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Abstract

In fields like healthcare and pharmacovigilance,
explainability has been raised as one way of ap-
proaching regulatory compliance with machine
learning and automation. This paper explores
two feature attribution methods to explain pre-
dictions of four different classifiers trained to
assess the seriousness of adverse event reports.
On a global level, differences between models
and how well important features for serious pre-
dictions align with regulatory criteria for what
constitutes serious adverse reactions are anal-
ysed. In addition, explanations of reports with
incorrect predictions are manually explored to
find systematic features explaining the misclas-
sification. We find that while all models seem-
ingly learn the importance of relevant concepts
for adverse event report triage, the priority of
these concepts varies from model to model and
between explanation methods, and the analysis
of misclassified reports indicates that reporting
style may affect prediction outcomes.

1 Introduction

Pharmacovigilance (PV) deals with the detection,
assessment, understanding and prevention of ad-
verse effects related to medical products (World
Health Organization, 2002) and traditionally relies
on experts processing adverse event reports (AER),
assessing the strength of new adverse event signals
and acting upon newfound insights through publi-
cations and new risk assessments. In recent years, a
need for at least partial automation has been identi-
fied to deal with the ever increasing amount of new
AERs (Bate and Hobbinger, 2021) and at times
updated processing requirements, most notable dur-
ing the recent COVID-19 pandemic.

With the introduction of automated methods into
the PV pipeline, experts have encouraged employ-
ing interpretable or at least explainable systems to
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address safety concerns such as black swan events
(Kjoersvik and Bate, 2022) and including explain-
ability as a factor to assess the readiness of arti-
ficial intelligence (Al) for tasks in the context of
PV (Ball and Dal Pan, 2022). At the same time,
concerns have been raised about the effectiveness
of existing explainability methods and the discon-
nect between expectations towards explanations of
black-box models from an Al safety perspective
and what common explainability approaches actu-
ally are able to achieve (Ghassemi et al., 2021).

In this study, we apply two feature attribution
methods to several pre-trained language models,
fine-tuned to triage AERs, to understand what char-
acterises their prediction of specific classes and to
address the following research questions:

1. How do explanations for different models fine-

tuned for the same task differ?

. Can we align important features with regulatory
criteria for serious cases?

. Are there systematic feature patterns that ex-

plain incorrect class predictions?

Our analysis suggests that relevant features re-
lating to regulatory criteria and expert annotation
practice are learned as indicators of serious events
by all models. However, the relative importance be-
tween these features in the explanations vary from
model to model. Beyond features directly asso-
ciated with serious reports, we find evidence of
model bias reflecting the reporting style by differ-
ent reporter groups.

2 Background

Explanations for machine learning models and their
predictions come in many different forms. In light
of model development and the paradigm shift to
large generative models, several works have ex-
plored using large language models (LLMs) to ex-
plain their own output (Kunz et al., 2022; Kunz and
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Kuhlmann, 2024; Turpin et al., 2023). However,
these works also warn that while such explanations
may seem plausible to humans, it is unclear how
well they represent the real reason for a specific
model prediction, and Turpin et al. (2023) find evi-
dence that they may in fact systematically misrep-
resent the deciding factors in the decision process.

Traditionally, deep learning models are often ex-
plained with so called post-hoc methods that are
applied after the model is trained for a particular
task. Methods such as diagnostic classifiers (Hup-
kes et al., 2018) are popular to answer specific
questions about the encoded knowledge in a spe-
cific layer of the model by using representations of
the chosen layer as input to a simpler model to per-
form a relevant task. More recently, Bricken et al.
(2023) proposed the use of sparse auto-encoders to
extract interpretable monosemantic features from
single layer transformers. Templeton et al. (2024)
applied this technique to the intermediate layer of
smaller LLMs.

Feature attribution methods, such as LIME
(Ribeiro et al., 2016) and SHAP (Lundberg and Lee,
2017), instead attempt to explain model predictions
by assigning some form of contribution to features
in the input. These methods work by approximat-
ing the model to be explained on a given input
using a more interpretable model, for example by
perturbing the input in some way, observing the be-
haviour of the model to be explained, and explain-
ing it with an explanation model trained to mimic
that behaviour. Feature attribution methods can
furthermore be model-agnostic, such as LIME and
some versions of SHAP, or model-specific, such as
gradient-based methods like DeepLift (Shrikumar
et al., 2017) and Integrated Gradients (Sundarara-
jan et al., 2017).

The feature attribution methods mentioned so
far are typically applied to individual examples
and thus primarily provide local explanations, but
global explanations can be derived from local expla-
nations by aggregating them over many inputs, e.g.
using algorithms such as Submodular Pick LIME
(Ribeiro et al., 2016) and Global Attribution Map-
ping (Ibrahim et al., 2019), or by simply averag-
ing the observed attribution scores for each feature
(Van Der Linden et al., 2019; Saynova et al., 2023).

Common goals for using explainability are
model development, gaining trust, scientific insight
and regulatory compliance (Hauben, 2022), but ex-
isting methods are criticised for suffering from in-
terpretability gaps, failing to meet the expectations
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of stakeholders such as regulators and practition-
ers, and being prone to confirmation bias (Ghas-
semi et al., 2021). Moreover, Vilone and Longo
(2021) note the absence of a common definition of
explanations and lack of consensus on how to eval-
uate them with respect to reliability and validity.
Further, while user-oriented explainability may be
built with the intention of being simplified enough
to be understandable, such explanations can be too
far removed from the original model to faithfully
represent it (Rudin, 2019).

Despite the concerns and criticisms toward post-
hoc methods and feature attribution in particular,
this type of explainability method is popular in nat-
ural language processing (NLP) research, where it
has been used to achieve a variety of goals, such
as providing insights into performance differences
between different model architectures (Wang et al.,
2022; Amponsah-Kaakyire et al., 2022), investigat-
ing potential weaknesses of explainability meth-
ods (Tang et al., 2022), interpreting aspects of the
behaviour of pre-trained language models in spe-
cific NLP tasks (Nayak and Timmapathini, 2021;
Stevens and Su, 2021), serving as reference expla-
nations for investigating attention as an explana-
tion method (Jain and Wallace, 2019), exploring
descriptive features for distinct classes in domain-
specific texts (Saynova et al., 2023), and user stud-
ies on computer-assisted coding tools (Dolk et al.,
2022).

3 Method

Our experiments concern four binary classifiers
fine-tuned on the same data for which we analyse
post-hoc explanations derived with two types of
feature attribution methods — Integrated Gradients
(IG) (Sundararajan et al., 2017) and Expected Gra-
dients (EG) (Erion et al., 2021). We restrict the
study to these two gradient-based methods.

3.1 AER Triage

The classification task is that defined by Bergman
et al. (2023): for AERs from both consumers and
healthcare professionals, predict whether a report
discusses a serious adverse reaction or not, based
solely on free-text fields such as the adverse event
terms listed in the form (e.g. headache, nausea,
rash) and the description of adverse events in the
report. An adverse reaction is considered serious
if it results in death, is life-threatening, leads to
hospitalisation or prolongs existing hospitalisation,



Dataset Time period Number of AERs 1 length
S NS Total

Training 2017 -2020 4,450 7,538 11,988 73.10479

Development 2017 -2020 1,107 1,890 2,997 70.30162

Test 2021-2021 1,170 2273 3,443  60.79463

Table 1: Overview of the three data sets used, with time
periods, number of serious/non-serious (S/NS) reports
and mean report length in whitespace-tokenised tokens.

Model Abbreviation Domain
KB-BERT KBB General
SweDeClin-BERT SDCB Clinical Text
AER-BERT AERB AER
GPT-SW3 GPT General

Table 2: Selected models and their domains.

results in persistent or significant disability or inca-
pacity or birth defects (ICH, 1994). When submit-
ting an AER, reporters are asked to indicate these
specific outcomes if they apply in a multiple-choice
question. Replies to the question are among other
things used to prioritise which reports get processed
first by the case workers at the Swedish Medical
Products Agency (MPA). However, the question is
not always answered correctly given other context
provided in the report, resulting in serious reports
getting processed later than is desirable.

3.2 Data

The Swedish AERs that we base our training and
explanation analysis on have been collected by the
MPA and were annotated for seriousness by expert
assessors as part of the agency’s routine PV moni-
toring. We train the classifiers with the same train-
ing and development split as Bergman et al. (2023)
and conduct a final evaluation of all four classifiers
on the same prospective test set; see Table 1. Since
we were able to obtain an improved version of the
data used by Bergman et al. (2023), we conduct
new hyperparameter experiments for all models de-
scribed in the next section. Details on differences
from the data used in (Bergman et al., 2023) and
hyperparameter settings are in Appendix A. To re-
move numerical information related to identity, all
reports were anonymised by replacing digits in the
free-text description.

3.3 Models

We train four classifiers based on a selection of
pre-trained transformer models for Swedish with
various degrees of specialisation to the medical and
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Model Accuracy Precision Recall Specificity F,
KBB 0.819 0.833  0.583 0.940 0.686
SDCB 0.813 0.891 0.512 0.967 0.650
AERB 0.830 0.845 0.612 0.943 0.710
GPT 0.822 0.788  0.653 0.909 0.714

Table 3: Classification results on the test set.

AER domain. The first three are BERT models:
the cased versions of KB-BERT (KBB) (Malmsten
et al., 2020); SweDeClin-BERT (SDCB), a con-
tinuation of KB-BERT with additional pretraining
on a corpus of de-identified clinical text (Vakili
et al., 2022);'and AER-BERT (AERB), a masked-
language model based on a large BERT model®
with continued pretraining on old AERs. AER-
BERT was previously found to give the best perfor-
mance on the triage task by Bergman et al. (2023),
compared to LSTMs and XGBoost models. In ad-
dition, we consider a small transformer decoder in
the 1.3B parameter model of the GPT-SW3 model
suite (GPT) (Ekgren et al., 2022). See Table 2 for
an overview of the models.

We fine-tune all four models for the triage task
by adding a classification layer to the pooled out-
put of the transformer models using the applicable
ForSequenceClassification classes implemented in
the HuggingFace transformers library. Table 3
shows the classification performance of the four
models on the test set. Among typical metrics for
classification problems such as precision, recall and
F1, we also consider specificity, the true negative
rate, to assess how well the models discriminate
non-serious reports. We observe GPT to outper-
form all other models in F;-score followed closely
by AERB, and SDCB to perform best in specificity.

3.4 Feature Attribution Methods

This study considers two model-specific feature at-
tribution methods, IG and EG. Both methods base
their attribution on the notion of a baseline or refer-
ence, typically defined as a neutral or uninformative
input for the task the model was trained for.

Integrated Gradients (IG): IG attributes the
model prediction by calculating the path integral
over gradients on a straight-line path from an artifi-
cial baseline input representation to that of the real

'Further research involving SweDeClin-BERT, like the
training and analysis in this study, has been approved by the
Swedish Ethical Review Authority under permission number
2022-02389-02.

2 AI-Nordics/bert-large-swedish-cased



input. IG satisfies a number of desirable axioms
for explainability methods as defined by Sundarara-
jan et al. (2017), in particular sensitivity, imple-
mentation invariance, completeness, linearity and
symmetry preservation, described in Appendix B.

Expected Gradients (EG): EG is a method in-
spired by IG that samples multiple real examples
for reference and computes feature importance as
the average expected values of the gradients scaled
to satisfy the completeness axiom (Erion et al.,
2021). Being gradient-based and symmetric, EG
also fulfills the axioms defined for IG.

3.5 Explanation Methodology

To obtain explanations, we use the IntegratedGra-
dient and GradientShap classes as implemented by
the captum library (Kokhlikyan et al., 2020) for IG
and EG, encoding all reports and baselines prior
to applying the feature attribution methods. We
compute feature attributions over the full encoder
(or decoder) block and the classfication layer. For
IG we create a report specific baseline consisting of
a sequence of all [MASK] tokens for BERT models
and <unk> for GPT, of the same length as the real
report and pass along the attention mask for the
real report to predict whether report and baseline
are serious.? Each report is explained with 100 ap-
proximation steps. For EG we pass the entire set of
reports in the development data as references. This
way, each report is explained with respect to the
ensemble of all other reports.* Here, we pass an
extra argument containing report-specific attention
masks.

With our binary classification task, explanations
for serious and non-serious outcomes are symmet-
ric in that large positive values explaining a serious
prediction correspond to large negative attributions
when explaining the opposite prediction for the
same report. For consistency, all attribution val-
ues discussed in the following are computed with
respect to predicting the serious class.

In the following experiments, explanations are
obtained for 2,997 reports in the development set.
When computing explanations for the four models,
the explanation methods return results on token-

3A common baseline for IG in NLP is that of a zero vector
(Sundararajan et al., 2017) or empty string (corresponding to
all [PAD] tokens for transformer models), but we argue that
the mask and unknown tokens are a better choice, because the
chosen models were not trained to attend to padding tokens
during neither fine-tuning nor pre-training.

“Due to the number of reports we consider the effect of
explaining the report by itself to be negligible.
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level, i.e. referring to subwords as defined by the
respective tokenizer. These representations are too
fine-grained and hard to interpret and do not allow
for easy comparison between models. To achieve
a more global insight and allow for a more direct
comparison between models, we calculate attribu-
tions at word-level as the sum of the corresponding
token-level attributions per word. This is motivated
by the axiom of completeness (Sundararajan et al.,
2017), according to which the sum of attributions
for an input sequence should reflect the difference
in model prediction for the real input sequence and
the baseline.

When reconstructing the vocabulary, the differ-
ent tokenizers used by the models result in some
slight variations in the complete sets of recon-
structed word types, with 17,594 words according
to KBB and SDCB, 17,585 for AERB and 17,612
with GPT.

To address the first two research questions, we
compute global explanations on the development
set reports for each model and feature attribution
method using the normalisation method in Van
Der Linden et al. (2019) and Saynova et al. (2023),
effectively calculating global explanations as the
relative attribution score for each full word in the
dataset.

3.6 Analysing Explanations

Using global explanations for each classifier and
explanation method, we want to analyse the attri-
butions for interesting groups of related terms. To
that end, we define the overall importance of each
group as the average attribution value per model,
and adjust for variation within the groups by scal-
ing with the unbiased sample standard deviation:?

Hg
1404

importancey = @)
In this way, we can focus on groups that consis-
tently show large positive attribution values. To
obtain groupings of terms, we consider an unsuper-
vised approach in the form of clustering as well as
the following explicit resources:

* MeSH: Medical Subject Headings (Lipscomb,
2000) is an ontology for indexing biomedi-
cal information by the National Library of
Medicine.

* Filter terms: Terms and word segments cre-

5In the following, this equation is referenced when used to
avoid confusion with importance as a general concept.



ated and used by assessors at the MPA, in the
absence of the triage model (see Appendix
C.D).

Criteria grouping: Based on the criteria for a
serious adverse reaction (cf. Section 3.1), we
select a set of terms using MeSH and Swedish
MeSH,® grouping them into general terms and
terms relating to specific concepts within the
five criteria (see Appendix C.2).

4 Results

4.1 Model Differences on a Global Scale

To compare explanations for different models,
we calculate Kendall’s 7 correlation between the
global attributions for the shared vocabulary by all
models as well as for the set of terms matching
the filter terms. As a frame of reference for the
fine-tuned models, we also compare each classifier
with its newly initialised, but not yet fine-tuned
counterpart, and label that the control.

Correlations of attributions on all shared terms
at the top of Figure 1 are weakly positive among
all fine-tuned models, with slightly stronger corre-
lations between the encoder models as opposed to
encoders and GPT for IG. Interestingly, IG attribu-
tions for the two models with domain-specific pre-
training have a lower correlation with each other
than with the general domain KBB, and SDCB’s
correlation with KBB is slightly lower than that
of KBB and AERB. By comparison, correlations
among EG explanations are much weaker, with the
strongest signals between KBB and the domain-
specific models. For both IG and EG, correlations
with the corresponding control models are close
to zero, as would be expected for explanations of
models unfamiliar with the triage task.

This correlation approach includes many terms
with attributions close to zero for which compar-
ison or correlation is uninformative. To focus on
more relevant terms, we select terms matching the
filter terms and calculate the correlations on this
subset. The results at the bottom of Figure 1 show
stronger correlations for both IG and EG. For IG,
the trends between models are similar to those for
the shared vocabulary, with an increased similar-
ity between GPT and AERB. The correlations for
EG are weaker between GPT and the other fine-
tuned models and slightly stronger between KBB
and the domain-specific models. Comparing both

®https://mesh.kib.ki.se/
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methods, correlations between control models and
fine-tuned models are relatively stable for EG in
both the larger and the more specific sets of terms,
while they are stronger for IG in the latter setting.

Based on the filter terms, we measure how highly
the explainability methods score terms matching
the filter, and the variance across models. Table
4 shows average attribution scores for three sets
of terms: (1) words matching the filter, (2) words
that do not match the filter, (3) all words in the
dataset. Figure 6 in Appendix D visualises the
distribution of scores in the first two sets for each
model. All models trained for triage on average
assign matched terms higher attribution scores than
the ensemble of other terms. For the control mod-
els, all three sets have a similar average attribution
score close to 0 for most models, suggesting no
strong contribution to either the serious or the non-
serious class for those terms. This indicates that all
fine-tuned models learn to associate the filter terms
with the positive class and that both explanation
methods pick up on their importance.

Exploring more freely which concepts are im-
portant for a serious outcome with each model ac-
cording to the explanations, we cluster terms with
the largest attribution scores and hand-annotate the
clusters. This resulted in 164 clusters for IG and
193 for EG, of which 134 had identical labels. We
next consider how much of the clusters is covered
by the 8,000 highest ranked terms and how impor-
tant clusters are for each model as per Equation 1.
Figures 2 and 7 show the twenty most important
clusters to the average of all four models for IG and
EG respectively. A two-dimensional visualisation
of the full clustering reflecting cluster importance
as explained by IG and EG can be found in Figures
13 and 14 in Appendix E, which also contains more
details on the clustering procedure and coverage
metric.

Considering explanations by IG, all classifiers
note clusters relating to extreme situations (suicide,
ambulance, abortion, organ transplants), organ-
related issues, specific symptoms and health con-
ditions (depression, syncope, vision and breathing
disorder, hypo-,’ epilepsy, dementia) as important.
Importance by model varies somewhat, with hallu-
cination, breathing disorders and suicide emerging
as the most important clusters for KBB, while am-
bulance is less prominent. SDCB, in addition to sui-
cide and hallucination, places more importance on

"Deficiencies denoted by terms with the prefix hypo-.
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Figure 1: Kendall’s 7 correlations and their significance between models for shared vocabulary (a), (b), and filter
terms (c), (d). The control row reports correlations, between each classifier and a corresponding untrained classifier.

(a) Fine-tuned models

Model In filter Outside All terms
KBB 0.0348*** 0.0008 0.0013
G SDCB 0.0634*** 0.0095 0.0101
AERB  0.0402*** 0.0015 0.0020
GPT 0.0699*** 0.0103 0.0110
KBB 0.0724*** 0.0037 0.0046
EG SDCB 0.0421*** 0.0069 0.0073
AERB  0.1000*** 0.0062 0.0073
GPT 0.0599*** 0.0063 0.0069

(b) Control models
Model In filter Outside All terms
KBB -0.0044 -0.0032 -0.0032
G SDCB 0.0007 0.0001 0.0001
AERB  0.0056*** 0.0022 0.0023
GPT -0.0017 -0.0052 -0.0051
KBB -0.0009 -0.0004 -0.0004
EG SDCB  -0.0032 0.0004 0.0003
AERB  -0.0008 -0.0007 -0.0007
GPT 0.0029 -0.0030 -0.0029

Table 4: Average attribution scores by explanation method for each of the four models. The scores are averaged for
three sets of terms, those matching the filter terms, those not matching the filter terms and the report vocabulary as a
whole. (a) shows results for the fine-tuned models and (b) shows results for the models prior to fine-tuning as a
control. Significantly higher attribution scores of the filter terms compared those outside the filter are marked with *
to *** to reflect the significance level of the Wilcoxon rank-sum test.
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Figure 3: Group importance of different criteria for
different classifiers and explanation methods.

the syncope, fractures and hypo- clusters. AERB is
the only model with full coverage of all 20 clusters,
but hallucination is less important, whereas suicide,
ambulance, breathing disorders and heart rate are
more important. Similarly, to GPT the most impor-
tant clusters are suicide, heart rate and ambulance,
but hallucination still ranks high.

An analysis of the EG explanations again reveals
less overlap than IG among the most important
clusters. However, we observe strong overlaps re-
garding cluster coverage among the top 3 clusters,
those relating to symptoms as well as certain organ
related issues. KBB is sensitive to specific events
such as suicide, childbirth, epilepsy, but remains
neutral on the liver and abortion clusters. SDCB
only fully covers one cluster in the top 8,000 terms
and along with suicide and epilepsy gives more
importance to liver, abortion, hallucination and
hypo-. For AERB, besides suicide and liver, ambu-
lance emerges as most important and the intra- and
fainting clusters receive more weight. Interestingly,
among the domain-specific models, AERB assigns
much more importance to ambulance than SDCB.
To GPT, hallucination is most important, followed
by syncope, hypo- and blood.

4.2 Regulatory Criteria

Figure 3 shows the importance of different criteria
groups (see Appendix C.2) according to Equation 1.
Overall, all criteria have a positive importance, indi-
cating that the models learn their relevance without
explicit exposure to the criteria. According to IG,
death is one of the two most important ones for all
models and disability is quite important in all four
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models. The life-threatening criterion appears most
important with GPT, while it is much less impor-
tant for the other models. In EG, death is the most
important criterion for all models and disability is
most important after that except for GPT, where
hospitalisation is more important. With both meth-
ods, birth defect emerges as the least important
criterion, but this may be because it is the smallest
criteria group and infrequent in the data.

4.3 Analysis of Misclassified Examples

Preliminary analysis of misclassified examples re-
vealed very few terms with deviant explanation
patterns, which we took as an indication of issues
with the gold labels of the AER data. As reported
by Bergman et al. (2023), the annotation procedure
of AERs at the MPA is suboptimal from a machine
learning perspective, because of a regulatory guide-
line that assessors should not downgrade a report
labelled serious by the reporter, even if they con-
sider the report to contain no information meeting
the criteria for serious events (EMA, 2017, p. 16).
For this reason, we asked one of the assessors to
reannotate all reports that were misclassified by
both GPT and SDCB - the best models in terms of
specificity and Fy, respectively — 345 reports in to-
tal. Appendix F gives statistics on the reannotated
reports and shows that, for both false negatives
and false positives, more than half of the labels
changed, confirming our suspicions.

Given the new annotations, we identify the terms
with the largest differences in attribution score
between true and false predictions for both seri-
ous and non-serious reports, focusing on terms ex-
plained as more serious in either true positives (TP)
vs. false negatives (FN) or true negatives (TN) vs.
false positives (FP). Table 9 in the Appendix shows
the terms matching the inclusion criteria, and Ap-
pendix G contains additional information on the
selection of these terms. For both models we then
separately consider local IG explanations of the
reannotated reports containing these terms — about
130 reports per model — to see if there are system-
atic differences for TP/FN and TN/FP report pairs.

While the manual analysis guided by the terms
did not reveal most of the terms themselves to have
obvious systematic effects, we noted some trends
observed over most of the reports with specific
patterns often explained as more serious or non-
serious than the average term. Investigating the us-
age of these patterns on the training set, we found
evidence of them reflecting reporter groups and



specifically stylistic differences in how consumers
and healthcare workers report AERs. We found cer-
tain snippets of texts that occurred in many reports
and that traced back to the original reporting form,
which had several free-text fields that were then
automatically concatenated and saved as one field
with titles or generated text corresponding to spe-
cific answers. Such elements, referred to as form
patterns in the following, were often explained as
non-serious as a whole or in part. Another notable
pattern was that of temporal references including
mentions of periods of time (e.g. minutes or days),
but also temporal adverbs like soon and directly,
which were explained as non-serious by both mod-
els. Appendix H contains information about the
specific patterns and their statistics on the training
set. What these statistics illustrate is that most of
the form patterns, with the exception of other infor-
mation:, are almost exclusively used in consumer
AERs. Although the reporting rates are less ex-
treme for temporal patterns, terms like sometimes,
month and period are more indicative of consumers,
while soon, minute and second are slightly more
used by healthcare workers.

We argue that some of the identified patterns
align with how groups of reporters tend to express
themselves in AERs, with healthcare personnel us-
ing medical jargon and writing concise reports,®
while consumer reports can be longer and contain
more detailed descriptions of how the reaction af-
fected their everyday life and complaints about sus-
pected products. From the form patterns we also
observe that consumers appear to more diligently
fill in the multiple free-text fields than healthcare
workers who appear to rather give brief and to the
point descriptions in one or a few of the fields.

In Figures 4a and 4b, we show how both types of
patterns are explained by IG, plotting the distribu-
tion of their local explanations over the whole de-
velopment set. Attribution scores were obtained by
matching the exact sequence for form patterns, and
summing the attribution scores of the individual
words. Temporal patterns were matched with regu-
lar expressions covering morphologic variations.’
In general, the explanations for SDCB appear more
concentrated than those of GPT. Some form pat-
terns like first reaction after medication and reac-
tion not treated are clearly mostly negative in terms
of attribution, i.e. explained as contributing to non-

8 Although there is a variation with the type of profession,
see the statistics in Table 12 in the Appendix.
°The expressions are listed in Table 11.
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Figure 4: Local attribution score distribution of form
patterns and time references over all matched reports in
the development set, ordered by frequency.

serious predictions, while other information, addi-
tional information and other causes of adverse re-
action are more symmetrically concentrated around
0, suggesting an overall more neutral, less system-
atic contribution of these patterns to the prediction
of reports in the development set. With respect to
temporal references, there is a more global signal of
after, day, minute and sometimes being explained
as more non-serious with both models, while di-
rectly, then and soon appear slightly more neutral,
and year and suddenly being explained as more
serious.

The trends observed in attribution polarity and
dominant reporting groups led us to take a closer
look at model performance in these two groups in
the development set. We found that recall for all
four models was more than 20% lower for con-
sumers than for healthcare workers and precision
10-20% lower. Correcting the gold labels where
we have reannotations increases the scores for all
models and subgroups, yet the differences in re-
call precision and F; persist for the subgroups of
consumers and healthcare workers.'?

""More detail on this evaluation in Appendix J.



5 Discussion

The analyses in the previous section aimed at inves-
tigating feature attribution explanations for differ-
ent triage models to answer the research questions
defined in the beginning of the paper.

How do explanations for different models fine-
tuned for the same task differ? To answer the
first research question, we investigated the correla-
tion between global attributions with two explain-
ability methods. We found considerable variation
between models, but also weak to moderate cor-
relations among model attributions, most notably
among encoder models and with the IG method.
Moreover, models are more consistent with each
other when task-relevant concepts are in focus as
explored through filter terms and criteria groupings.
From the analysis of important clusters, we find
that suicide, ambulance and hallucination appear
in all models with both explanation methods. With
IG, we can glean SDCB explanations to deem med-
ical terminology such as syncope, fracture and de-
ficiencies/dysregulations (hypo-) most important,
while KBB, AERB and GPT focus more on the con-
cepts common to all models, although AERB and
GPT also give high importance to heart rate. With
EG, we find some similarity in the most important
clusters, with SDCB still having high importance
scores for deficiencies, but also featuring other con-
cepts like epilepsy, abortion and liver, while GPT
retains hallucination as an important cluster, in
addition to syncope, deficiencies and blood.

Can we align important features with regula-
tory criteria for what constitutes a serious case?
All models seem to learn the importance of the fil-
ter terms and the groupings of criteria, albeit with
different priorities as suggested by both the correla-
tions over filter terms and the importance assigned
to different criteria.

Are there systematic feature patterns that ex-
plain incorrect class predictions? Through the
manual analysis of reports we learned that serious
and non-serious explanations do not always focus
on parts of the report that could be considered rele-
vant for the assessment of the report at hand, and
that the level of detail may be a factor contribut-
ing to misclassification. This raises the question
whether the selected methods are adequate given
the classification problem at hand and how one can
conceptualise the two classes to distinguish. Is a
non-serious report a distinct category in itself with
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salient features identifying it or just defined by the
lack of serious features? And should we define an
abstract neutral baseline or model explanations in
contrast to the non-serious class?

6 Conclusion

In conclusion, our analysis shows that all models
learn to identify relevant features indicative of a
potentially serious case, but with varying focus
on symptoms, conditions and medical procedures.
Most of the criteria for identifying serious events
are important for serious predictions with all mod-
els and explanation methods, but their relative im-
portance varies across models. Finally, manual
analysis of reports reveals features reflecting the
reporting style of specific reporter groups, specifi-
cally reflecting which and how many free-text fields
were filled in and to some degree the narration style
and level of detail as represented through temporal
references. This part of the analysis raises ques-
tions about model training and the adequacy of the
selected explanation methods for the task at hand.
Future work on training and explaining triage sys-
tems may need to rethink how information in this
binary setup is defined and contrasted, to promote
the importance of medically relevant features over
confounding features related to form and writing
style.

Limitations

In the preparation of this study, we made several
design decisions that can be scrutinised further. In
particular, the chosen explainability methods come
with their own set of limitations, one of which is
that, while feature attribution may highlight impor-
tant terms, such a representation ultimately does
not explain why the model that is being explained
relies on those features to begin with. In addition,
feature attribution for the most part constrains us to
individual explanations of the input features with-
out representing how features may interact with or
affect each other. At the same time, the goal of
the study in question was not to identify the best
explanation technique for our use case, but instead
to investigate triage models with available feature
attribution methods.

We chose to focus on real-world data and mod-
els that may be employed as part of the MPA’s
pharmacovigilance monitoring. As such, the main
focus of this paper was not to make claims on exact
classification performance differences of the triage



models we analyse and we therefore did not pur-
sue evaluation over several training seeds as this
would also further complicate the analysis of ex-
planations taking into account several versions of
each fine-tuned model. For an analysis of the ro-
bustness of fine-tuning the AER-BERT model for
triage we refer to our previous results in Bergman
et al. (2023).

We did not study the effect of different fine-
tuning runs on the final explanations given the
same hyperparameters and base model and there-
fore cannot make any claims on how much of the
differences we see between triage models is due to
initialisation of the classification head, shuffling of
the training data, or the difference in pre-trained
base model. However, a limited control experiment
showed that global explanations of ten fine-tuned
versions of KB-BERT with different random seeds
correlated much more strongly with each other than
with any of the other models, which suggests that
the differences between different pre-trained mod-
els are relatively robust. See Appendix K for more
information.

The decision to use generative models with fine-
tuning methods geared towards encoders instead
of reframing the task into a generative setup may
not have been the optimal choice for the GPT-
SW3 model, but was chosen to follow a common
methodology in deriving explanations and, most
notably, always having a binary classification out-
come space to refer to.

A large part of the analysis rests on aggregated
attribution values. Corpus-level normalisation is
only one way of achieving this aggregation. Fur-
thermore, aggregation of explanations over multi-
ple reports comes at the cost of losing nuances in
specific contextualised cases.

Throughout the analysis, we consider raw ag-
gregated values for each model. Using such un-
normalised average attribution values means that
global explanations between models are not di-
rectly comparable, since some models have much
more extreme attribution values — this is why we
took more of a ranking approach and focused on
relative importance among, e.g., criteria groups.

The grouping of criteria is debatable for certain
terms that may fit multiple categories or can be
hard to disentangle in relation to another category
(e.g. miscarriage as death rather than birth defect,
cardiac arrest as death vs. life-threatening). Fur-
ther, the groups are likely not an exhaustive list
of relevant criteria terms in the given data, and as
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raised in the analysis, some groups cover only very
few and overall infrequent terms and may provide
a limited representation of the criterion in question.

Likewise, while the clustering analysis under-
went several iterations to find a good separation
of clusters without generating too many outliers
there may be parameters resulting in an even better
clustering result. In addition, to save resources, the
clusters used in the analysis were manually labelled
by a single annotator, based on the MeSH ontol-
ogy and no further quality checks were conducted
on this annotation. Involving more and more ex-
pert annotators in the process may have resulted in
higher quality labels and slightly different group-
ing decisions for similar clusters and consequently
different results. This could for example lead to
combining more semantically similar clusters that
are only distinguished by their level of specialisa-
tion such as the fainting and syncope clusters.

As for the investigation of reporter groups in-
spired by the manual analysis of explanations, one
obvious aspect potentially dividing reporter groups
is medical terminology and frequently used abbrevi-
ations by medical workers. While both references
to medical conditions and procedures as well as
drug names were noted as salient in some of the
manually analysed reports, the variation of terms
was larger and an exhaustive list more challenging
to put together and analyse than the patterns we
decided to study further.

Ethical Considerations

The data used in this work contains sensitive med-
ical information and has been collected and pro-
cessed by the Swedish Medical Products Agency
as part of their pharmacovigilance monitoring duty.
For the scope of this study, processing the data
by training and evaluating models and their ex-
planations falls under the agency’s operations for
business development and does not require further
ethics approval by the Swedish Ethical Review Au-
thority. To ensure information security, the texts
have been anonymised by replacing digits in the
free-text, where personal identity numbers may be
reported. Further, complete examples of individ-
ual AER descriptions cannot be included without
additional anonymisation steps. Since the study
itself focuses on the explanation and evaluation of
triage models for larger sets of reports this has not
been necessary and observations are reported as
summaries of subsets of the full AER data.
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Figure 5: Report length in whitespace-tokenised tokens
for the cleaner version of the data used in this paper
(new) and the version previously used in Bergman et al.
(2023) (old).

the report. In their work, preprocessing included
filtering out and removing those comments using
regular expressions. However, for this study we
were able to obtain access to a database storing
only the original reports as they were at the time of
reporting and therefore skip this step in preprocess-
ing the text. Upon comparing matching reports in
the two data sources, we also discovered that the
previously used data source contained truncated
reports. Figure 5 shows a comparison of report
lengths in the previous and current version of the
data.

The database we extracted our reports from only
contained those reports received by the MPA via
an electronic reporting form. We found that some
reports in the dataset used by Bergman et al. (2023)
were not present in the original database and such
cases could be explained by the original incoming
reports covering information warranting a sepa-
rate report, e.g. when the report describes adverse
events related to different medical products at dif-
ferent points in time, specifically assigns different
suspected events to different medication, mentions
multiple patients with similar adverse events, or
discusses events in mothers or soon-to-be mothers
as well as events in their young children or fetuses.
These reports were then split manually by asses-
sors and added to the working database. Our data
splits contain 90 such examples in development
and training set, 42 of which were found to start
with comments during pre-processing. To allow
for some degree of comparison with our previous
study, we opt to still keep these reports in their
previous form and apply filtering to remove initial
comments matching specific keywords followed by
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dates and assessor signatures.

Preprocessing for all reports includes stripping
of initial hyphen characters and white space in the
description field as well as prepending to the de-
scription all suspected adverse events in list form.

The focus of the hyperparameter experiments
was to identify learning rate and epoch settings for
the four models. We considered learning rates in
the set {0.00002, 0.00003, 0.00004, 0.00005} and
training for up to three epochs and chose the best
settings according to the observed loss on the de-
velopment set. Table 5 shows the selected settings
informed by the experiments.

The settings for KBB and SDCB are identical.
For AERB, we add a weight decay term of 0.01 to
keep consistency with Bergman et al. (2023).

B Axioms of IG and EG

As defined by Sundararajan et al. (2017), the ax-
ioms fulfilled by both explanation methods are

sensitivity, whereby only relevant features
contribute to the explanation and irrelevant
features have an importance of 0,

implementation invariance, stating that for
two networks that produce the same outputs
as each other for all inputs, the attributions
should be identical,

completeness, in the sense that the sum of
attributions for a particular input should cor-
respond to the difference in model output for
the input and the baseline,

linearity, in that attributions for a model that
is a linear combination of two other models
are a linear combination of the attributions for
those two models,

symmetry-preservation, whereby symmetric
variables in the network should get the same
attribution if they have the same value.

C
C.1 Filter Terms

The list of filter terms contains 47 terms or seg-
ments that relate to words associated with seri-
ous reports and is used to filter incoming reports
marked as not serious for candidates that can be
prioritised. A drawback of its format is that word
segments, not always representing real morphemes,
may also match less relevant terms. All filter terms
and approximate translations with annotations for

Analysis resources



Parameter KBB & SDCB AERB GPT
Batch Size 8 8 4
Gradient Accumulation 1 1 2
Learning Rate 2x107° 2x107°% 2x107°
WarmupRatio 0.3 0.3 0.15
Mixed Precision - - fpl6
Optimizer AdamW  AdamW AdaFactor
Weight Decay 0 0.01 0
Epochs 1 1 2
Table 5: Training Settings
omitted parts are listed in Table 6. The filter terms
match a total of 220 terms of the vocabulary in the Filter Term Translation

global explanations.

C.2 Criteria Groups

The criteria groups are 5 groups of concepts derived
from the definition of serious adverse reactions —
relating to death, life-threatening reactions, hospi-
talisation, disability and birth defects. Each group
consists of single word synonyms as well as more
specific concepts, and is internally grouped to re-
flect more general notions as well as very specific
terminologies and contexts.

For example, the group for death comprises a
group of general words such as death, pass away,
passing as well as individual groups for more
specific forms of death such as suicide, suffoca-
tion/asphyxia, cardiac arrest and miscarriage. This
grouping was created for the set of terms covered
in the development set and is not exhaustive with
respect to all possible subcategories that may ex-
ist outside this restricted vocabulary. Terms cover
different wordforms of the same lexeme.

Table 7 shows how many terms and subgroups
are associated with each criterion. The biggest
criterion is that of hospitalisation with 179 terms.
These include different inflected versions of the
same lemma as well as common abbreviations and
in some cases spelling variations found in the cor-
pus of AERs that constitute the development set.
The groups were created using MeSH and referring
to terms present in the AER reports. Hence some
groups such as birth defect are fairly small even
though there are more conceivable birth defects,
but they do not feature in the analysed set of AERs.
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ARDS

BNP

Haemoly
Johnson
andningsavbrott
andningspéaverkad
andningssvikt
andningsuppehall
anfall

avled

barre

blind

cerebro

dog

dyspne

dod

epidermal
epilep

fladder
hallucin
handik
hemolyti
horsel

interstit
kardiell myopati
koagulat
kolangit
konstaterad
lungsvikt
lymphobhist
mikroangio
missbild
missfall
multisystemisk
mungip
optikusneu
propp

puls

purpura

resp insuff
scars

syn

synbortf
toxisk

vaerd

ventrike
ventrombos

respiratory distress syndrome
brain natriuretic peptide
haemoly(sis)

Johnson

respiratory arrest
respiratory challenged
respiratory failure
respiratory arrest
attack, acute onset

died

Barre (Guillain-Barré syndrome)
blind

cerebro-

died

dyspnea

death

epidermal

epilep(sy)

flutter

hallucin(ation)
disab(ility)

hemolyti(c)

hearing

interstit(ial)
cardiomyopathy
coagulat(tion related)
cholangitis

confirmed / diagnosed
lung failure
lymphohist-
microangio-
malforma(tion) / birth defect
miscarriage
multisystemic

corner of the mouth
optic neu(ritis)

clot

pulse

purpura

resp(iratory) insuff(iciency)
scars

vision

(loss) of vision

toxic

vaccine-associated enhanced respiratory disease

ventric(le)
venous thrombosis

Table 6: 47 Swedish filter terms and their English trans-
lations and completions.



Group Terms Subgroups
Death 33 5
Life-threatening 10 1
Hospitalisation 179 3
Birth defect 4 2
Disability 20 5

Table 7: Total number of terms and subgroups in each
of the criteria groups.

D Feature Attribution for Filter Terms
and Non-Filter Terms

Figure 6 shows the distributions of global attribu-
tion scores for terms matching the filter and those
not matching the filter with both IG and EG.
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Figure 6: Distribution of global attribution scores for
terms matching the filter and terms not matching the
filter.

E Clusters of Top 8000 Serious Terms

To find more general concepts important for a se-
rious outcome with each of the models according
to either explanation method, we took the union of
the 8,000 most important terms per model and clus-
tered them for each attribution method. Terms were
first embedded using a Swedish Sentence-BERT
model'! and then decomposed to 50 dimensions
using principal component analysis with whitening

'"K BLab/sentence-bert-swedish-cased
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and clustered with HDBSCAN (Campello et al.,
2013). We experimented with lemmatization at
an earlier stage, but found it harder to obtain an
interpretable clustering that way. We set the HDB-
SCAN clusterer to a maximum cluster size of 80,
a minimum cluster size of 5 and used default set-
tings for the remaining parameters. The clusters
were annotated by hand by a single annotator with
a background in linguistics and good command of
Swedish. To make sense of medical terminology
and how medical concepts relate to each other, the
annotator relied heavily on MeSH and its Swedish
version to derive sensible cluster names in English.
Table 8 shows statistics on the amount of selected
terms per feature attribution method, the number
of resulting clusters, average cluster sizes and the
amount of outliers.

Figure 7 shows the importance of clusters in
EG and to what extent they were covered by each
model’s top 8,000 terms. Coverage in the latter vi-
sualisation refers to the number of terms belonging
to the cluster, that also rank among the top 8,000
terms for a particular model, divided by the total
size of the cluster in unique terms.

Figures 13 and 14 show the entire clustering of
IG and EG reduced with t-SNE. For both IG and
EG, some clusters are completely missing in the
global explanations of certain models, due to dif-
ferent tokenization. Specifically, AERB and GPT
pick up certain units (ug, umol) that are missing for
KBB and SDCB, and all models but GPT pick up
numbers and dimensions describing affected areas
listed as part of the adverse event terms, because
GPT’s tokenizer splits them into digits belonging
to a separate cluster instead.

F Reannotation

Figure 8 shows how the FN and FP reports were an-
notated by the assessor given only the concatenated
term list and description text field. We anticipated
that annotating these without the usual context may
complicate decision making for the assessor and
therefore allowed both an unclear annotation and
a field to comment on the annotation. For the en-
tire 345 reports, only 7 cases were unclear without
additional information.

Looking at the label proportions, out of the se-
rious reports in the original gold annotation, pre-
dicted non-serious by both models (FN), only a
third was actually serious after the reannotation.
Of the reports originally annotated non-serious, but



Method Termsin Union Clusters Terms per Cluster Outliers

IG 13,909 164 8.3 12,547
EG 15,347 193 84 13,726

Table 8: Statistics on the clustering.

cluster coverage cluster importance

suicide 0.15 0.19 0.23 0.12
ambulance 0.098 0.042 0.44 0.092

hallucination 0.12 0.13 0.031 0.2
hypo- 0.054 0.13 0.092 0.12

-0 0.17 0.16 0.037
0.074 0.11 0.084 0.074
0.006 0.17 0.078 0.067
0.12 0.12 0.033 0.014
0.086 0.009 0.036 0.11
0.055 0.038 0.1 0.04
0.009 -0.004 0.074 0.15
0.035 0.017 0.13 0.02
0.061 0.04 0.023 0.074
0.018 0.011 0.059 0.098
0.088 0.038 0.057 -0.001
0.11 0.023 0.028 0.023
0.12 0.022 0.005 0.031
0.066 0.018 0.052 0.017
0.061 0.002 0.05 0.035
0.11 0.015 0.024 -0.002
KBB SDCB AERB GPT KBB SDCB AERB GPT mean

vision disorders
abortion
epilepsy

blood

fainting
syncope

intra-

heart

fracture
breathing disorder
childbirth
depression
organ transplant
brain

lungs

Figure 7: 20 highest ranked clusters with EG by cluster importance (right) and their coverage among the top 8,000
terms per model.

FN (277) FP (68)

non-serious AOMSSENOLS

> —== unclear 0 unclear
33% 44%

Serious serious

Figure 8: Reannotation of False Negatives (FN) and False Positives (FP). The numbers in parentheses are the
amount of reports in each category.

predicted serious, about half remained non-serious  indicating a serious event could conceivably be
after reannotation. One possible reason for the la-  other parts of the form or its attachments without it
bel change of so many of the originally FP reports  being mentioned in the text as seen by the model.
is that some context is omitted with respect to the
original report, since AERs consist of more than
just the term list and free-text and the information
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G Selecting Reports for Manual Analysis

To identify interesting reports in the set of reanno-
tated reports, we compute the terms with the largest
differences in attribution score between true and
false predictions for both serious and non-serious
reports and restrict this to the 5 most extreme terms
that occur at least twice in each considered set
of reports with differences in the 2.5- and 97.5-
percentiles respectively.

To limit the scope of the manual analysis, we
only do this calculation and the report-wise anal-
ysis with IG. Table 9 details the terms, and their
translation for the contrasted sets and each model.

The terms comprise some reoccurring themes for
both models with terms relating to specific events
such as vaccination or product exchange,'? refer-
ences to respiration (breathing, coughing and short-
ness of breath), the emergency room, and the abbre-
viation EVF for a blood test measuring the volume
of packed red blood cells in a sample. They match
a total of 126 and 129 reports for SDCB and GPT
respectively. For each report we summarise the
text and take note of the terms explained as serious
and non-serious using IG as well as whether they
relate to the specific event, fall under additional in-
formation such as patient history or information on
other people mentioned in the report, or are stylistic
elements of the report.

Analysing the reports associated with most of
the terms in Table 9 revealed a variety in cases and
narratives, however, there was overlap between the
matched reports for vaccination, vertigo, nausea
and swelling frequently co-occurring.

H Patterns

Table 10 details the six form patterns identified dur-
ing the manual analysis. They correspond to auto-
matically inserted titles or text snippets expressing
information like whether or not the suspected ad-
verse reaction was treated or how long after the
affected person took the medicine suspected of
causing the AE they started experiencing symp-
toms.

Table 11 details the Swedish temporal references
as regular expressions to cover morphologic varia-
tion such as singular and plural, and indefinite and
definite forms for nouns, and synonyms or contrac-

IZReferring to cases when the intended prescribed product
is replaced by an equivalent product by another pharmaceutical
company, which can happen when the intended product is out
of stock at a pharmacy.
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tions of some of the adverbs, with English transla-
tions and statistics on the occurrence of these terms
in the training set and how much of those are in
consumer reports.

Figure 9 shows the attribution distributions of
form and temporal patterns according to EG, which
generally appear to be explained as more neutral
than those by IG.
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Figure 9: EG attribution scores of form patterns and temporal references in the full development set. The patterns
are ordered by frequency in the development set with the most frequent patterns to the left.

Contrasted SDCB GPT
sets FN more serious TP more serious FN more serious TP more serious
TP & FN  produktutbyte, an- blod akuten, andfaddhet, hosta, produktut-
das, hosta, vaccina- smdrtor, blod, an- byte, biverkan,
tion, rygg das yrsel, reaktionen
English product exchange, blood (the) ER, shortness  cough / to cough,
to breathe, cough / of breath, pains, product exchange,
to cough, vaccina- blood, to breathe (the) adverse reac-
tion, back tion, vertigo, (the)
reaction
FP more serious TN more serious FP more serious TN more serious
TN & FP akut, stroke, syn, klada, akuten, evf, yr, migrdn, stroke, syn, akuten,
svullna, evf biverkningsom- yrsel, torra akut, EVF
bud, rodnad, dagar
English acute / ER, stroke, itching, ER, AER- packed red-cellvol- stroke, vision, (the)
vision, swollen, delegate, 13 redness, ume, nauseous, mi- ER, acute / ER,
packed  red-cell days graine, vertigo, dry  packed red-cell vol-
volume ume

Table 9: Terms with more extreme differences in attribution score in correct and incorrect predictions per report

class.
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Pattern Translation Occurrence Reported by Consumers

forsta reaktionen efter medicineringen: first reaction after medication: 5,173 99.65%
reaktionen ej behandlad reaction not treated 3,853 99.77%
andra biverkningsorsaker: other causes of adverse reaction: 3,433 99.65%
ytterligare info additional information 2,123 99.06%
ovrig information: other information: 1,903 0.08%
reaktionen behandlad reaction treated 1,591 99.43%

Table 10: Swedish form patterns, their English translation, occurrence in the training set and the proportion reported
by consumers.

Pattern Translation Occurrence Reported by Consumers
(dar)?efter after 8,481 63.12%
dag(enlar(na)?)? (the) day, (the) days 3,990 63.73%
se(da)’n then 2,654 66.11%
veck(an?lor(na)?) (the) week, (the) weeks 2,020 61.49%
ar(etlen)? (the) year, (the) years 1,373 69.56%
manad(enler(na)?)?  (the) month, (the) months 1,382 74.75%
direkt directly 658 66.11%
minut(enler(na)?)?  (the) minute, (the) minutes 449 46.55%
period(enler(na)?)?  (the) period (of time), (the) periods 260 74.62%
ibland sometimes 319 88.71%
plotsligt suddenly 198 69.19%
strax soon 147 46.26%
sekund(enler(na)?)? (the) second, (the) seconds 73 49.32%

Table 11: Regular expressions for temporal patterns in Swedish, their English translation, occurrence in the training
set and proportion reported by consumers.
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I Reporter Statistics

Table 12 contains statistics on reports by specific
reporter groups in the training data.

Reporter Number of reports Average report length

(in characters)
Consumer 5,607 614.04
Doctor 3,687 408.15
Nurse 1,573 364.00
Pharmacist 955 281.31
Dentist 131 301.58
Other Healthcare personnel 35 869.31
All Healthcare 6,381 378.63

Table 12: Statistics by reporter group on the training set

J Subgroup Performance

Figures 11 and 12 show the performance of each
model in different metrics for the original develop-
ment set and partially corrected gold labels.

A delegated nurse / pharmacist reporting adverse events
from the medical record system on behalf of a hospital.
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K Explanation Correlation with Different
Fine-Tuning Runs of the Same Model

This section shows results of a control experiment
comparing global correlations for different fine-
tuned versions of the same base model with the
results in Section 4.1.

Shared vocab. Filter terms

Base model 1G EG 1G EG
Different 0.28410.05 0.084001 0424006 0.1140.09

Table 13: Average Kendall’s 7 correlation between ex-
planations of 10 different fine-tuning runs of KBB and
the different base models as reported in Figure 1 (ex-
cluding controls and the diagonal).

We fine-tuned 10 versions of KBB with the same
hyperparameter settings as the model reported in
the main text, but different random seeds to ob-
serve how similar global explanations are with the
same pre-trained model. Table 13 shows average
Kendall’s 7 correlations and their standard devi-
ations for explanations of these new fine-tuned
models sharing the same base model and the corre-
sponding values for the experiments with different
fine-tuned base models from Figure 1.

Figure 10 gives a better view of the distribution
of these correlations

features
I shared vocab.
[0 filter terms

0.8

0.6

0.4

correlation

0.2

0.0
EG
method

Figure 10: Distribution of Kendall’s 7 correlation be-
tween global explanations of 10 different fine-tuned
KBB models.
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Figure 11: Model results on development data for reporter subgroups on original gold labels.

Group
mmm Consumer B HealthCare Bl Overall
SDCB
1.00
0.75
g
S 0.50
(%]
0.25
0.00
AERB
1.00
0.75
g
S 0.50
(%]
0.25
0.00 N
Q N AN
o o @
& & E & & E
W & ‘—)Q@ W € %Qe

Figure 12: Model results on development data for reporter subgroups on partially corrected gold labels.
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Figure 13: t-SNE projection of serious terms in Swedish ADRs according to IG attributions for four triage models.
All terms are encoded with the same SentenceBERT model and each term is plotted individually as a point for each
model. Manually assigned English cluster labels are added for the centroid of each cluster. The size of the points
represents the spread of the cluster it belongs to specific to the explanations of a particular model. Terms occurring
in the top lists of multiple models are represented as gradually more transparent points. Outliers are smallest and the
most transparent.
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Figure 14: t-SNE projection of serious terms in Swedish ADRs according to EG attributions for four triage models.
All terms are encoded with the same SentenceBERT model and each term is plotted individually as a point for each
model. Manually assigned English cluster labels are added for the centroid of each cluster. The size of the points
represents the spread of the cluster it belongs to specific to the explanations of a particular model. Terms occurring
in the top lists of multiple models are represented as gradually more transparent points. Outliers are smallest and the

most transparent.
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