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Abstract

The healthcare industry has accumulated vast
amounts of clinical data, much of which has
traditionally been unstructured, including med-
ical records, clinical data, patient communica-
tions, and visit notes. Clinician-patient conver-
sations form a crucial part of medical records,
with the resulting medical note serving as the
ground truth for future interactions and treat-
ment plans. Generating concise and accurate
clinical SOAP (Vivek Podder, 2022) notes is
critical for quality patient care and is espe-
cially challenging in specialty care, where rele-
vance, clarity, and adherence to clinician prefer-
ences are paramount. These requirements make
general-purpose LLMs unsuitable for produc-
ing high-quality specialty notes. While recent
LLMs like GPT-4 and Sonnet 3.5 have shown
promise, their high cost, size, latency, and pri-
vacy issues remain barriers for many healthcare
providers.

We introduce SpecialtyScribe, a modular
pipeline for generating specialty-specific med-
ical notes. It features three components: an
Information Extractor to capture relevant data,
a Context Retriever to verify and augment con-
tent from transcripts, and a Note Writer to pro-
duce high quality notes. Our framework and in-
house models outperform similarly sized open-
source models by over 12% on ROUGE metrics.
Additionally, these models match top closed-
source LLMs’ performance while being under
1% of their size. We specifically evaluate our
framework for oncology, with the potential for
adaptation to other specialties.

1 Introduction

The healthcare industry relies on storing, process-
ing, and referencing large amounts of clinical and
research data, such as patient records, conversa-
tions, treatment histories, and medical research.

*These authors contributed equally to this work.
†Work done while at DeepScribe.

Most of this data is unstructured and language-
based, making it challenging to extract relevant
information. Traditional NLP methods, and more
recently Large Language Models (LLMs), have
enabled efficient analysis to improve diagnoses,
personalized treatments, and health outcomes.
With increasing digitization, medical records are
now maintained electronically as electronic health
records (EHRs), with tools to add structure to notes.
A medical visit note, the doctor’s concise sum-
mary of medically relevant information, is critical
for long-term reference and guiding future interac-
tions.

Generating accurate medical notes from
clinician-patient conversations is crucial for high-
quality care. These notes reduce the administrative
burden, enhance record accuracy, and ensure in-
formation is accessible for decision-making (Berg,
2023). However, generating high-quality notes
in specialized fields like oncology is challenging
due to high requirements for relevance, brevity,
specificity, and clarity. Before LLMs, models
like T5 or BART fine-tuned for note generation
faced issues like nonfactual content (Chelli et al.,
2024). Although newer LLMs (e.g., Opus, Sonnet,
GPT-4) have potential, they are costly and pose
privacy concerns for many healthcare facilities.
Fine-tuning public LLMs (Goyal et al., 2024; Yuan
et al., 2024) has been explored to improve general
medical note generation.

A significant challenge in using generative mod-
els like LLMs is hallucination: "generated content
that is nonsensical or unfaithful to the provided
source content" (Ji et al., 2023). Inaccurate in-
formation in medical notes can severely impact
quality and reliability. Oncology requires specific
and concise note-taking focused on primary can-
cer diagnoses. Colorectal surgeons, for example,
prioritize cancer-related treatments, with general
symptoms included only if relevant to the treat-
ment plan. Thus, oncology notes must be selective,
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emphasizing critical information to support cancer
care.

We address these challenges by focusing on key
aspects of oncology note generation:

• Completeness: covering all essential informa-
tion

• Conciseness: avoiding irrelevant details

• Writing Quality: ensuring readability, clarity
and medical language flow

• Organization: categorizing information cor-
rectly in the SOAP note

Our approach simplifies note creation through
three key modules. The Information Extraction
module captures oncology-specific details. The
Context Retriever gathers additional context, ver-
ifies accuracy, and reduces hallucinations. The
Summarizer generates a medical note, ensuring
precision and reliability.

Our contributions include:

• A unique three-step approach with an Informa-
tion Extractor, Context Retriever, and Summa-
rizer to generate high-quality specialty notes.

• Fine-tuned LLM-based models to extract key
medical concepts and also write the final note.
These models outperform similar sized open-
source models by more than 100% and match
closed source models while being less than
1% the size of them

• An embedding-based verification and augmen-
tation method to minimize hallucinations and
improve recall.

• Demonstration of our framework’s effective-
ness in clinical settings, matching the perfor-
mance of top LLMs.

2 Related Work

Medical Note Generation. Generating high-
quality medical notes from doctor-patient conver-
sations is a challenging task. Prior to the advent
of large language models (LLMs), previous ap-
proaches attempted to address this problem by
breaking it into multiple stages (Krishna et al.,
2020)—first identifying key transcription snippets,
grouping them, and then summarizing—or by
chunking the transcription (Zhang et al., 2021) into

smaller pieces. However, these models failed to
achieve real-world usable quality.

With the emergence of LLMs, recent
works (Van Veen et al., 2023; Biswas and
Talukdar, 2024; Goyal et al., 2024) have focused
on leveraging or prompting powerful private
LLMs, such as GPT-4 and MedPaLM, to enhance
medical note generation. These models have a
better understanding of language and can produce
more readable text. However, reliance on private
vendors raises concerns about data privacy and
incurs high costs.

This has driven further research (Yuan et al.,
2024; Kerner, 2024) into developing specialized
medical LLMs that are better equipped to under-
stand clinical texts and generate quality notes for
general scenarios. Nonetheless, in oncology, the
focus of medical note generation differs, and none
of the existing approaches can be directly applied
to oncology data without significant adaptation.
Information Extraction. To extract information
from transcription text data, Named Entity Recog-
nition (NER) or similar sequence tagging methods
are often used to identify and extract key entities
and information. Models such as BioBERT (Lee
et al., 2020), MedBERT (Rasmy et al., 2021), and
ClinicalBERT (Huang et al., 2019) have proven
effective in this context. When combined with tech-
niques for extracting entity relationships (Lv et al.,
2016), events, or temporal information (Styler IV
et al., 2014), these models can provide a com-
prehensive understanding of medical information
from transcriptions. Recently, the use of large lan-
guage models (LLMs) like MedPaLM (Singhal
et al., 2023), PMC-LLaMA (Wu et al., 2024), or
MEDITRON (Chen et al., 2023b) has made it more
feasible to extract key information from transcrip-
tions through prompting. However, these LLMs
are still limited by their capabilities and may not
always capture information accurately and compre-
hensively.

Summarization. Existing summarization ap-
proaches often focus on general abstractive sum-
marization (Gupta and Gupta, 2019; Basyal and
Sanghvi, 2023), or domain-specific tasks like news
summarization (Zhang et al., 2024). However, gen-
erating medical notes requires more than just sum-
marization; it demands attention to medical details
and selective extraction of key information specific
to different specialties.

35



Figure 1: SpecialtyScribe Framework for the HPI section of a medical note from a doctor-patient conversation
transcript

3 SpecialtyScribe

SpecialtyScribe consists of three primary modules:
Information Extractor, Context Retriever, and Note
Writer. Figure 1 illustrates the end-to-end function-
ing of the SpecialtyScribe framework using a basic
example.
Information Extractor Module: This mod-
ule takes the transcription as input and extracts
specialty-specific (oncology) medically relevant in-
formation.
Context Retriever Module: This module gener-
ates additional transcript context to augment the
extracted information and mitigates hallucinations
by verifying the extracted information against the
transcript. It takes the original transcript and the
output of the Information Extractor Module as in-
put. Transcript snippets are selected by splitting
the transcript into sentence chunks and comparing
the embeddings of the extracted information with
those of the snippets, and selecting the top-k snip-
pets to enhance the Note Writer model’s context.
We also use a hallucination detection algorithm to

further filter the extracted information
Note Writer Module: This module generates the
final medical note using the outputs of the Context
Retriever Module, the extracted information (now
filtered) and relevant transcript snippets. Since
each section of SOAP note can have multiple sub-
sections, (e.g. HPI, Chief Complaint, Medications
etc.). This model is trained to generate subsection
notes that combine to create the final note. It can
also ignore irrelevant information that is part of the
context.

3.1 Information Extractor
Our challenge involved working with a single, long
transcript. Although newer LLMs can process
longer texts (up to 32k tokens or more), they still
face issues such as significant performance degra-
dation depending on the relevant position of the in-
formation in the prompt, as discussed in (Liu et al.,
2023). Traditional segmentation methods failed, as
the model lacked full context and produced contra-
dictory results. Additionally, we required a prompt-
based extraction system capable of adapting to new

36



instructions to support customization requests by
doctors. To address these issues, we reformulated
information extraction as an Orca-style instruction
task (Mukherjee et al., 2023). Here, the model’s
objective was to follow specific rules and extract
information from given snippets. This approach
was developed based on (Yuan et al., 2024), which
describes the creation of a medical LLM that un-
derstands the nuances of spoken medical language
and the structure of medical notes.
Training Data Generation: We began by breaking
oncology notes and categorizing information into
sub-sections, such as Cancer Procedures, Cancer
Tests, Cancer Symptoms, and Current Symptoms.
For each sub-section, we crafted specific instruc-
tions. See Appendix-B for more details.
Protecting Data and Controlling Costs: We ro-
bustly de-identified any PHI(Protexted Health In-
formation) and PII (Personally Identifiable Infor-
mation) as defined by HIPAA and US government
respectively in the transcripts and notes by adapting
the Microsoft Presidio library for our specific use
case. This is discussed in more detail in Section 6.
We incurred a one-time cost for preparing our train-
ing data by using GPT-4-32k. However, this cost
was minimal compared to what would be required
to serve these models in production at scale. We
used GPT-4-32k to process 7,000 doctor-patient
conversations, each ranging from 5 to 60 minutes
with an average duration of 20 minutes, to create
the OncNoteGen Dataset. This resulted in approx-
imately 68,000 samples with an average context
length of 7,000 tokens. To mitigate overfitting in
information extraction tasks, we used two stages of
tuning. First, we warmed the model with general
instructions, including around 100,000 examples
sampled from MedMCQA (Pal et al., 2022), Pub-
MedQA (Jin et al., 2019), and general instruction
datasets such as Orca (Mitra et al., 2023) and Meta-
Math (Yu et al., 2024). Second, we trained the
model with our proprietary 68,000-sample oncol-
ogy note data—OncNoteGen.

Following initial fine-tuning, we observed that
the model struggled to distinguish between past,
present, and future tenses, especially when identi-
fying medications and doctor’s orders. This issue
appeared to be inherited from the GPT-4-32k model
used to build the training dataset. To address this,
we introduced an additional 3,000-4,000 QA-based
instructions specifically designed to help the model
understand these tense distinctions. An example
prompt for this task is provided in Appendix-C.

3.2 Context Retriever

We developed an algorithm to identify the context
from the transcript for the content generated by
the information extractor. We decomposed the ex-
tracted information into pieces (e.g. by bullets gen-
erated from the extractor), and then used their em-
beddings to encode each piece of information. Sim-
ilarly, we indexed the transcript, by chunking it into
groups of varied sentence counts e.g. 1, 2, 5 and
calculating their embeddings. Then we used em-
bedding matching to find the transcript context for
each piece of extracted information. We utilized the
all-mpnet-base-v2 model (Reimers and Gurevych,
2019) for generating embeddings and employed the
similarity_search_with_relevance_scores function
from Meta’s FAISS library (Douze et al., 2024)
to conduct embedding similarity searches. As the
transcripts are divided into chunks by varying sen-
tence numbers, it’s possible to have duplicate sen-
tences in the matched snippets. To address this, we
removed duplicate sentences and arranged the sen-
tences in the snippets in their original chronological
order.

Hallucination Mitigation: In our framework,
hallucinations can originate from two major
sources. First, the Information Extractor can output
some data which has no grounding in the transcript
or the prompt and second, the example used in the
few-shot prompt can propagate into or influence the
output. To address the first kind, the Context Re-
triever first filters out the extracted content that does
not have any transcript context support retrieved as
explained in Algorithm-1 (see Appendix A for step
by step explanation)

3.3 Note Writer

Final Note Generation: We trained the Note
Writer model to generate notes based on the fil-
tered extracted content and the corresponding con-
textual transcript. This model was trained on a
diverse set of 1,000 human-expert-annotated notes.
The experts annotated the data in two stages: first,
they identified the relevant transcript snippets for
each note subcategory; then, they combined these
snippets to create a medically accurate subsection
of the note. Since, each note was divided into
its constituent subsections (e.g., Subjective: Labs,
Plan: Follow-Ups), we end up with an average of
10,000 data points in the training set. We delib-
erately train it on a diverse medical note dataset
rather than oncology specific dataset as we intend
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to use this model across multiple specialties. While
it is possible to train the information extractor to
also do the note writing to reduce inference burden
in real-world applications, we found that with the
proposed framework, training them separately pro-
vided better performance and greater flexibility for
use in other specialties.

We also developed a basic prompt that instructs
the model to produce the note for each correspond-
ing subsection. During training, the model learnt to
create subsections of a note based on the retrieved
relevant data, which were eventually combined into
a complete note. This approach significantly re-
duced our context length requirements. The model
was trained in a LoRA (Low-Rank Adaptation)
setting, which made the training process fast, cost-
effective, and scalable, with minimal impact on
performance.

Algorithm 1 Information Filter
Input:
I = {i1, i2, . . . , in}: Retrieved information set
T : Transcript
θ: Lower Bound Confidence
α: Similarity Confidence
Ep: Embeddings for examples from prompt
ET = ExtractEmbeddings(T )
Output: Iincluded

1: Initialize included information Iincluded = []
2: for all information i ∈ I do
3: if i in T then
4: Iincluded.append(i)
5: else
6: Ei = ExtractEmbeddings(i)
7: Score = EmbedMatch(Ei, ET )
8: if Score ≥ θ then
9: Iincluded.append(i)

10: end if
11: end if
12: end for
13:
14: for all iincl ∈ Iincluded do
15: Ei = ExtractEmbeddings(iincl)
16: PromptScore = EmbedMatch(Ei, Ep)
17: TranscriptScore = EmbedMatch(Ei, ET )
18: if PromptScore ≥ α ≥ TranscriptScore then
19: Iincluded.remove(iincl)
20: end if
21: end for
22: return Iincluded

4 Experiment

4.1 Setup
Information Extraction: Consistent with the
methodology described in (Yuan et al., 2024), our
training utilized the pretrained version of Mistral-
7B model. The learning rate was set at 2e-5 with
cosine decay to 1e-5, and batch sizes were main-
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Figure 2: Training perplexity on OncNoteGen Dataset

tained at 128. Positional interpolation, referenced
in (Chen et al., 2023a), addressed long-context
management. Training occurred over 11 hours on
32 NVIDIA A100 GPUs distributed across four
machines (8 GPUs per machine). Training perplex-
ity and validation Rouge F1 scores for the Onc-
NoteGen Dataset are shown in Figures 2, and 3
respectively.
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Figure 3: Validation Rouge-1 F1 and Rouge-lcs F1
scores on OncNoteGen Dataset

Note Writer: We again utilized the pretrained
version of Mistral-7B model described in (Yuan
et al., 2024), as our base model. The model un-
derwent training for two epochs with a batch size
of 8. To enhance memory and cost efficiency dur-
ing this process, we adjusted the Low-Rank Adap-
tation (Lora) rank to 32. Our computational re-
sources included 8 NVIDIA RTX A6000 GPUs,
each equipped with 48GB of memory, allowing for
substantial parallel processing and data handling
capabilities. During training sessions, the average
GPU utilization was maintained at 85%, indicating
efficient usage of hardware resources. Addition-
ally, we integrated the FlashAttention 2 mechanism
and utilized the DeepSpeed Zero 3 optimization
framework to streamline our training process. The
learning rate was set at 2e-5 with cosine decay to
1e-5.
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Model Missed Redundant Misclassified
Opus 0.37 0.11 0.10
Sonnet-3.5 0.31 0.08 0.05
GPT-4-32k 0.40 0.08 0.05
mistralai/Mistral-7B-Instruct-v0.2 0.46 0.18 0.10
meta-llama/Meta-Llama-3-8B-Instruct 0.45 0.28 0.06
BioMistral/BioMistral-7B 0.53 0.51 0.03
SpecialtyScribe (ours) 0.37 0.08 0.05

Table 1: Results on Oncology Entity Identification Task indicating average Missed, Redundant, and Misclassified
entities (lower is better)

Model Aci-bench (subTask B) OncNoteGen
ROUGE_L BLEU ROUGE_L BLEU Human(4)

Opus 0.21 0.09 0.27 0.15 2.44
Sonnet-3.5 0.21 0.10 0.26 0.14 2.78
GPT-4o 0.20 0.09 0.29 0.17 2.95
mistralai/Mistral-7B-Instruct-v0.2 0.13 0.05 0.19 0.10 2.69
meta-llama/Meta-Llama-3-8B-Instruct 0.19 0.09 0.25 0.15 2.53
SpecialtyScribe (Note Writer) 0.24 0.12 0.31 0.21 3.14

Table 2: Results on Note Writing Quality Task (higher is better)

4.2 Evaluation

We performed a comprehensive evaluation of lead-
ing open-source and proprietary models to assess
the effectiveness of our Information Extraction (IE)
model as well as the note-generation component
of the Note Writing module. We selected high-
performing models, including closed-source SoTA
ones like Opus, Sonnet-3.5 and GPT-4-32k, along-
side prominent open-source models with medical
and general applications.
Datasets: We use two datasets for our evaluation.
1. Aci-bench (subTask B) (wai Yim et al., 2023):
This is a public dataset designed for benchmarking
automatic medical visit note generation. From this
we take 39 different medical visits for our test set.
2. OncNoteGen Test: We choose a set of 21 oncol-
ogy transcripts from OncNoteGen dataset such that
it ensures coverage across criteria such as visit type
(new vs. follow-up), length (long vs. short), and
style (dictation-heavy vs. conversational). This is
our proprietary dataset and is not available on the
internet. On this particular dataset we also perform
human expert based evaluation.
Human Scoring: To facilitate a rigorous assess-
ment, human experts prepare rubrics which repre-
sent the gold-standard of the medical (oncology
specific) entities (key phrases) which should be
captured along with their respective sub-categories.
These experts also create the gold-standard final
notes designed to mirror the expectations of health-
care providers accurately.
Potential Leakage into Test Data: We recognise

that it is possible that the Aci-bench data could
have been present in the training sets of all the
models that we compare against and also our base
model - Mistral 7B. Even though we feel it is more
likely to be present in the closed source models as
compared to the smaller open-source models there
is no way for us to know. In this framework we are
guaranteed that the OncNoteGen Test Dataset is
completely blind to the model by the virtue of it
being entirely proprietary.

4.2.1 Information Extraction
Setup: We evaluated three tasks within the Oncol-
ogy Entity Identification Task on the OncNoteGen
Test dataset:

• Missing Information: We compared the gen-
erated note to the gold-standard note, assess-
ing any missed phrases or key information,
crucial for ensuring note coverage.

• Redundant Information: We identified re-
dundant details in the generated note that were
absent from the gold-standard, including "hal-
lucinations" or unsubstantiated entities from
transcripts, to maintain note conciseness and
accuracy.

• Misclassification: We examined whether cor-
rectly identified entities were properly catego-
rized, ensuring structured and well-organized
notes.
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Results and Analysis: Table-1 demonstrates that
our domain-specific fine-tuning outperformed lead-
ing models like GPT-4-32k, particularly in reduc-
ing Missing Information, and was competitive in
other tasks. Sonnet-3.5’s improved performance
highlights the value of leveraging recent datasets
and better instructional comprehension, suggest-
ing future opportunities. Our experts noted chal-
lenges like separating labs, biopsies, and imaging
categories in the note, indicating areas for further
tuning. Opus and Sonnet models experienced ex-
ample leakage, reducing robustness, while mod-
els like Mistral, Llama, and BioMistral generated
excessive redundant entities, impacting precision.
Despite BioMistral’s misleading high score in mis-
classification due to entity repetition, our model
outshone the Mistral 7B Instruct base model, un-
derscoring the benefits of specialty fine-tuning.

4.2.2 Note Writing Quality

Setup: We froze all SpecialtyScribe components,
using our Information Extractor, and replaced the
Note Writer with different LLMs, ensuring con-
sistent input. Evaluations were conducted on both
datasets described earlier.
Metrics: We used reference-based metrics like
BLEU and ROUGE, which are common for sum-
marization but have limitations in correlating with
human judgment on creative tasks. Thus, human
experts also assessed notes based on Clarity, Gram-
mar, Professionalism, and Coherence.
Human Evaluation Methodology: Experts rated
each note across the four parameters mentioned
and used a 0–5 Likert Scale with scores normalized
between 0 and 1. The final results were the sum of
score across the 4 categories and reported for the
OncNoteGen dataset.
Model Choice: Due to cost, we used GPT-4o in-
stead of GPT-4-32k. Its claimed superiority makes
it a strong benchmark. BioMistral was excluded
for failing to follow output format instructions.
Results and Analysis: Table-2 indicates closer
scores on Aci-bench compared to OncNoteGen.
Our model surpassed both open and closed models,
partly due to its understanding of the input style,
showcasing the benefit of a custom-trained model.
The higher performance gap on OncNoteGen high-
lights the limitations of generic models for special-
ized writing tasks. Notably, OncNoteGen’s average
scores were higher, attributed to prompts designed
for a data distribution similar to that dataset.

4.2.3 Medical Note Generation
Setup To assess the overall impact of using
SpecialtyScribe to generate medical notes, we
compared the notes generated by various LLM’s
taking in the entire transcript with our framework
as outlined in Section-3. We use the same metrics
as defined in the previous task, except for human
experts which now evaluate the note on multiple
aspects.

Human Evaluation Methodology: The experts
were asked to score the notes based on the follow-
ing 4 verticals - Writing Quality (as explained in
above task). Clinical Accuracy to determine how
accurately the note reflects the original informa-
tion from the medical encounter, including correct
documentation of terms, findings, diagnoses, and
treatment plans. Completeness to evaluate whether
the note contains all necessary and relevant med-
ical information without leaving any gaps in the
patient’s story or care and Organization to check
the structure of the note, including accurate classi-
fication into medical sections. We follow a similar
process as for Note Writer, where the experts are
asked to give a score on the Likert scale between
0 to 5, which is then divided by 5 to get a number
between 0 to 1 for each vertical. The final reported
score is the sum of the scores for the 4 catergories
averaged across the test set. We do this only for the
OncNoteGen dataset.
Results and Analysis As indicated in Table-3, sim-
ilar to values for the note quality evaluation task we
see the model scores on Aci-bench dataset are not
very different between the state of the art LLMs
and our model. The scores on these metrics are
also generally low as n-gram matching may simply
require "heart murmur", but our prompts are struc-
tured to prompt the model to deliver full sentences
like "Patient presents today for a consultation on
heart murmurs". On OncNoteGen dataset, we can
clearly see the superiority of our approach over the
latest open source models. We perform on par with
the latest models from Anthropic, falling slightly
short of OpenAI’s GPT-4o. Our human experts re-
ported that our framework performed best in Writ-
ing Quality and Organization of the note. Even
though Opus and GPT-4o models had the best cov-
erage, they really struggled with note organization.

4.2.4 Ablation
To further substantiate the importance of every
component in our framework, we conducted the
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Model Aci-bench (subTask B) OncNoteGen
ROUGE_L BLEU ROUGE_L BLEU Human(4)

Opus 0.21 0.09 0.24 0.12 2.97
Sonnet-3.5 0.21 0.10 0.24 0.13 2.94
GPT-4o 0.18 0.07 0.21 0.10 3.28
mistralai/Mistral-7B-Instruct-v0.2 0.12 0.04 0.16 0.07 2.77
meta-llama/Meta-Llama-3-8B-Instruct 0.16 0.07 0.18 0.08 2.65
SpecialtyScribe (ours) 0.24 0.12 0.31 0.21 3.17
(w/o Context Retriever) 0.23 0.09 0.30 0.19 3.07
(w/o IE and Context Retriever) 0.24 0.11 0.29 0.18 2.51

Table 3: Results on Medical Note Generation Task (higher is better)

medical note generation experiment using two vari-
ations of the system. The first version removed
the Context Retriever module, leaving the Note
Writer model to rely solely on the Information Ex-
tractor model’s output. In the second version, we
eliminated both the Information Extraction and the
Context Retriever modules, resulting in the Note
Writer directly generating the end notes from the
original input transcript. Table-3 clearly illustrates
how each module of SpecialtyScribe framework is
crucial for achieving optimal performance.

5 Conclusion
In this paper, we detail our efforts in creating a
framework to generate medical specialty notes that
can be adapted across multiple specialties. We
train an Information Extraction (IE) model to ex-
tract medically relevant content from oncology-
based doctor-patient conversations, develop a hal-
lucination detection mechanism, and train a Note-
Writer module to produce clinician-approved med-
ical notes. Through rigorous evaluation, our find-
ings reveal that our models and pipeline not only
outperform the leading medical and general open-
source models in this domain but also parallel the
performance of the foremost proprietary models
available. The results further demonstrate that de-
composing the note generation task into smaller,
manageable parts enhances both the accuracy and
comprehensiveness of the medical notes produced.
This approach ensures a more precise and reliable
documentation system, which could significantly
improve diagnostic and treatment practices in spe-
cialized medical care. Furthermore, our approach is
cost-effective, achieving comparable performance
to the most expensive models, such as Opus and
GPT-4-32K, with a significantly smaller model.

Our work presents a framework that can serve as
a foundation for further research to improve the au-
tomated medical note creation process, especially

for complex medical specialties, potentially reduc-
ing clinician workloads.

6 Ethical Considerations

In compliance with HIPAA regulations, we have es-
tablished Business Associate Agreements (BAAs)
with OpenAI and Anthropic, the parent company of
the Opus and Sonnet-3.5 models, to ensure the pro-
tection and confidentiality of sensitive data. This
agreement guarantees that the data provided is nei-
ther leaked nor used for model training purposes.
We thoroughly de-identified all personal health in-
formation (PHI) from our datasets before any pro-
cessing or analysis. This was achieved by sub-
stituting PHI with non-identifiable entities using
Named Entity Recognition (NER) techniques. Fur-
thermore, the use of the SpecialtyScribe tool is
strictly confined to internal operations for gener-
ating medical notes. To uphold ethical standards,
we conduct regular audits of all input prompts to
prevent any potential unethical usage.

7 Limitations

Future work should aim to construct and train a
specialized embedding model to improve the detec-
tion and elimination of data hallucinations, thereby
enhancing system accuracy and dependability. This
paper primarily examines the framework in one spe-
cialty, yet there is ample opportunity to extend this
research to include additional specialties, which
would enhance the utility of the findings and the
model’s robustness across various fields. There is
also potential for further advancements in both IE
and summarizer models. Moreover, it’s important
to acknowledge that open-source datasets may not
always mirror real-world complexities, underlining
the need for publicly available datasets that can
drive progress in this field.
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8 Business Considerations

The scope of this work has been limited to protect
the company’s intellectual property (IP) and repre-
sents research-specific efforts. It does not directly
reflect the exact models, architecture, or methods
used in the company’s production systems.
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A Detailed Implementation of
Information Filtering algorithm

The Information Filter algorithm refines the out-
put of the Information Extractor step (denoted as
I) by returning a filtered subset that contains only
information strongly aligned with the transcript.
This process is crucial for mitigating hallucinations
and ensuring the extracted information remains re-
liable.
We start with indexing the transcript by chunk-
ing it into variable-length sentence groups (e.g.,
1, 2, 5 sentences) and computing their embeddings
(ET ). Then, the extracted information (I) is de-
composed into discrete items (i1, i2, . . .) based on
bullet points or new lines.
Step 1: Initial Matching Against Transcript For
each decomposed item i, if it appears verbatim in
the transcript, it is automatically included in the
filtered set, denoted as Iincluded. However, if no
exact match is found, the embeddings of the decom-
posed item are extracted, and a similarity score is
computed against the transcript chunks. The most
relevant transcript context is identified based on
this score. To ensure reliability, any decomposed
item with a similarity score below a predefined con-
fidence threshold (θ) is filtered out. The threshold
θ is domain-specific. In the medical field, it is kept
low to ensure that any relevant information is not
mistakenly discarded, even if it is phrased differ-
ently. This adjustment accounts for cases where
the Information Extractor paraphrases content us-
ing medical terminology, such as converting "high
blood pressure" to "hypertension."
Step 2: Secondary Filtering to Mitigate Halluci-
nations While a low threshold (θ) prevents the
omission of important information, it may also
allow irrelevant or hallucinated content to pass
through. To further refine the selection, a second
filtering step is applied. A similarity confidence
score, denoted as α, is chosen empirically. Two em-
bedding similarity scores are then computed. The
PromptScore measures the similarity between the
extracted information and the examples used in the
prompt of the Information Extractor. The Tran-
scriptScore measures the similarity between the ex-
tracted information and the input transcript. If the
PromptScore exceeds α, while the TranscriptScore
remains below α, the information is classified as
a hallucination originating from the prompt and is
removed. This step ensures that the extracted infor-
mation is not overly influenced by the prompt ex-
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amples and remains true to the original transcript.
By systematically applying these steps, the Infor-
mation Filter algorithm enhances the accuracy and
reliability of extracted information, ensuring that
medical notes are trustworthy, well-grounded in the
original transcript, and free from hallucinations.

B Oncology Information Extraction Task
Prompt

System
You are a highly trained and skilled AI
medical doctor who specializes in writing
a part of the Subjective section of a clinical
SOAP (Subjective, Objective, Assessment,
Plan) note. You only speak MARKDOWN.

User
<template>
{rules}
</template>

NOTE: If you are unsure or don’t have
enough information to provide a confident
answer, do not create or imagine a response.
Simply return "no information found". If
a certain note template section lacks the
necessary information within the transcript
to be written, then leave that section blank.
<example>
Examples only for formatting reference.
For example: Let’s say you want to write
the sections CANCER PROCEDURES
and CANCER SYMPTOMS from a given
template. If no information is found
related to CANCER PROCEDURES, the
output should look like:

#CANCER PROCEDURES
##no information found
#CANCER SYMPTOMS
##<information here>
</example>

Using above template, example and
guidelines, given the real transcript below,
can you fill out the outline accurately and
thoroughly? Return your answer as a string
following the template. DO NOT return
ANYTHING outside of the template.

Transcript:
{transcript}
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C Additional Task Prompt

We utilized the GPT-4 model to generate question-
answer pairs specific to certain sub-sections
including ’Medications’ and ’Plan-Orders’,
wherein the model initially encountered challenges.
Beyond the generation tasks for general and
respective sub-sections, we incorporated additional
QA tasks that require short responses, with the aim
to enhance the comprehension capabilities of the
model

System
You are a medical assistant that can answer
questions form a given context. In this task,
you will be asked to answer a question from
a given doctor patient transcript.
User
Transcript: {transcript}
Question: {question}
Return your response as a JSON in the fol-
lowing format:
{
"Answer": "....",
"Explanation": "...."
}
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