (AVH) and conver-
sational data (clinical interview), suggesting that
changes in language associated with FTD can be ef-
fectively captured regardless of the communicative
setting. Spontaneous speech presents unique com-
plexities due to its impromptu nature, where speak-
ers have minimal time to organize their thoughts.
The challenges include a lack of clear syntactic
boundaries (Auer, 2009; Shriberg, 2001; Agmon
et al., 2023; Wang et al., 2010), complex interaction
of linguistic demands due to mental states (Menn
and Obler, 1989; Caplan and Hanna, 1998), and
context sensitivity. They make it particularly chal-
lenging for generalizable computational analysis.
However, our results show that PPL-based mea-
sures can effectively operate within these complex-
ities, yielding statistically significant correlations
with human ratings across both monologue and
conversational datasets. This capability to perform
consistently across different communication con-
texts is important for clinical applications, where
assessment tools may need to maintain reliability
across various real-world scenarios. The consis-
tency of our results across both data sources indi-
cates the potential of sliding-window based LM
perplexity as an automated and computational as-
sessment tool.

With respect to model size, 4-bit quantized
LLaMA 405b, despite its significantly larger scale
and strong performance on open-domain tasks (Lee
et al., 2024b), consistently underperformed com-
pared to smaller Pythia models. This finding sup-
ports our hypothesis regarding the potential ad-
vantages of smaller LMs in detecting subtle lin-
guistic patterns associated with FTD, though it re-
mains to be determined whether this advantage is
attributable to model size or a relatively constrained
amount of training data. Larger LMs, with their
extensive pre-training on vast corpora of text of un-
certain provenance, may find the subtle linguistic
patterns that characterize FTD more predictable.
In contrast, smaller LMs’ more limited exposure
to coherent language patterns and/or constrained
capacity (as proxied by parameter size) may para-
doxically enhance their sensitivity to linguistic pat-
terns associated with FTD. This suggests that the
relationship between model scale and clinical as-
sessment capability is not strictly linear (i.e., bigger

is not necessarily better), and that optimal perfor-
mance may be achieved by models that maintain
adequate linguistic competence while remaining
sensitive to deviations from typical language pat-
terns. A further advantage of the Pythia suite is that
their training data are publicly available, and there-
fore amenable to analyses to identify sources of
biased assessment, such as the absence of training
data reflecting dialectical variation characteristic
of particular population groups. These findings
and observations collectively suggest that pursuing
ever-larger models may not necessarily yield better
clinical assessment capabilities and utilities.

Our analysis across multiple model sizes pro-
vides empirical guidance for sliding window size
selection in clinical practice. The finding that small-
to medium-sized sliding windows (typically 16 to
64 tokens) consistently demonstrate optimal perfor-
mance across different model sizes suggests an ef-
fective range for practical implementation. This ob-
servation is consistent with previous studies demon-
strating that linguistic inconsistencies manifest as
local coherence disruptions (Sitnikova et al., 2002;
Swaab et al., 2013; Kuperberg, 2010a,b). The ob-
served performance decline with larger windows
(> 128 tokens) further supports this understanding.
Notably, the optimal sliding window sizes remain
consistent across both shorter monologues (≈ 100
tokens) and longer clinical interviews (> 1000 to-
kens), suggesting that the linguistic manifestation
of FTD operates at a fragmented level independent
of overall discourse length or interaction type. This
pattern suggests that aspects of FTD may be best
characterized in intermittent steps rather than as
global narrative incoherence. Additionally, the slid-
ing window size sensitivity remains remarkably
consistent across model scales from 70m to 12b,
suggesting that PPL, as a computational marker,
can effectively capture such linguistic manifes-
tations, providing a compelling evidence for the
context-sensitive nature of FTD and its variable ex-
pression across different communicative demands.

Our findings suggest that PPL derived from
smaller LMs with granular sliding windows offer
promising clinical utility in addition to existing as-
sessment methods. Furthermore, The reduced com-
putational requirements of our approach also makes
it particularly suitable for resource-constrained set-
tings, potentially enabling automated FTD screen-
ing in underserved communities. These models’
ability to detect subtle linguistic manifestations
of FTD opens several promising application path-
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ways in clinical practice. Most notably, the effi-
ciency of smaller LMs (70m-410m parameters) en-
ables privacy-preserving, on-device processing that
could streamline the mental health monitoring and
early intervention. For example, these lightweight
models could be integrated into telehealth plat-
forms to analyze discourse during remote psychi-
atric consultations in real-time, providing clinicians
with immediate linguistic computational markers
while ensuring all patient data remains on local
devices. In ambient monitoring scenarios, these
models could be deployed on smartphones to peri-
odically assess everyday conversation with partici-
pants’ prior consent, creating longitudinal datasets
that track subtle changes in FTD, enabling the
comparison of cross-sectional linguistic patterns
to identify preliminary warning signs that might
surf unnoticed. The resulting data could also used
for near-real-time flagging of warning signs, which
could be shared with their clinical teams to enable
time-sensitive interventions that may help prevent
further deterioration (Ben-Zeev et al., 2017).

While our token-level sliding window PPL
method demonstrates promising results, we ac-
knowledge that certain sentence-level proximity-
based methods (Xu et al., 2022) achieved compa-
rable or higher correlations. However, the sliding
window PPL method is responsive to linguistic
inconsistencies at varying granularities that com-
plement existing methods, potentially capturing
dynamic aspects of FTD that may be missed by
static sentence-level measures.

6 Conclusion

We presented experimental findings consistent with
prior work suggesting sliding-window PPL as an
efficient measurement for linguistic patterns asso-
ciated with FTD. Surprisingly, our findings suggest
that smaller LMs with calibrated sliding window
sizes, are more sensitive to such linguistic manifes-
tations. The comparable effectiveness of smaller
models opens new possibilities for implementing
automated and computational language assessment
tools in resource-constrained clinical settings while
remaining cost-efficient and privacy-preserving.

Limitations

The work presented here has several limitations.
All participants represented in both data sets are
English speakers, and it remains unclear the extent
to which our findings apply to other languages. Our
analysis relied on transcribed speech data, which
may not fully capture the nuances of spoken lan-
guage, including prosody, pauses, and other par-
alinguistic features that could be clinically relevant
(for a related review, see Ehlen et al. (2023)). While
our findings demonstrate correlations between PPL
and human ratings, these ratings do not consti-
tute clinical diagnoses, which would be needed for
case/control comparisons. Furthermore our anal-
ysis does not account for potential confounding
variables – such as age, gender, origin and socioe-
conomic status – which may influence language
patterns. While smaller LMs show promising re-
sults, we have not yet established clear clinical
thresholds that would be necessary for diagnosis,
or assessed the utility of measurements over time
as indicators of change in clinical status. We also
note that the severity scores for both datasets are
relatively low on average, and that datasets with
more representation of severe FTD may be needed
to establish optimal parameter settings in this con-
text. Our study focused specifically on positive
FTD, a key diagnostic feature for SSDs. Therefore,
the extent to which sliding window PPL is respon-
sive to linguistic manifestations of other conditions
remains to be established. Future work to address
these limitations will be required to reach the po-
tential of these methods for clinical deployment.
Finally, while we included a larger language model
with a 64-token sliding window, including addi-
tional sliding window sizes with LLaMA would
make for a more comprehensive analysis that is left
for future work.
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Level Mild Severe

# of transcripts 292 18
Age (mean (SD)) 40.45 (10.71) 38.33 (8.97)
Gender (%) Female 162 (55.5) 10 (55.6)

Male 118 (40.4) 8 (44.4)
Transgendered: FTM 3 (1.0) 0 (0.0)

Transgendered: MTF 9 (3.1) 0 (0.0)
Education (%) 1 (0.3) 0 (0.0)

Associates Degree 51 (17.5) 3 (16.7)
Bachelors Degree 25 (8.6) 0 (0.0)
Doctorate Degree 3 (1.0) 0 (0.0)

Grade school 4 (1.4) 4 (22.2)
High School Diploma /GED 171 (58.6) 9 (50.0)
Junior High 22 (7.5) 2 (11.1)
Masters Degree 15 (5.1) 0 (0.0)

Race (%) 1 (0.3) 0 (0.0)

American Indian or Alaskan Native 6 (2.1) 0 (0.0)
Asian 6 (2.1) 0 (0.0)
Black or African American 61 (20.9) 8 (44.4)
More than one race 35 (12.0) 2 (11.1)
White 183 (62.7) 8 (44.4)

# of words per transcript (mean (SD)) 182.76 (139.17) 300.50 (170.42)
TALD (mean (SD)) 1.08 (0.70) 3.33 (0.34)

Table A.1: Basic transcript-level demographic information for the AVH dataset. Mild denotes as mild symptoms of
positive FTD where TALD score < 3, and Severe denotes severe symptoms of positive FTD, where TALD score ≥
3.

level 2 3 4 5 6 7 8

# of transcripts 20 5 5 3 2 3 1
Gender (%) Male 20 (100.0) 5 (100.0) 5 (100.0) 3 (100.0) 2 (100.0) 3 (100.0) 1 (100.0)
Age (mean (SD)) 32.35 (10.84) 28.20 (6.26) 35.20 (13.77) 41.00 (3.61) 24.50 (3.54) 36.00 (23.39) 58.00 (NA)
Race (%) African American 4 (20.0) 0 (0.0) 2 (40.0) 0 (0.0) 0 (0.0) 1 (33.3) 0 (0.0)

Asian 2 (10.0) 1 (20.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (100.0)

Latino 1 (5.0) 1 (20.0) 0 (0.0) 0 (0.0) 1 (50.0) 0 (0.0) 0 (0.0)
Other (including mixed) 2 (10.0) 0 (0.0) 1 (20.0) 1 (33.3) 1 (50.0) 1 (33.3) 0 (0.0)
White 11 (55.0) 3 (60.0) 2 (40.0) 2 (66.7) 0 (0.0) 1 (33.3) 0 (0.0)

Education (%) Associates Degree 2 (10.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (33.3) 0 (0.0)
Bachelors Degree 3 (15.0) 2 (40.0) 2 (40.0) 1 (33.3) 0 (0.0) 0 (0.0) 0 (0.0)

GED 1 (5.0) 1 (20.0) 0 (0.0) 1 (33.3) 0 (0.0) 0 (0.0) 0 (0.0)
H.S. Diploma 13 (65.0) 1 (20.0) 3 (60.0) 1 (33.3) 2 (100.0) 2 (66.7) 1 (100.0)
Other 0 (0.0) 1 (20.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Vocational Certification 1 (5.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

# of words per transcript (mean (SD)) 1494.20 (1053.27) 1178.40 (536.35) 1822.00 (1774.69) 1478.67 (601.23) 2004.50 (340.12) 3023.67 (2197.36) 4339.00 (NA)

Table A.2: Basic transcript-level demographic information for the clinical interview dataset. The top row represents
the value of the composite PANSS.
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Figure A.1: The distribution of sliding window PPLs using a sliding window of 64 tokens on the AVH dataset,
where the x-axis represents the index of sliding window PPLs in transcripts. The shaded area represents the 95%
confidence interval of the estimated sliding window PPL on a given index. The label of 0 is defined where TALD <
3, serving as a proxy label for cognitively healthy individuals, whereas the label of 1 serves as the proxy label of
FTD individuals.
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Figure A.2: The distribution of sliding window PPLs using the sliding window of 16 tokens on the clinical interview
dataset, where the x-axis represents the index of sliding window PPLs in transcripts. The shaded area represents the
95% confidence interval of the estimated sliding window PPL on a given index.
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Model Sliding windows

8 16 32 64 128

70m 0.158*** 0.156*** 0.176*** 0.202*** 0.180***

160m 0.177*** 0.170*** 0.177*** 0.206*** 0.183***

410m 0.175*** 0.179*** 0.196*** 0.225*** 0.189***

1b 0.178*** 0.176*** 0.205*** 0.230*** 0.180***

1.4b 0.181*** 0.179*** 0.208*** 0.251*** 0.201***

2.8b 0.168*** 0.165*** 0.204*** 0.240*** 0.194***

6.9b 0.172*** 0.169*** 0.206*** 0.249*** 0.194***

12b 0.175*** 0.174*** 0.204*** 0.245*** 0.195***

LLaMA – – – 0.371*** –

***p < 0.01, **p < 0.05, *p < 0.1

Table A.3: The AVH dataset Spearman’s ρ between the
averaged sliding window PPL and TALD across model
size. Bold indicates the highest ρ for a model.

Model Sliding windows

8 16 32 64 128

70m 0.258 0.248 0.274* 0.276* 0.276*

160m 0.264 0.278* 0.296* 0.313* 0.294*

410m 0.263 0.276* 0.324** 0.318** 0.301*

1b 0.266 0.292* 0.318** 0.330*** 0.305*

1.4b 0.272* 0.334** 0.355** 0.360** 0.342**

2.8b 0.261 0.324** 0.344** 0.343** 0.325**

6.9b 0.269* 0.315* 0.342** 0.315* 0.310*

12b 0.270* 0.302* 0.338** 0.334** 0.326**

LLaMA – – – 0.200* –

***p < 0.01, **p < 0.05, *p < 0.1

Table A.4: The clinical interview dataset Spearman’s ρ
between the averaged sliding window PPL and compos-
ite PANSS across model size. Bold indicates the highest
ρ for a model.
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