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Current open-domain neural semantics parsers show impressive performance. However, closer
inspection of the symbolic meaning representations they produce reveals significant weaknesses:
Sometimes they tend to merely copy character sequences from the source text to form symbolic
concepts, defaulting to the most frequent word sense based in the training distribution. By
leveraging the hierarchical structure of a lexical ontology, we introduce a novel compositional
symbolic representation for concepts based on their position in the taxonomical hierarchy. This
representation provides richer semantic information and enhances interpretability. We introduce
a neural “taxonomical” semantic parser to utilize this new representation system of predicates,
and compare it with a standard neural semantic parser trained on the traditional meaning
representation format, employing a novel challenge set and evaluation metric for evaluation.
Our experimental findings demonstrate that the taxonomical model, trained on much richer
and complex meaning representations, is slightly subordinate in performance to the traditional
model using the standard metrics for evaluation, but outperforms it when dealing with out-
of-vocabulary concepts. We further show through neural model probing that training on a
taxonomic representation enhances the model’s ability to learn the taxonomical hierarchy. This
finding is encouraging for research in computational semantics that aims to combine data-driven
distributional meanings with knowledge-based symbolic representations.

1. Introduction

The task of formal semantic parsing is to map natural language expressions (words,
sentences, and texts) to unambiguous interpretable formal meaning representations.
The components of these meaning representations can be divided into two parts: the
domain-independent logical symbols (such as negation ¬, conjunction ∧, disjunction
∨, equality =, and the quantifiers ∃, ∀), and the non-logical symbols (the concepts and
relations between them—the predicates), possibly tailored to a specific domain. It is the
latter component that forms the focus of this article, as we see several shortcomings
in the way predicates are represented in mainstream computational semantics, since
this is usually done by combining a lemma, part-of-speech tag, and sense number. This
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Figure 1
Graphical display of a meaning representation for the sentence John, a keen birdwatcher, was
delighted to see a hobby in the style of the Parallel Meaning Bank. Oval nodes represent concepts,
boxed nodes introduce contexts, and labeled edges denote thematic roles or semantic relations.

representation of concepts is not only language-specific, but also doesn’t exploit the
power of pre-trained language models used in neural approaches, currently the state of
the art in semantic parsing (Bai, Chen, and Zhang 2022; Martı́nez Lorenzo, Maru, and
Navigli 2022; Wang et al. 2023).

We illustrate this issue with an example. Figure 1 shows a meaning representation
in the form of a directed acyclic graph, as is common in currently used frameworks
in computational semantics (Allen, Swift, and de Beaumont 2008; Banarescu et al.
2013; Oepen et al. 2020a; Abzianidze, Bos, and Oepen 2020; Bos 2023). The nodes
represent concepts that are symbolized by the lemmas of the content words (nouns,
verbs, adjectives, adverbs) that triggered them. As content words are often polysemous,
they are usually disambiguated using one of the standard lexical ontologies, including
WordNet (Fellbaum 1998), OntoNotes (Hovy et al. 2006), VerbNet (Bonial et al. 2011),
and BabelNet (Navigli and Ponzetto 2012). This can be done by adding a part-of-speech
sign and sense number suffix to the symbol, and is mainstream practice across a wide
spectrum of semantic formalisms, such as Abstract Meaning Representation (AMR)
(Banarescu et al. 2013), BabelNet Meaning Representation (BMR) (Martı́nez Lorenzo,
Maru, and Navigli 2022), Discourse Representation Structure (DRS) (Bos et al. 2017),
Prague Tectogrammatical Graphs (PTG) (Zeman and Hajič et al. 2020), and Elementary
Dependency Structure (EDS) (Oepen and Lønning 2006). However, the (interrelated)
problems that we observe with this approach are the following:

• The representations of concepts are usually not normalized: They are
represented in various ways based on synonym lemmas of the same
language or translated lemmas for other languages;

• The predicate symbols possess minimal or no inherent semantic
structure. This makes it impossible to determine how they are related to
other predicates without access to external knowledge bases;

• The predicate symbols are essentially atomic. Yet, a neural network’s
tokenizer will typically break down the symbols into meaningless
sequences of characters to reduce the size of its vocabulary.
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The first problem can be illustrated with a simple example. Consider the English
synonyms car and automobile. In most current approaches, their concepts would be rep-
resented with different predicate symbols (e.g., car.n.01 and automobile.n.01, following
WordNet), even though they share the same lexical meaning. For non-English lexical-
izations for this concept, for instance Italian macchina or French voiture, one could opt
to use English-based predicate symbols (as is done by Abzianidze et al. 2017) or use a
multi-lingual lexical ontology (Martı́nez Lorenzo, Maru, and Navigli 2022), but these
solutions don’t apply any kind of normalization: The same meaning is represented by
different predicate symbols.

The second problem has risen more to the foreground with the rise of distribu-
tional semantics to capture word meanings. While certain predicate symbols exhibit
an accidental internal structure that provides additional insight about them (e.g., black-
bird.n.01 is a kind of bird.n.01), for most symbols, it is not possible to determine, without
external resources, that dog.n.01 is closely related to and compatible with animal.n.01
or puppy.n.01. This is in stark contrast with semantics based on embeddings where
meanings are represented by large vectors based on their contextual occurrences in
corpora (Mikolov, Yih, and Zweig 2013). Some attempts have already been made to
close the gap between semantic networks and semantic spaces (Rothe and Schütze 2015;
Saedi et al. 2018; Scarlini, Pasini, and Navigli 2020a; Lees et al. 2020).

The third problem is perhaps more of a theoretical issue, with the desire to use a
clean and sound methodology for composing meanings. From an engineering point of
view, what happens under the hood of a semantic parser isn’t that important as long as
it produces satisfactory accuracy scores. However, a clear disadvantage is that predicted
concepts are not guaranteed to exist in the external knowledge base (e.g., WordNet).

These three problems were not particularly pressing in the past or considered
problematic, perhaps mainly because word sense disambiguation was seen as a separate
task in the sequential symbolic pipeline of traditional semantic parsing. However, the
advent of neural methods in semantic processing has magnified these concerns. Neural
networks, due to their statistical nature, are confined to their training data distribution,
and are therefore struggling in understanding and generating out-of-distribution con-
cepts (Johnson et al. 2017; Lake and Baroni 2017; Kim and Linzen 2020; Li et al. 2023;
Groschwitz et al. 2023; Zhang et al. 2024). Additionally, neural networks tend to find
typographical correspondences between the input words and output concepts (Edman
et al. 2024), thereby copying from the input which, we argue, artificially inflates parsing
performance scores. Nevertheless, we believe that pre-trained language models possess
the capability to comprehend the semantics of unseen words and concepts within
context, but the current representations used in semantic parsing form an obstacle to
exploit it.

The following scenario illustrates this issue. Consider a neural semantic parser
trained on a corpus that pairs English sentences with meanings that encode concepts in
the standard symbolic format based on a lemma and a sense number. We give this parser
the sentence in Figure 1 about birdwatcher John who spotted a hobby, a rare type of fal-
con. Assume that the word hobby is not in the training data at all. It is very likely that this
kind of parser would associate the word hobby with the incorrect concept hobby.n.01, the
“spare-time activity” sense, because it learned how to lemmatize from other examples
and the suffix “n.01” appears to be the most frequent noun sense. By chance, the parser
could produce the correct concept hobby.n.03 (the bird sense), maybe because the suffix
“n.03” is often associated with lemmas that end in “by.” In our view, we don’t want
to develop semantic parsers that make a wild guess for unknown concepts. Instead, we
would like to develop semantic parsers that make an educated guess: perhaps it could
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come up with a concept that it has seen during training, for example, bird.n.01 or even
falcon.n.01 that appears in a similar context as the sentence it tries to parse. In this article,
we introduce and evaluate a method for integrating pre-trained language models with
symbolic meaning representations that utilize taxonomical encodings.

2. Taxonomical Encodings

In the approach we follow, we radically deviate from the view of representing non-
logical symbols based on lemmas, part-of-speech tags, and sense numbers. Instead we
introduce a way to encode concepts and relations with internally structured blocks of
meaning based on external lexical ontologies or taxonomies. These predicate symbols
are not directly interpretable for human beings as they do not correspond to units of
language. For instance, the taxonomical encodings for cat and dog share a common
prefix that tells us that both are of the category mammal. The encodings for adjectives
like good and bad will be very similar, with the only difference indicating that they are
antonyms. The idea, illustrated in Figure 2, draws inspiration from methods in image
classification (Mukherjee, Garg, and Roy 2021; Bertinetto et al. 2020).

Our research questions are the following. First of all, how can we take existing
lexical ontologies as a starting point to encode symbols for concepts (nouns, verbs,
adjectives, adverbs) in a compositional way? Second, are current neural models actually
capable of learning these abstract symbols that have no direct connection with any
surface form of language, without reducing parsing performance too much? Further-
more, how can we intuitively assess the model’s understanding of the hierarchy of
concepts, and does the model trained on taxonomical encodings demonstrate a superior
performance? Finally, do taxonomical encodings of concepts give the semantic parser
the ability to make sense of out-of-distribution concepts by assigning a meaning that is
compatible with or close to the ground truth, rather than producing a symbol based on
the lemma of the word and hoping for the best? In other words, can the parser make
an educated guess based on distributional meaning rather than on superficial features
when it encounters word meanings that it has never seen before, taking advantage of
pre-trained language models?

Figure 2
Simple illustration of a taxonomical encoding. Each box denotes a concept within a typical
ontological ISA (Investigation, Study, Assay) hierarchy. The longer the encoding, the more
specific its concepts are.
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Our work’s primary contribution lies in presenting a taxonomy-based approach
to meaning representation, which is very distinct from prior methods. Accordingly,
we connect symbolic and neural techniques in a semantic parsing system. It is sym-
bolic because the semantic parser generates interpretable and transparent meaning
representations. It is neural because it harnesses the power of distributional meaning
models and neural networks to enhance robustness in unexpected circumstances. A
direct consequence of our new approach to semantic parsing is that current evaluation
methods, which are based on graph matching, are not sufficient for our purposes, as
comparing concepts will be beyond simple string matching and needs to be based and
implemented using semantic rather than syntactic similarity. Hence, to assess the capa-
bilities to deal with out-of-vocabulary concepts, we have developed a new challenge
test and new semantic evaluation tools. Furthermore, we probe the embeddings of
concepts within neural models to evaluate the encoded taxonomical information. Our
experiments reveal that our new representation-based parser performs comparably to
the original representation in standard tests but excels in predicting unknown concepts
on challenge sets. Additionally, the probing tests indicate that neural models trained
with the new representation learn more taxonomical information compared to the
original representation.

3. Background and Related Work

3.1 Semantic Parsing

Early approaches to semantic parsing were mostly based on rule-based systems with
compositional semantics defined on top of a syntactic structure obtained by a parser
(Woods 1973; Hendrix et al. 1977; Templeton and Burger 1983). The development of
syntactic treebanks contributed to the creation of robust statistical syntactic parsers,
thereby facilitating semantic parsing with broad coverage (Bos et al. 2004). The emer-
gence of neural methodologies and the availability of extensive semantically annotated
datasets (Banarescu et al. 2013; Bos et al. 2017; Abzianidze et al. 2017) marked a shift in
semantic parsing techniques, diminishing the emphasis on syntactic analysis (Barzdins
and Gosko 2016; van Noord and Bos 2017; Bevilacqua, Blloshmi, and Navigli 2021). The
introduction of pre-trained language models within the sequence-to-sequence frame-
work led to further enhancements in parsing accuracy (Samuel and Straka 2020; Shou
and Lin 2021; Lee et al. 2021; Bevilacqua, Blloshmi, and Navigli 2021; Lee et al. 2022; Bai,
Chen, and Zhang 2022; Martı́nez Lorenzo, Maru, and Navigli 2022; Wang et al. 2023).

Various meaning representations have been the target for semantic parsing—for ex-
cellent recent overviews, see Oepen et al. (2020b) and Sadeddine, Opitz, and Suchanek
(2024). Dominating the field of semantic parsing is AMR, facilitated by the large supply
of annotated data and the simplicity of its meaning structures, that are based on simple
directed acyclic graphs. There are various extensions proposed to enrich AMR. These
are, among others, BMR, which incorporates multi-lingual semantic resources (Martı́nez
Lorenzo, Maru, and Navigli 2022), and Uniform Meaning Representation (UMR), which
includes discourse level phenomena (Gysel et al. 2021). In this work we focus on DRS,
a richer meaning representation, a semantic formalism that drew substantial interest in
computational semantics (Bos et al. 2004; Evang and Bos 2016; van Noord et al. 2018b;
van Noord, Toral, and Bos 2019; Evang 2019; Liu, Cohen, and Lapata 2019; van Noord,
Toral, and Bos 2020; Wang et al. 2021; Poelman, van Noord, and Bos 2022; Wang et al.
2023; Zhang et al. 2024).
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3.2 Evaluating Semantic Parsing

A common way of evaluating semantic parsing is to compare parser output with a gold
standard using graph overlap (Allen, Swift, and de Beaumont 2008; Cai and Knight
2013; van Noord et al. 2018a). A well-known implementation is Smatch (semantic
match), which measures the structural similarity by mapping graphs into triples and
determining the maximum amount of triples that are shared by two semantic graphs,
computed by taking the harmonic mean of precision and recall of matching triples (Cai
and Knight 2013). Smatch is mostly used to assess AMR parsing, but not exclusively,
and Poelman, van Noord, and Bos (2022) adopt it for DRS parsing. The original Smatch
implements matching of semantic material without further nuances, so several varia-
tions and extensions of Smatch have been developed to enhance semantic evaluation
(Damonte, Cohen, and Satta 2017; Cai and Lam 2019; Opitz, Parcalabescu, and Frank
2020; Wein and Schneider 2022; Opitz 2023).

Cai and Lam (2019) argue that more weight should be given to triples that form the
core of the meaning expressed by a semantic graph. They propose a variant of Smatch
that takes root distance into account by reducing the significance of triple matches
that are further away from the root of the graph (Cai and Lam 2019). In the meaning
representations of our choice, DRS, there is no designated root, so we cannot adopt this
variant of Smatch straightaway. Although we think the idea of giving more importance
to triples that form the core of the meaning expressed by a text is interesting, we believe
more research is required to establish what exactly constitutes this and we therefore will
consider this outside the scope of this article.

Opitz, Parcalabescu, and Frank (2020) argue that the “hard” matching of Smatch is
not always justified and propose S2Match (soft similarity match), by implementing a
graded semantic match of concepts with the help of a distance function that computes a
number between 0 and 1. The distance function can be anything that fulfills its purpose.
Opitz, Parcalabescu, and Frank (2020) showcase their idea using GloVe embeddings to
obtain a similarity score between lemmas. Wein and Schneider (2022) propose LaBSE
embeddings (Feng et al. 2022) to compute the similarity between two concepts in differ-
ent languages for cross-lingual comparison of meaning representations. However, these
choices of distance functions ignore scenarios where different concepts are expressed
by the same lemma. We embrace the use of S2Match in our work but will replace the
distance function by an operation that measures the ontological distance between two
concepts or relations.

3.3 WordNet

We make heavy use of the lexical ontology WordNet, a handcrafted electronic dictionary
(Fellbaum 1998). In WordNet, words are organized around synsets, that is, sets of words
that have similar meanings. A synset consists of one or more words; an ambiguous word
(a word with more than one sense) is placed into several synsets, one for each distinct
meaning. Synsets are connected to each other by several semantic relations (see below).
Each synset has a unique identifier, a 9-digit number based on the byte offset in the
WordNet database, where the first number identifies the part of speech.

The original WordNet was designed for English (Fellbaum 1998). Subsequent efforts
have been undertaken to establish WordNets for various languages and to develop
multilingual lexical resources (Navigli and Ponzetto 2012; Vossen 1998; Bond and Foster
2013), or to include WordNet into a formal ontology (Gangemi et al. 2003) and to
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integrate it with Wikipedia (Suchanek, Kasneci, and Weikum 2008; Speer, Chin, and
Havasi 2017).

Only parts of speech of content words are included in WordNet: nouns (n), verbs
(v), adjectives (a), and adverbs (r). There are several ways to refer to a specific synset:
by using the unique identifier, or, more commonly, by a combination of lemma, part of
speech, and sense number of one of its members. For instance, the English noun hobby is
placed into three synsets in Princeton’s WordNet for English: the first sense, hobby.n.01,
is glossed as “an auxiliary activity,” and two of its other synset members are pursuit.n.03
and avocation.n.01; hobby.n.02 denotes the sense of plaything for children, and hobby.n.03
refers to the bird of prey with the scientific name Falco subbuteo.

The power of WordNet manifests itself by the relations between synsets that it
offers. The hypernym and hyponym relations connect generic with specific synsets. For
instance, the direct hypernym of hobby.n.03 is falcon.n.01. Synsets that share the same
hypernym are called co-hyponyms. For example, hobby.n.03 and peregrine.n.01 are co-
hyponyms, as they are both falcons. Verbs are similarly organized in WordNet, but the
term troponym is used instead of hyponym to indicate a more fine-grained sense of a
verb. For instance, falcon.v.01 is a troponym of hunt.v.01. Some verbs are related to other
verbs via the entailment relation, for example, oversleep.v.01 entails sleep.v.01, and some
verbs have derivationally related forms corresponding to nouns, for example, hunt.v.01
is related to hunt.n.08.

Adjectives and adverbs are quite differently inserted into WordNet than nouns
and verbs are. Adjectives are arranged by falling into one of the categories of head
and satellite, the former playing a more pivotal role, and the latter a specialization
of a certain adjective. For some adjectives, there exists the antonym relation between
synsets of head adjectives, indicating opposite meanings. For instance, good.a.01 and
bad.a.01 are antonyms, with satellites cracking.a.01, superb.a.02, among others, for the
former, and awful.a.01 and terrible.a.02 (among many others) for the latter. Some adjec-
tives are connected to attribute nouns, for example, fast.a.01 has the attribute synset
speed.n.02. Adjectives are also connected to their derivationally related forms of verbs
and nouns. Some adverbs are connected to adjective by the pertainym relation, for
example, quickly.r.01 is a pertainym of quick.a.01. However, there are several adverbs
that have no connection with other synsets in WordNet.

The structure of WordNet triggered various proposals to calculate some kind of
similarity score between two concepts. Resnik (1995) proposed a similarity metric based
on the notion of information content, which requires an external corpus to calculate the
frequencies of concepts. The Leacock-Chodorow similarity calculates similarity based
on the hypernym/hyponym path length between synsets (Leacock and Chodorow
1998). Wu and Palmer (1994) propose a similar way to compute the conceptual distance
between synsets, but include both the depth of the concepts in the WordNet hierar-
chy and their least common subsumer (LCS; i.e., the first hypernym they share). The
Wu-Palmer Score (WPS, Equation (1)), is the metric we adopt because it is easy to
implement and independent of the depth of the hierarchy.

WPS = 2 ∗ depth(LCS(s1, s2))
depth(s1) + depth(s2)

(1)

For instance, the WPS of the first and third (semantically unrelated) senses of the
noun hobby is low: WPS(hobby.n.01, hobby.n.03) = 0.087, whereas the similarity between
hobby (the bird) and falcon is high: WPS(falcon.n.01, hobby.n.03) = 0.963. Note that
the similarity metrics mentioned are grounded in WordNet’s taxonomy and typically
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are most appropriate for noun comparisons, and less so for other parts of speech. In
Section 4, we delve into the distinct taxonomies of verbs, adjectives, and adverbs in
WordNet. These structural differences lead to inaccuracies in measuring concept sim-
ilarity for non-noun categories using the existing WordNet taxonomy. To address this
issue, we calculate the similarity using the taxonomy encodings described in Section 4
instead of using the original WordNet taxonomy.

One could also view our taxonomical encoding as a vector, and apply cosine sim-
ilarity for assessing the similarity between two concepts. However, we won’t get the
nuances that we need if we follow this approach. This is because cosine similarity would
not take the position of the element within the vector into account, thereby overlooking
the inherent hierarchical structure of our taxonomical encodings. For instance, consid-
ering Figure 2, the cosine similarity for “falcon” and “chaffinch” would be the same as
that for “falcon” and “dog,” and this is not what we would expect, as the former pair of
concepts is more similar than the latter.

3.4 Non-logical Symbols, Concepts, and Word Senses

Symbolic meaning representations consist of the logical and non-logical parts. The non-
logical symbols, the predicates and relations, define the concepts in the domain of
interest. Here we assume an open-domain approach where nouns, verbs, adjectives,
and adverbs are mapped to predicates taken from an ontology, proper names1 and
numbers are mapped to literals, and prepositions and implicit arguments are mapped
to an inventory of roles and relations.

In NLP, distinct formats for non-logical symbols (also known as predicate symbols)
have been adopted, ranging from words, lemmas, a combination of a lemma and a
sense number, to entries in a lexical ontology. In AMR (Kingsbury and Palmer 2002),
predicate symbols are only partially disambiguated. Some symbols are derived from
PropBank framesets and formatted as lemma-sense (e.g., see-01) but most predicates
do not include senses and are simply represented by their corresponding lemma. BMR
(Martı́nez Lorenzo, Maru, and Navigli 2022) follows the graph structure of AMR but the
predicates are encoded by leveraging the multilingual semantic network of BabelNet,
interpreting the non-logical symbols from WordNet, Wikipedia, and other resources. In
the DRS representation of the Parallel Meaning Bank (PMB) (Abzianidze et al. 2017),
predicates for noun, verbs, adjectives, and adverbs follow the corresponding WordNet
synsets and adhere strictly to the lemma-pos-sense format (see Figure 1).

Hence, one important subtask of semantic parsing is Word Sense Disambiguation
(WSD), the process of identifying the appropriate meaning of a word within its context.
Traditionally, this is approached as a classification task with the goal of selecting the cor-
rect sense from a set of predefined sense inventories (Bevilacqua et al. 2021). In contrast,
the task of concept prediction in semantic parsing is treating WSD as a generative task.
Here, semantic parsers are expected to generate the correct word sense without being
given the inventories of senses. This presents a significant challenge, as it is considered
currently “impossible” to accurately generate word senses without external knowledge
sources, particularly when the word senses have not been encountered in the training
data (Groschwitz et al. 2023).

1 Named entity linking and grounding is an important part of semantic processing, but is outside the scope
of this article and not relevant for meeting our research objectives.
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In the case of semantic parsing, the sense number system acts as an instrument for
sense prediction. However, numbering senses is fairly arbitrary, only constrained by the
tendency that senses encountered frequently in corpora get assigned a low sense num-
ber. Consequently, for concepts not encountered in the training data, predicting whether
a word corresponds to sense number 3, 4, or 5 holds no distinguishable difference: The
best strategy to use for a WSD component would be choosing a low sense number,
like 1 or 2. Our new representation for concepts presented in Section 4 addresses this
issue by refraining from using sense numbers and instead incorporating taxonomical
information in concept representation.

3.5 Sense Embeddings

The aim of this article is to develop and evaluate a new way of representing con-
cepts and incorporating them into formal meaning representations of natural language
sentences. Another way of representing concepts are sense embeddings, pre-trained
vectors extracted from a neural model, usually based on language models trained on a
corpus with labeled word senses. Various approaches have been introduced to generate
sense embeddings. AutoExtend (Rothe and Schütze 2015) derives synset and lexeme
embeddings from word embeddings. Context-AwaRe Embeddings of Senses (Scarlini,
Pasini, and Navigli 2020b) uses a semi-supervised approach to producing sense embed-
dings for the lexical meanings within a lexical knowledge base. SensEmBERT (Scarlini,
Pasini, and Navigli 2020a) uses an approach by combing the power of the language
modeling and the knowledge contained in a semantic network. Pre-trained sense em-
beddings are known to improve word sense disambiguation9 (Oele and van Noord
2018; Bevilacqua and Navigli 2020).

However, due to their size and floating point numbers, pre-trained sense embed-
dings are (obviously) not directly appropriate to be explicitly part of a formal meaning
representation such as the one shown in Figure 1. One option would be to compress the
embeddings (Andrews 2015) and transform the numbers into integers, but this solution
falls outside the objectives of this article. Hence, although we will not explore the use
of pre-trained sense embeddings to improve semantic parsing, in Section 6 we will
compare them with the sense embeddings extracted from the semantic parsing models
that we develop to get an idea how well they reflect the taxonomical hierarchy encoded
by WordNet.

3.6 Discourse Representation Structures

In order to run our experiments we need a reasonably sized annotated corpus of sen-
tences and their meaning representations. Several such annotated corpora are available
for AMR (Banarescu et al. 2013), and the majority of current semantic parsing methods
are developed using AMR datasets. However, for our purposes, we are not able to
make use of these linguistic resources because only part of the non-logical symbols
(predicates) are disambiguated in AMR, as we outlined in the previous section.2

Instead, we will work with a variant of DRS, the meaning representation proposed
in Discourse Representation Theory (Kamp and Reyle 1993). The PMB offers a large

2 A quick calculation on the AMR 2017 corpus revealed that about 60% of the predicates are not
sense-disambiguated. Most of these are predicates for nouns.

243



Computational Linguistics Volume 51, Number 1

x1 x2 x3 s1 s2 e1 x4
male.n.02(x1) Name(x1, “John”)
keen.a.01(s1) AttributeOf(s1,x3)
person.n.01(x2) x2=x1 Role(x2,x3)
birdwatcher.n.01(x3)
delighted.a.01(s2) Experiencer(s2,x1) Topic(s2,e1)
see.v.01(e1) Experiencer(e1,x1) Stimulus(e1,x4)
hobby.n.03(x4)

male.n.02 Name “John”
keen.a.01 AttributeOf +2
person.n.01 EQU -2 Role +1
birdwatcher.n.01
delighted.a.01 Experiencer -3 Topic +1
see.v.01 Experiencer -1 Stimulus +1
hobby.n.03

Figure 3
Discourse Representation Structure for a sentence shown in box format (left) and sequence
notation (right). The corresponding graph for this DRS is shown in Figure 1.

corpus of sentences paired with DRSs with concepts represented by WordNet synsets
and a neo-Davidsonian event semantics with VerbNet-inspired thematic roles.

The formal language of DRS consists of discourse referents and DRS conditions.
DRS conditions are predicates applied to discourse referents, relations between dis-
course referents or literals, or comparison statements (i.e., equality, approximation,
temporal precedence; see Appendix C). DRSs are recursive data structures; complex
DRSs can be constructed to express negation, conjunction, and discourse relations.

An example DRS in box format, the equivalent for the meaning representation
graph in Figure 1, is shown on the left in Figure 3. However, in our experiments in
Section 6, we will use neither of these formats when training our semantic parsing
models. Instead, we will use the sequence notation for DRS where variables are replaced
by De Bruijnian indices (Bos 2023). The sequence notation is a convenient way for train-
ing neural semantic parsers that are based on seq2seq architectures, because there are
variables names and a minimal amount of punctuation symbols. Our running example
in sequence notation is shown on the right in Figure 3.

4. Encoding Concepts and Relations

There are four parts of speech in WordNet, all with a different ontological organization.
Therefore, we describe for each category how we compute its taxonomical encodings.
These encodings will be our new way to represent concepts in a formal meaning
representation and used to improve semantic parsing. We use Princeton WordNet
version 3.0 (Fellbaum 1998), compatible with the PMB.

4.1 Nouns

For the encoding of nouns we will make use of the WordNet hyponym-hypernym rela-
tion between synsets. Each noun synset has one or more hypernyms, except entity.n.01,
which therefore represents the most general synset. For noun synsets with more than
one synset (i.e., indicating multiple inheritance) we consider just one of the possible
hypernyms.

This procedure maps all the noun synsets to one large ISA-hierarchy with the top
node entity.n.01. Given a synset within this obtained hierarchy, we give each direct
hyponym-hypernym edge a label (a single ASCII character, excluding the zero “0”),
ensuring that the labels for each co-hyponyms are all distinct.3 Once we have done this

3 In cases where concepts exhibit multiple inheritances, we choose the first hypernym path.
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Table 1
Snapshot of generated taxonomy encodings for a group of related noun synsets. Synonyms
receive the same encodings, hyponyms get encodings that are more specific (less zeroes).

WordNet synset member WordNet ID Taxonomical encoding

entity.n.01 100001740 n1000000000000000000000
food.n.01 100021265 n1233100000000000000000
beverage.n.01 107881800 n1233110000000000000000
drink.n.03 107881800 n1233110000000000000000
alcoholic drink.n.01 107884567 n1233111000000000000000
alcohol.n.01 107884567 n1233111000000000000000
brew.n.01 107886572 n1233111100000000000000
beer.n.01 107886849 n1233111110000000000000
booze.n.01 107901587 n1233111200000000000000
brandy.n.01 107903208 n1233111210000000000000

for each edge, we can read off a unique sequence of labels for each synset. The max-
imum length of this sequence is the maximum depth of hyponym-hypernym links in
WordNet. We pad encodings with trailing zeroes in order to give each synset encoding
the same length.4 The number of different labels that we need corresponds to the
maximum of co-hyponyms for a synset in WordNet.

Table 1 gives a snapshot of how this labeling works. The resulting taxonomical code
gives us a symbolic representation that groups similar concepts (i.e., synsets) together
based on their internal structure. The more labels that they share from left-to-right in the
encoding, the more they have in common. The more zeroes an encoding has, the more
general its synsets is. To distinguish noun synsets from other parts of speech, we attach
the prefix “n” to the encoding.

4.2 Verbs

For verb synsets we follow essentially the same procedure as for nouns presented in
the previous section making use of the troponym and entailment relations available in
WordNet. However, the hierarchy of verbs is much flatter than that of nouns, resulting
in too many top nodes (synsets without hypernym). For verb synsets without a hyper-
nym, we create edges to noun synset to which they are derivationally related, as shown
in Table 2. For noun synsets inserted in this way, we expand the hierarchy as we did for
nouns. To distinguish verb concepts from noun-derived concepts, we attach the prefix
“v” to it.

4.3 Adjectives and Adverbs

For adjective synsets (Table 3) we create a hierarchical link between satellites and their
heads. The head adjectives will be related to noun synsets using derivationally related
verb or noun synsets or attribute nouns. To distinguish the adjective encodings, we
attach the prefix “a” to it. Antonyms receive the same encodings but are decorated

4 Initial experiments comparing with padded and non-padded encodings reveal that models with padding
outperform those without. We also experimented with pruning the encodings, removing nodes in the
hierarchy that are non-branching and do not appear in the data. But this idea also yielded worse results.
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Table 2
Snapshot of generated taxonomy encodings that link verb synsets to a noun synset.

WordNet synset member WordNet Id Taxonomical encoding

change of integrity.n.01 100376063 n1111211500000000000000
separation.n.09 100383606 n1111211510000000000000
removal.n.01 100391599 n1111211511000000000000
get rid of.v.01 202224055 v1111211511100000000000
throw away.v.01 202222318 v1111211511110000000000
abandon.v.01 202228031 v1111211511111000000000
dump.v.02 202224945 v1111211511120000000000

Table 3
Snapshot of generated taxonomy encodings that link adjective and adverb synsets to a noun
synset. Encodings for adjectives and adverbs have an additional suffix encoding polarity.

WordNet synset member WordNet Id Taxonomical encoding

speed.n.02 105058140 n1133A31000000000000000
fast.a.01 300976508 a1133A31100000000000000+
fast.r.01 400086000 r1133A31100000000000000+
lazy.a.01 300981304 a1133A31121000000000000−
slow.a.01 300980527 a1133A31120000000000000−
slowly.r.01 400161630 r1133A31120000000000000−
quick.a.01 300979366 a1133A31130000000000000+
haste.n.01 105060189 n1133A31300000000000000
abruptness.n.03 105060476 n1133A31310000000000000
sudden.a.01 301143279 a1133A31311000000000000 |
all of a sudden.r.02 400061677 r1133A31311000000000000 |
suddenly.r.01 400061677 r1133A31311000000000000 |

with a positive or negative suffix.5 WordNet doesn’t provide information whether an
antonym is positive or negative, so we use a simple heuristic to check the prefix of the
adjective’s lemma (im-, non-, un-)—see van Son, van Miltenburg, and Morante (2016)
and Blanco and Moldovan (2010). Adverbs are linked to adjectives via the pertainym
relation and receive the same encoding but with the prefix “r.”

4.4 Roles, Operators, and Discourse Relations

The meaning representations that we use follow a neo-Davidsonian way of representing
events (Parsons 1990), where events are related to their participants by a close set of
thematic roles, namely, Agent, Theme, Patient, Result, and so on. The inventory of roles
is an extension of the hierarchical set proposed in VerbNet (Bonial et al. 2011), extended
with roles used in the Parallel Meaning Bank. The elaboration of the complete taxonomy
of these roles is outlined in Appendix B. There are also roles to connect non-event
entities, for instance those appearing in genitive constructions or noun compounds.

5 When calculating the Wu-Palmer similarity between adjectives/adverbs, this suffix is moved to the end
of the last non-zero character.
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Table 4
First-order Logic representation and the three sequential meaning representations
(lemma-pos-sense, WordNet-Identifier, and Taxonomical-encodings) for “John doesn’t laugh.”

FOL ∃x(male.n.02(x) ∧ Name(x,“John”) ∧ ∃t(time.n.08(t) ∧ t = now
¬∃e(laugh.v.01(e) ∧ Agent(e,x) ∧ Time(e,t))))

LPS male.n.02 Name “John” time.n.08 EQU now
NEGATION <1 laugh.v.01 Agent –2 Time –1

WID 109624168 500000018 “John” 115135822 = now
¬ <1 200031820 500000004 –2 500000003 –1

TAX n1222211P00000000000000 t12000 “John” n1133222000000000000000 = now
¬ <1 v2B20000000000000000000 t22100 –2 t21000 –1

Some thematic roles are paired with their inverse roles, for instance, Sub and SubOf. To
clearly distinguish between these roles, we use distinct prefixes: “t” denotes a thematic
role, whereas “i” signifies an inverse role. We also convert each Discourse Relation and
operator into distinct mathematical symbols, as shown in Appendix C. In contrast to
roles, these two logical components lack a taxonomy structure, therefore their encoding
is straightforward, involving a direct mapping to single-byte symbols.

Now that we have explained how the encoding process works for concepts, roles,
operators, and discourse relations, we can put everything together and transform the
semantic graph into a graph encoded with the WordNet Identifier and WordNet taxo-
nomical encoding, as illustrated in the graphs in Appendix A. The sequential represen-
tations of meanings, which are used for training in Section 6, are illustrated in Table 4.

5. Developing Taxonomy-based Semantic Tools

Several new tools are required to work with the taxonomical encoding of concepts that
we proposed in the previous section. First of all, we need to revise the existing way of
measuring semantic parsing performance. We will do so by replacing the well-known
Smatch metric with one that takes concept similarity into account. Second, we need a
new challenge set that measures parsing performance on out-of-distribution concepts.
Finally, we need to add an interpretation component to the semantic parser that maps
taxonomical encodings back to human-readable concepts.

5.1 Soft Semantic Matching using the WordNet Taxonomy

We adopt the S2Match framework of Opitz, Parcalabescu, and Frank (2020) (see
Section 3.2) but replace its distance function to incorporate taxonomical encodings.
Recall that Smatch converts a semantic graph into node-edge-node triples and computes
a score based on the maximum number of matching triples. In standard Smatch, two
triples get a matching score of 1 if and only if there is a perfect match between the
two nodes and the edge. S2Match extends this approach by introducing a soft matching
between instance triples, where a distance function based GloVe embedding similarity
returns a score between 0 and 1. We modify Smatch and S2Match with respect to three
issues:

1. We replace the distance function based on word embeddings by the
Wu-Palmer Score (see Section 3.3);
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2. We not only allow soft matching based on the Wu-Palmer Score for
instance triples, but also for role triples;

3. In the implementation of Smatch, triples featuring TOP were discarded
since DRS, unlike AMR, does not contain roots.

In the rest of this article we refer to these alterations of Smatch and S2Match as
Hard Smatch and Soft Smatch, respectively. Note that the Wu-Palmer distance based
on the standard WordNet taxonomy struggles with accurately measuring the distance
for verbs, adjectives, and adverbs because these parts of speech have less hierarchical
structure and are sometimes unconnected. To overcome this limitation, we measure the
distance with the generated encodings discussed in Section 4, enabling a more precise
computation of Wu-Palmer similarity.

5.2 Creating a Challenge Set for Out-of-Distribution Concepts

One of our research objectives is to make a model that is able to come up with a
reasonable interpretation of a concept that it has never encountered during training. The
Parallel Meaning Bank offers training, development, and test sets, all featuring similar
distributions (Figure 4). The PMB data indicates that concepts are frequently used with
the first word sense. This is not very surprising, because WordNet tends to list the most
used senses first for each word.

This poses the following problem to meet our research objective. Say we give the
model for semantic parsing a sentence with an unknown word (a word that the model
hasn’t seen during training). The model will likely transform it into a WordNet concept
with sense number 1, based on the statistics seen on training. Hence, the chance that
the model got it correct is very high. But does such a model demonstrate some kind of

Figure 4
Distribution of word senses in the different data splits of the Parallel Meaning Bank. Note that
except sense “01,” sense “02” is prominent because every person’s name incorporates either the
female.n.02 or male.n.02 and “08” also stands out because every meaning for a tensed clause
includes the time.n.08 concept.
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semantic understanding? Not really—it just produced a pattern that it has seen many,
many times during training.

In this case, we need to evaluate capability of dealing with rare or unseen word
senses. We do this by creating a challenge test set consisting of more than a hundred En-
glish sentences and their gold standard meaning representations, where each sentence
contains one or more words (nouns, verbs, or adjectives) that are not part of the training
and development set, or are present in the training set with a different sense. To ensure
an insightful evaluation, we make certain that the corresponding meaning for these
unknown concepts do not correspond to the first sense. As a source of inspiration we
use the glosses and example sentences found in WordNet for a particular word sense,
and add enough context to disambiguate the meaning of the word. For instance, in “the
moon is waxing,” we have the third sense for the verb, resulting in the concept wax.v.03,
not seen in training (although wax.v.01 could be part of the training data). For each
concept we construct three sentences in which the concept is expressed with enough
context for a human to understand the intended meaning.

The entire challenge set comprises 500 example sentences paired with their meaning
representation in SBN format, containing 430 unknown nouns, 128 unknown verbs, and
65 unknown adjectives/adverbs. We verified and manually corrected the annotations
when needed to guarantee their gold-standard quality. In Table 9 in Section 6, we
showcase some examples along with the predictions of different parsers.

5.3 Designing a Taxonomy-based Semantic Parsing Architecture

Modern semantic parsing predominantly utilizes sequence-to-sequence models trained
with linearized meaning representations (Barzdins and Gosko 2016; van Noord and Bos
2017; Bevilacqua, Blloshmi, and Navigli 2021). In our approach, we retain the sequence-
to-sequence architecture but adapt the output to represent a linearized graph of seman-
tic representation encoded with taxonomical encodings using the technique proposed
by Bos (2023) as presented in Section 3.6. This output representation needs to undergo a
process of interpretation (Figure 5). This interpretation is implemented by mapping the
taxonomical encodings into concepts and relations of our human-readable dictionary.
This dictionary consists of WordNet and the ontology of other symbols including the
semantic roles. In other words, what the mapper does is translating each encoding into
a traditional format found in the standard meaning representations.

Let D be a dictionary that maps taxonomical encodings to unambiguous predicate
symbols, much like as shown in Tables 1–4. Let Tn denote a taxonomical sequence
meaning representation of length n, where Tn = (t1, t2, . . . , tn). Then, the interpretation
of taxonomical encodings is defined as a mapping functionM as follows:

M(Tn) = (M(t1), M(t2), . . . , M(tm), . . . , M(tn)) (2)

M(tm) =

D(tm), if tm ∈ tax-format and tm ∈ D
D(C(tm)), if tm ∈ tax-format and tm /∈ D
tm, otherwise

(3)

The function M in Equation (2) denotes the symbolic interpretation process, en-
capsulating the overall mapping of a meaning representation in taxonomical encod-
ings. The function M in Equation (3) operates on individual elements of this meaning
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Figure 5
The pipelines for semantic parsing in comparison. Route (1) shows a neural semantic parsing
system based on traditional concept representations. Route (2) illustrates the taxonomy-based
parsing system where a mapper interprets the produced symbols.

representation. It distinguishes three cases: (a) If an element tm strictly follows the
tax code format and is listed in the dictionary, it is directly mapped to the corre-
sponding lemma-pos-sense, role, operator, or discourse relation format—for instance,
n1222212113423100000000 is part of D, and mapped to hobby.n.03; (b) If an element
is not part of the dictionary but a valid taxonomical encoding, it undergoes com-
putation by C, a traversal function that sifts through all tax codes in D to identify
the encoding closest to the input according to the Wu-Palmer similarity metric—
for instance, n1233111111110000000000 is not part of D, but approximated by C to
n1233111111100000000000 which is part of D, and then mapped to a WordNet synset,
for example, wheat beer.n.01;6 (c) Elements that are not encoded are regarded as literals
and left unchanged—for instance, John is kept as it is.

Hence, in our parsing system, taxonomical encodings serve as an intermediate
representation, not as the final output. The interpretation component in the pipeline
(Figure 5) generates a meaning graph that is readable for humans, encoded with lemma-
pos-sense information and the usual labels for roles, operators, and discourse relations
format (Table 1). The advantages of taxonomical encodings will be revealed in the
following experiment sections.

6. Experiments and Results

We will compare three different representation methods for conceptual predicates: the
standard one based on lemma, part of speech, and sense number (LPS, henceforth), one
based on rather arbitrary WordNet identifiers (WID), and one based on our novel taxo-
nomical encodings (TAX). The data that we use to run our experiments is drawn from
the PMB. For evaluation we use both the standard test set to assess the overall semantic
parsing accuracy (for English and German) as well as the challenge set dedicated to
measure the ability to interpret concepts not part of the training data (for English only).
Furthermore, we probe the models by extracting the sense embeddings to get an idea of
whether they reflect the taxonomical information encoded in WordNet.

6 For WordNet-Identifier encodings, which are represented by numbers, we determine the closest synset
just by computing the numerical difference between two identifiers.
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Table 5
Data statistics for two languages in the PMB 5.1.0. Words and Chars represents the average
number of words and characters in one sample.

Train Development Test
Samples Words Chars Samples Words Chars Samples Words Chars

English 9,560 5.7 29.5 1,195 5.4 29.6 1,195 5.3 29.6
German 1,256 5.1 29.9 936 4.9 29.7 936 4.8 29.7

6.1 Data

For our experiments, we selected the gold-standard English and German data from the
PMB7 as detailed in Table 5. English data is divided into training, development, and test
sets following an 8:1:1 split ratio, and German data follows a 4:3:3 split ratio to make
the development and test sufficiently large for evaluation purposes.

6.2 Experimental Settings

In our experiments, we utilized the most frequently used seq2seq architecture, specif-
ically leveraging the transformer-based T5 (Raffel et al. 2019) and BART (Lewis et al.
2020), two pre-trained transformer-based architectures. Specifically, we fine-tuned their
multilingual variants (because we include both English and German): mT5 (Xue et al.
2021), byT5 (Xue et al. 2022), and mBART (Liu et al. 2020). mT5 builds upon the T5
model with pre-training on multi-languages corpus. byT5 enhances the multilingual
approach through byte-level processing, making it especially effective at handling lan-
guages with limited data resources. Meanwhile, mBART also leverages a multilingual
corpus for its pre-training phase and adopts a denoising autoencoder strategy. A note-
worthy distinction between these models lies in their tokenization approaches: mT5
and mBART utilize sub-word tokenization, while byT5 uses byte-level tokenization.
In our task, whether employing the lemma-pos-sense notation, WordNet identifiers,
or taxonomical encodings, each notation presents a format distinct from the natural
languages that were seen in their pre-training corpora. This divergence challenges the
tokenization strategies of the models and their proficiency in processing new language
with limited data.

We set the learning rate to 10−4, included a decay rate of 0.5, and set a patience
threshold of 5 for early stopping. More details are provided in Appendix D. Given the
relatively small size of the German dataset for fine-tuning (1,256 instances for training),
we initially fine-tune the models on the English data before fine-tuning them with the
German data. Each experiment is ran three times to calculate the average and standard
deviation, which are detailed in the results tables.8

7 We use the PMB 5.1.0 available at https://pmb.let.rug.nl/releases. We only use gold data for
English and German for our experiments. Although the PMB also offers annotated data for other
languages, it is of insufficient quantity for effective training. The PMB also provides silver data (partially
annotated and verified by experts), but because word senses are not consistently corrected in this part of
the data we will not explore it, although in general adding silver data to the training set has been proved
to enhance parsing performance (van Noord, Toral, and Bos 2020; Poelman, van Noord, and Bos 2022;
Wang et al. 2023).

8 Code is available at https://github.com/LastDance500/neural-symbolic-parsing.
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Table 6
Semantic parsing results (Hard Smatch, Soft Smatch, Ill-Formed Rate) for English using three
different models: lemma-pos-sense, WordNet-IDs, and Taxonomical encodings.

LPS WID TAX
HSm SSm IFR HSm SSm IFR HSm SSm IFR

mT5 84.2 ± 2.6 86.4 ± 2.1 6.4 ± 0.8 81.1 ± 2.5 86.0 ± 2.3 4.9 ± 0.9 80.1 ± 3.2 86.2 ± 1.8 3.6 ± 0.9
byT5 87.4 ± 1.8 89.4 ± 2.3 4.7 ± 0.4 86.3 ± 1.1 91.2 ± 1.0 1.8 ± 0.5 86.6 ± 2.3 91.8 ± 2.5 2.3 ± 0.6
mBART 79.5 ± 1.2 82.8 ± 2.2 3.9 ± 0.7 76.4 ± 0.9 81.5 ± 0.5 3.8 ± 0.6 83.0 ± 2.6 86.2 ± 1.6 3.4 ± 0.4

Table 7
Semantic parsing results (Hard Smatch, Soft Smatch, Ill-formed Rate) for German using three
different models: lemma-pos-sense, WordNet-IDs, and taxonomical encodings.

LPS WID TAX
HSm SSm IFR HSm SSm IFR HSm SSm IFR

mT5 78.6 ± 2.2 81.7 ± 2.4 8.2 ± 1.7 78.5 ± 2.3 83.5 ± 2.1 5.5 ± 1.3 77.3 ± 2.4 84.5 ± 2.5 2.8 ± 1.5
byT5 80.5 ± 1.1 82.3 ± 1.2 4.5 ± 0.6 79.3 ± 1.0 86.4 ± 1.3 5.8 ± 0.8 80.1 ± 1.2 88.6 ± 1.3 2.2 ± 0.4
mBART 78.3 ± 2.3 83.2 ± 2.5 1.6 ± 0.6 72.5 ± 2.4 79.2 ± 2.3 4.1 ± 0.7 76.3 ± 2.1 84.8 ± 1.1 1.7 ± 0.7

6.3 Results on Semantic Parsing

The results for semantic parsing for each of the three different meaning representations
are presented in Table 6 (English) and Table 7 (German). We show the standard (hard)
Smatch score (HSm) for exact semantic matching and the soft Smatch score (SSm) for
approximate semantic matching. We also include the rate of ill-formed output (IFR), as
the seq2seq architectures that we employ do not guarantee well-formed graph meaning
representations (any output that is ill-formed is assigned a score of 0).

The standard Smatch scores are a little bit below earlier reported F-scores on PMB
data (a Hard Smatch score 94.7 for English and 92.0 for German, as reported by Wang
et al. 2023), but they can be considered decent given that we only train on the gold
data part and we don’t use further pre-training on silver and bronze data from the PMB
corpus. Additionally, our research objective is not to reach the highest performance,
but rather compare performance of differently structured predicate symbols in meaning
representations. The results for German (Table 7) are lower than those for English. We
think this is caused by two factors: There is, compared to English, less typographical
correspondence between the input words and output meanings, and there is less train-
ing data available for German. Nonetheless, the results for German are in line with those
for English.

It is interesting to compare the performance of the three different architectures:
mT5, byT5, and mBART. Despite the fact that all models are based on the seq2seq and
encoder-decoder framework, they exhibit non-consistent performance on these three
representations. This is due to the difference in their pre-training objectives and corpora,
activation functions, parameter initialization, and other aspects (we kindly refer the
reader to the original papers of these models; see Section 6.2). For instance, for both
English and German, mT5, when trained using the WID representation, shows superior
Hard Smatch score compared with TAX; in contrast, byT5 and mBART obtain higher
Hard Smatch scores using TAX than using WID (Tables 6 and 7).

The byT5 model achieved the highest Smatch scores among all settings and both
languages. We believe that the tokenization strategy of byT5 is the main reason for
its good performance. This is in line with the findings of van Noord, Toral, and Bos
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(2020), who suggest that DRS parsing benefits from the character-level tokenization.
Giving a concrete example, mT5’s sub-word tokenizer segments hobby.n.03, 101612476,
and n1222212113423100000000 into disjointed chunks like [hobby, ., n, .03], [10, 1612, 476],
and [n, 1222, 2121, 1342, 31, 00000000], respectively. In contrast, byT5’s byte-level tok-
enizer processes the same inputs into [h, o, b, b, y, ., n, ., 0, 3], [1, 0, 1, 6, 1, 2, 4, 7, 6], and
[n, 1, 2, 2, 2, 1, 2, 1, 1, 3, 4, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0], offering a more meaningful and robust
segmentation. This distinction is particularly crucial for taxonomical encodings, where
each character represents a specific layer within the taxonomy.

In the rest of this discussion we will focus on byT5 given its superior performance.
Based on the Hard Smatch scores, LPS emerged as the top performer, achieving scores of
87.4 for English and 80.5 for German. WID and TAX perform similarly: Both are slightly
lower than LPS. We think the main reason why LPS outperforms TAX and WID with
Hard Smatch is that LPS benefits from (a) generating a lemma by copying character se-
quences from the text input to the meaning output, and (b) generating the most frequent
sense number “01” (see Section 5.2) and thereby producing the correct predicate symbol.
Evidences for (a) can be found in Appendix E, where we feed misspelled words to the
models revealing copying behavior for LPS. Evidences for (b) can be found in Appendix
F where the majority of sense numbers chosen is “01” for LPS. The predicate symbols
for TAX and WID are not based on lemmas and sense numbers (see Table 1), so they
cannot “benefit” from copying lemmas or producing the most frequent sense.

However, the situation changes when we turn to the results of approximate seman-
tic matching, where the TAX-parser demonstrates better performance (91.8 for English
and 88.6 for German). The Soft Smatch score of TAX-parsers improved by a minimum
of 3.2 points over Hard Smatch, reaching a peak increase of 6.2 for English and 8.5 for
German. Conversely, while the Soft Smatch scores for both LPS and WID saw a modest
rise, both the magnitude of their increases and final Soft Smatch scores fell short when
compared to the TAX-parser. In this case, the larger increase demonstrates that TAX is
doing something interesting that LPS and WID are not capable of. In Section 6.4 and 6.5,
we will perform a deeper analysis of this behavior.

Considering the IFR, we can observe that there are two main causes for ill-formed
outputs. One is that the index points to a non-existent concept, and the other is that the
generated graph is cyclic. We found that both the WID-parser and TAX-parser signifi-
cantly reduced the frequency of index-related prediction errors, which thus reduced the
IFR for both English and German. These errors typically stem from the model’s limited
understanding of the generated graph structure. The low IFR can be seen as evidence
that proposed uniform representation using encodings enhances the seq2seq model’s
comprehension of semantic graph structures.

6.4 Results on Unknown Concept Identification

Although the overall results for semantic parsing already favor our newly proposed
taxonomical encodings (TAX), we also want to show that TAX is making fewer absurd
predictions than its alternatives, LPS and WID. In Section 5.2 we presented a challenge
test set for semantic parsing that contains out-of-distribution concepts. There are two
ways to look at the results of the three different approaches on this stress test: globally,
using Smatch scores; or locally, looking in detail on how the three approaches react on
unknown concepts. The global results in terms of Hard Smatch and Soft Smatch metrics
remain in line with the results of the standard tests of the previous section: For ByT5,
the LPS-parser scores the highest Hard Smatch (73.3) while the TAX-parser scores the
highest Soft Smatch (78.1).
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Table 8
Results on unknown concept identification for nouns, verbs, and adjectives, comparing meaning
representations based on the standard lemma-pos-sense notation (LPS), WordNet identifiers
(WID), with taxonomical encodings (TAX).

Category Number LPS WID TAX

noun 430 0.275 0.391 0.421
verb 128 0.270 0.289 0.313
adjective & adverb 65 0.447 0.410 0.432

For a more fine-grained analysis we looked at how the three approaches dealt with
the unknown concepts. For each example sentence in the challenge test set we identified
the unknown concepts and paired them with the prediction of the corresponding con-
cepts in the output meaning representation. This was done via an automatic alignment
of concepts followed by human verification and correction when needed. Then we
applied the Wu-Palmer similarity to each concept pair (gold vs. predicted). The results
of identifying these unknown concepts are presented in Table 8.

As Table 8 shows, none of the three approaches performs very well. Recall that
achieving a perfect score on this task is highly unlikely—only by chance a parser might
pick the correct word sense. Hence, all three parsers are expected to make mistakes, but
there are important differences in the severity of these mistakes (Table 9).

The TAX encodings show the best performance for unknown noun and verb con-
cepts. The standard notation following the LPS convention yields mediocre results
because the parser will in most cases default to the most frequent (first or second)
sense following the sense distribution in the training data. The WID parser performs
surprisingly well, so the identifiers exhibit some systematic grouping that we are not
aware of. Unknown verb concepts seem harder to predict, perhaps because they show
less hierarchical structure in WordNet than nouns.

The LPS-parser makes the best predictions for adjectives and adverbs. This can
probably be attributed to three factors. First, compared with nouns and verbs, there is no
hierarchical structure in WordNet for adjectives and adverbs (see Section 4.3). Second,
the Wu-Palmer measure that we use for similarity is not optimal for adjectives and
adverbs, as it doesn’t take polarity into account in a principled way.9 Third, the training
set includes only a modest number of adjectives (2,845) and adverbs (665), limiting the
model to effectively learn the taxonomical information inside the encodings. In contrast,
with adequate data for nouns (35,836) and verbs (8,620), the model significantly benefits
from taxonomical information.

Table 9 shows some challenge set examples of unknown concept predictions for
the three different parsing models (the results of the entire challenge set are shown in
Appendix G). As we have seen before, the LPS-parser is extremely good at transforming
word forms to a lemma and a high frequency sense number, but this strategy does not
fare well on the challenge set. In fact, it makes severe mistakes, predicting thrush (the
infection) instead of thrush (the bird), or Micky Mantle (the baseball player) rather than
mantle (the garment). However, there were several cases where the LPS-parser had a

9 To give an idea of the complexity of defining similarity of adjectives, consider the comparison of long.a.01
(temporal), long.a.02 (spatial) with short.a.01 (temporal). In a way, long.a.01 and long.a.02 are similar in
polarity, but dissimilar in dimension. From a different perspective, long.a.01 and short.a.01 are similar in
dimension, but dissimilar in polarity. It is hard to catch this into one single similarity score.
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Table 9
Some instances of the challenge set with words with out-of-vocabulary concepts in boldface, and
the concepts predicted by the lemma-pos-sense parser (LPS) and the taxonomical encoding
parser (TAX). In brackets the Wu-Palmer similarity score between gold and prediction.

Input Text Gold LPS prediction TAX prediction

Scientist examines the insect’s antennae. n.03 antennae.n.01 (0.00) muscle.n.01 (0.63)
. . . went birdwatching. She saw . . . a hobby. n.03 hobby.n.01 (0.09) big cat.n.01 (0.67)
They played Scrabble in the living room. n.02 scrabble.n.01 (0.11) chess.n.02 (0.90)
The thrush’s song filled the forest with . . . n.03 thrush.n.01 (0.17) pigeon.n.01 (0.79)
The soldier was shot in the calf. n.02 calf.n.01 (0.20) cheek.n.01 (0.58)
David was armed with a sling. n.04 sling.n.01 (0.20) gun.n.01 (0.90)
Jennifer cooked the bass in a steamer. n.02 steamer.n.01 (0.20) refrigerator.n.01 (0.43)
. . . mayor proposed extensive cuts in the . . . n.19 cut.n.01 (0.24) trade.n.01 (0.52)
Tiger Woods aced the 16th hole. v.03 ace.v.02 (0.25) dig.v.02 (0.20)
. . . musician was playing a . . . fugue . . . n.03 fugue.n.01 (0.25) tune.n.01 (0.71)
He shuffled the cards. v.02 shuffle.v.01 (0.25) toss.v.03 (0.22)
The moon is waxing. v.03 wax.v.01 (0.25) wake up.v.02 (0.76)
The elephant’s trunk is an extended nose. n.05 trunk.n.02 (0.26) ear.n.01 (0.73)
The stripper in the club did a strip for us. n.03 stripper.n.01 (0.27) sailor.n.01 (0.73)
She dressed the salad. v.10 dress.v.01 (0.29) repair.v.01 (0.25)
The woman wore a short black mantle. n.08 mantle.n.02 (0.36) coat.n.01 (0.86)
The athlete had a muscular build. a.02 muscular.a.01 (0.50) fat.a.01 (0.50)
The artist painted with vivid colors. a.03 vivid.a.01 (0.50) infinite.a.01 (0.59)
A tiny wren was hiding in the shrubs. n.02 wren.n.01 (0.54) oriole.n.01 (0.88)
Hungarian is a challenging language . . . n.02 hungarian.n.n.02 (1.00) french.n.02 (0.54)
. . . was playing a . . . fugue on the grand. n.02 grand.n.02 (1.00) restaurant.n.01 (0.52)

“lucky strike,” when it picked the second sense for a lemma which happened to be
correct. A case in point is Hungarian (the language), where the LPS-parser picked the
second sense, perhaps because most languages in WordNet happen to be assigned the
second sense (the first sense is usually the inhabitant of a country).

Most interestingly, in analogy with recent approaches to image classification
(Mukherjee, Garg, and Roy 2021; Bertinetto et al. 2020), the TAX-parser “makes the best
mistakes”, as it often predicted concepts similar to the unknowns. Table 9 shows some
intriguing examples. For instance, when given the sentence “Jennifer cooked the bass
in a steamer”, it predicts refrigerator which is close in meaning to steamer (the cooking
utensil sense) as they are both appliances. For the sentence “The soldier was shot in the
calf”, it predicts cheek (human face) which is close in meaning to calf (part of a human
leg) as they are both body parts. And for the sentence “The woman wore a short black
mantle”, it predicts coat which is close in meaning to mantle (a sleeveless garment) as
they are both pieces of clothing.

In other words, the TAX-parser makes mistakes, but less drastic ones than the
mistakes made by the LPS-parser, because it will attempt to find a concept that is close in
meaning (exploiting the contextual understanding of the pre-trained language model)
rather than copying a lemma from the textual input to output meaning, as the LPS-
parser seems to be doing.

6.5 Probing Structural Information in Neural Models

To check whether our models learn the hierarchical taxonomical information during the
training process, we use a probing technique to investigate and understand the internal
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representations and knowledge encoded within the model. Probing is a recent method
to validate whether neural models possess certain (structural) properties (Ettinger,
Elgohary, and Resnik 2016; Misra, Rayz, and Ettinger 2023; Petersen and Potts 2023).

In our case, we probe the embeddings of the unknown concepts, given their three
corresponding sentences in the challenge set (see Section 5.2). Because we want to com-
pare embeddings of different levels of specificity to reflect the model’s understanding of
the WordNet structure, we place each unknown concept into a small hierarchy of four
levels based on itself (the most specific level) and its first three hypernyms (increasing
in generality on each level). To extend coverage, we add the WordNet co-hyponyms to
each concept (except for the most general level).

For instance, for the concept hobby.n.03 the first three hypernyms in WordNet
are falcon.n.01, hawk.n.01, and raptor.n.01. Then we expand each of these concepts
with their co-hyponyms from WordNet. For example, for hobby.n.01 we obtain the co-
hoponyms gyrfalcon.n.01 and kestrel.n.01 among others, and so on. All these concepts
together form what we call a concept group. Each concept group consists of four
levels of concepts and is paired with three different sentence templates based on the
challenge set. Each sentence template contains exactly one blank in which the lemma
corresponding to the concept is filled in (hobby, kestrel, gyrfalcon, hawk, raptor, etc.).
For our running example, we have the sentence template “Powerful and fast-flying, the

hunts medium-sized birds.”, and filling in the blank with the corresponding lemma
of the concept group results in a new sentence for each concept. The sentence templates
are used for all four levels in the concept group. Table 10 shows two concept groups
with sentence templates.

This way, for each level in the concept group we obtain around 25 sentences. We
input these sentences to the model and extract the embeddings of the concepts in the
last layer of the model’s encoder. We average the embeddings of all lemmas for each
sentence template and do this for each level. This gives us four embeddings for each
concept, ranging from specific (e.g., hobby, gyrfalcon, . . . ) to general (e.g., raptor).

To evaluate the reflection of the hierarchical information captured by the embed-
dings, we can compare the semantic distances of the embeddings representing the four
levels of specificity. The assumption here is that the more generic a concept, the greater
the semantic distance to a specific concept should be. We do this by computing the
cosine distance for all combinations of specificity levels (with n levels, this gives us(n

2
)

distances). For the four levels that we have, we obtain six distance pairs, and a

Table 10
Two examples of concept groups for four levels of specificity. Each group is connected to three
sentence templates. Templates are simplified and not all synset instances are shown due to space
constraints.

Level Concept Sentence Templates

0 drive.n.10, adapter.n.02, airfoil.n.01, . . . The technician installed the new in
1 device.n.01, ceramic.n.01, connection.n.03, . . . the machine. | She carefully examined the
2 instrumentality.n.03, article.n.02, block.n.01, . . . for any defects. | The engineer needed
3 artifact.n.01 the specific to complete the project.

0 almond.n.02, cherry.n.03, drupelet.n.01, . . . The botanist carefully studied the
1 drupe.n.01, achene.n.01, acorn.n.01, . . . under the microscope. | The farmer har-
2 fruit.n.01, agamete.n.01, antheridium.n.01, . . . vested the from the field. | She placed
3 reproductive structure.n.01 the into the basket during ...
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Table 11
Hierarchy Reflection Scores for the concept embeddings of three fine-tuned byT5 parsers and the
sense embeddings of SensEmBERT.

Parser Embedding HRS–base HRS–all

SensEmBERT 0.876 0.858

LPS byT5 0.771 0.723
WID byT5 0.796 0.753
TAX byT5 0.810 0.784

total of 15 comparisons to make. Each comparison is evaluated as “satisfied” (following
the WordNet hierarchy) or not. For instance, the distance of a specific concept (e.g.,
hobby.n.03) to a slightly more generic concept (e.g., falcon.n.01) should be smaller than
the distance of that concept to the most generic concept (e.g., bird.n.01).

The final score is computed by the number of satisfied comparisons divided by the
total number of comparisons (Table 11). We call this metric the Hierarchy Reflection
Score (HRS), and the pseudo code for the metric is shown in Appendix G. The score (a
number between 0 and 1) reflects the hierarchical structure in the model: The higher the
score, the closer it follows WordNet’s ontology. We distinguish two variants of HRS:
base and all. The base-HRS metric only compares the distances to the most specific
concept, whereas all-HRS compares all levels.10 In our experiment, we compare three
different models (LPS-byT5, WID-byT5, and TAX-byT5) and pre-trained sense embed-
dings, SensEmBERT11 by Scarlini, Pasini, and Navigli (2020a) for 130 concepts.

Among the models we trained for different semantic representations, the TAX-byT5
model achieved the highest score. The WID-byT5 model delivered a moderate perfor-
mance, while the LPS-byT5 model had the lowest score. This aligns with the results
we observed in the semantic parsing task and unknown concept identification task,
where the TAX-byT5 model demonstrated superior structural understanding compared
to the other two models. SensEmBERT demonstrates superior performance, but it is
unsurprising given that it is specifically trained to adhere to the WordNet hierarchy,
compared with the other three models we trained on semantic parsing.

We can also visualize the results of the probing methods. We follow the method by
Lai and Nissim (2022) and apply Principal Component Analysis (PCA) to reduce the
dimensionality of embeddings. Figure 6 shows the visualizations for the two example
sets listed in Table 10. We use three arrows to connect the averaged embeddings of
the four different specificity levels. Intuitively, the more the arrows follow a straight
line in the same direction, the better they reflect the WordNet hierarchy. For instance,
the embeddings of the TAX-parser succeed to reflect the WordNet hierarchy for the
conceptual group for driven.n.10, as the arrows in the right of Figure 6c form a relatively
straight line. The embeddings of SensEmBERT do not entirely reflect the WordNet
hierarchy for almond.n.02, as the connected arrows in the left of Figure 6a show a
slight turn. The embeddings of the LPS-parser fail to reflect the WordNet hierarchy

10 Assuming d(i, j) denotes the distance between embeddings on levels i and j, the comparisons for
HRS-base are: d(0,1) < d(0,2), d(0,1) < d(0,3), d(0,2) < d(0,3) and the comparisons for HRS-all are:
d(0,1) < d(0,2), d(0,1) < d(0,3), d(0,2) < d(0,3), d(1,2) < d(0,2), d(1,2) < d(1,3), d(1,3) < d(2,3), d(2,3) < d(0,3).

11 For SensEmBERT, we directly retrieve the embeddings from an existing corpus in
https://nlp.uniroma1.it/sensembert/.
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HRS=0.85

HRS=1.00

(a) PCA of SensEmBERT Embeddings

HRS=1.00

HRS=0.71

(b) PCA of LPS-byt5 Encoder Embeddings

HRS=1.00

HRS=1.00

(c) PCA of TAX-byt5 Encoder Embeddings

HRS=1.00

HRS=1.00

(d) PCA of WID-byt5 Encoder Embeddings

Figure 6
PCA analysis of the embeddings for two sets of concepts in Table 10. The orange lines
sequentially connect the averaged embeddings of the four specificity levels. The level 0
represents the most specific concepts, and level 3 represents the most general concepts. We add
the HRS-all scores for each group of concepts.

driven.n.10, which can be seen by the big turn of the arrows in Figure 6b. Although
Figure 6 only shows the PCA of two instances, it does nicely illustrate the difference in
interpretation of hierarchical structure of the models or the lack thereof.

7. Conclusion and Future Work

We showed that by taking an existing lexical ontology, WordNet, we are able to generate
hierarchical compositional encodings for predicate symbols for nouns, verbs, adjectives,
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and adverbs. We complemented these with encodings for semantic roles, relations,
and logical operators. The resulting formal meaning representations contain concept
representations that are normalized, abstracting away from specific languages. These
extremely rich conceptual representations are still “parseable” for neural models. For
English and German, parsing performance is a little bit lower than the standard lemma-
pos-sense notation under Hard Smatch (exact semantic matching), which we attribute
to the input-output copying capabilities (translation) of the neural models. However,
the advantage of taxonomical encodings is evidenced by a higher Soft Smatch score
(approximate semantic matching) and a superior identification of out-of-distribution
concepts. Furthermore, the probing results indicate that the models trained with the
taxonomical encodings exhibit superior structural understanding capabilities.

We believe that these results are encouraging and show a promising way to combine
distributional semantics with formal semantics. We hope that the approach presented
in this article is inspirational for future work on neural-symbolic semantic processing.
We envision potential both on the symbolic and the neural side.

On the symbolic side, there is a lot of space to further explore the taxonomical en-
codings. The current encodings are complex, and perhaps there are ways to reduce the
number of layers, or different ways of incorporating verbs and adjectives. Ontologies
other than WordNet can be explored, as well as different representations of concepts
(perhaps pictograms), and better methods for measuring similarity, in particular that
of adjectives and adverbs (especially for the case of antonymy). Another direction for
future work is exploring alternative evaluation metrics to better handle the complexity
introduced by the fine-grained similarity evaluation in Soft Smatch. The Soft Smatch
method in this article relies on the hill-climbing algorithm of Hard Smatch, which can
sometimes result in unwanted matches (Opitz 2023).12

On the neural side, there are many potential areas worth exploring that have fallen
outside the scope of this article. First, incorporating sense embeddings is promising,
but integrating them into a neural semantic parser that produces complete meaning
representations is challenging.13 Another interesting area of research is to investigate
modifications of the loss function aimed at enhancing the model’s understanding of
taxonomical information in the encodings, where weights are assigned to characters
based on their positions. Another direction to consider is using large language models
such as Phi3, Mistral, LlaMa, and GPT-4 for semantic parsing, as they are known to
have strong language modeling capabilities. However, their architectures (decoder-
only) and corresponding experimental settings strongly differ from those of our models.
Some pilot experiments that we ran indicate that their performance, whether using
standard representations or taxonomical encodings, is by far inferior to our mod-
els. An investigation on why large language models perform so poorly on semantic
parsing goes beyond the objectives of this article but is perhaps an exciting topic for
future research.

12 For instance, if the model predicts (person.n.01, jump.n.01) for the concepts (cat.n.01, laugh.n.01),
hill-climbing may match cat.n.01 with jump.n.01 and laugh.n.01 with person.n.01 because these matches
score higher than cat.n.01 with person.n.01 and laugh.n.01 with jump.n.01, leading to some spurious
scores.

13 Adding pre-trained sense embeddings to the tokenizer could enhance its understanding of WordNet
senses, but there are two main drawbacks: (1) compatibility issues due to independently trained
embeddings with mismatched dimensions (e.g., 300 for AutoExtend and 2,048 for SensEmBERT, vs. 768
for T5-base and 1,024 for T5-large); (2) a significant increase in the tokenizer’s dictionary size, given the
PMB corpus has over 10,000 senses and WordNet contains more than 100,000 senses.
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Appendix A. Meaning Representations in LPS, WID, and TAX

We show here the three different types of meaning representations used in our experi-
ments. We do this for the text “John, a keen birdwatcher, was delighted to see a hobby.”
in graph format for readability. In the experiments we use the sequence notation.

keen.a.01 birdwatcher.n.01

male.n.02
delighted.a.01

see.v.01

time.n.08

AttributeOf

Role

John
NameExperiencer

Topic

Time

Experiencer

hobby.n.03
Stimulus

now
TPR

Figure A.1
Meaning graph using the lemma-pos-sense (LPS) notation to encode concepts.

301744515 110384214

109624168
301805730

202129289

115135822

500000039

500000012

John
500000018500000008

500000006

500000003

500000008

101612476
500000011

now
≺

Figure A.2
Meaning graph based on unique identifiers (WID). The identifiers for synsets are taken from
WordNet. The identifiers for roles are assigned by us.
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a11324F3113000000000000+ n1222211Ü10000000000000

n1222211P00000000000000

a1244111120000000000000+

v111122H126000000000000

n1133222000000000000000

i10000

t30000

John
t12000t23210

t23110

t21000

t23210

n1222212113423100000000t22210

now
≺

Figure A.3
Meaning graph with taxonomical encodings for concepts and roles (TAX).

Appendix B. Taxonomy of Roles Used in the Parallel Meaning Bank

Figure B.1 shows the hierarchy of roles and relations as used in the Parallel Meaning
Bank. This hierarchy is an extension of the one proposed for VerbNet (Bonial et al. 2011).
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Figure B.1
Complete hierarchy of semantic roles used in the semantic parsing experiments. Each role name
is shown with the taxonomical encoding.
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Appendix C. Taxonomy Encodings of Operators and Discourse Relations

The identifier and character encoding of operators and discourse relations in Table C.1
and Table C.2.

Table C.1
Taxonomy encodings of Operators. Differently from the previous table, the id mentioned here is
not the WordNet identifier, but rather one that we have assigned manually.

Operator Identifier Char code Meaning

TPR 700000001 ≺ temporal precedes (before)
TSU 700000002 � temporal succeeds (after)
TIN 700000003 @ temporal inclusion
TCT 700000004 A temporal contains
TAB 700000005 ./ temporal abut
LES 700000006 < less than
LEQ 700000007 ≤ less or equal than
TOP 700000008 > not more than
MOR 700000010 > greater than
EQU 700000011 = equal
ANA 700000012 ≡ anaphoric link
APX 700000013 ≈ approximately equal
NEQ 700000014 6= not equal
SXP 700000015 � spatially behind
SXN 700000016 � spatially before
SZN 700000017 Y spatially under
SZP 700000018 g spatially above

Table C.2
Taxonomy encodings of Discourse Relations.

Relation Identifier Char code

ALTERNATION 600000001 ∨
ATTRIBUTION 600000002 @
CONDITION 600000003 →
CONSEQUENCE 600000004 ⇒
CONTINUATION 600000005 ↔
CONTRAST 600000006 /
EXPLANATION 600000007 ∞
NECESSITY 600000008 �
NEGATION 600000009 ¬
POSSIBILITY 600000010 �
PRECONDITION 600000011 ←
RESULT 600000012

∑
SOURCE 600000013 ←↩
CONJUNCTION 600000014 ∧
ELABORATION 600000015 ⊃
COMMENTARY 600000016 †
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Appendix D. Experimental Settings

To facilitate reproduction, we detail the important hyperparameters used. For the WID
and TAX encodings, we adopt a larger patience and decay rate, allowing ample time for
convergence. This decision stems from experimental observations indicating that these
novel (to the models) representations exhibit a slower convergence rate compared to
LPS. We test using hierarchical loss, which give higher weight to the characters on the
left within each word, but the initial experiments didn’t show any improvements.

Table D.1
Hyperparameters for training different representations.

Learning Rate Epoch Patience Decay Rate Optimizer Loss Function

LPS 1e-4 50 10 0.1 AdamW Cross Entropy
WID 1e-4 50 10 0.5 AdamW Cross Entropy
TAX 1e-4 50 10 0.5 AdamW Cross Entropy

Appendix E. Interpreting Misspellings

In order to assess the ability of models to deal with misspellings we created a test suite of
English sentences paired with meaning representations where each sentence contained
a commonly misspelled content word, that is acceptible, humourous, enterpreneur. The
results, shown in Table E.1, demonstrate that the traditional lemma-pos-sense notation
fails to identify wrongly spelled content words caused by its tendency to copy character
sequences from input words to output lemmas.

Table E.1
Results on misspelled content words by computing concept identification scores for the three
different models: lemma-pos-sense (LPS), WordNet identifiers (WID), and taxonomical
encodings (TAX).

Category Number LPS WID TAX

noun 16 0.105 0.441 0.563
verb 10 0.149 0.648 0.593
adjective 16 0.000 0.415 0.510
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Appendix F. Concept Identification Results

This appendix shows predictions of the three semantic parsers (LPS, WID, TAX) on
the challenge set for nouns (Table F.1), verbs (Table F.2), and modifiers (Table F.3). The
challenge set includes several sentences for the out-of-vocabulary concepts. For reasons
of space, only one prediction for each concept is shown. The complete predictions are
available on our GitHub site.14

Table F.1
Instances of the challenge set with nouns with out-of-vocabulary concepts. In brackets the
Wu-Palmer similarity score between gold and prediction.

Gold LPS WID TAX

extract.n.02 extract.n.01 (0.24) speech.n.01 (0.35) history.n.02 (0.47)
cruiser.n.03 cruiser.n.01 (0.36) dancer.n.01 (0.40) ship.n.01 (0.85)
warbler.n.02 warbler.n.02 (1.00) fictional animal.n.01 (0.70) tower.n.01 (0.45)
rag.n.03 rag.n.01 (0.14) song.n.01 (0.75) pot.n.01 (0.20)
harrier.n.03 harrier.n.01 (0.46) tiger.n.02 (0.67) shed.n.01 (0.42)
hobby.n.03 hobby.n.01 (0.11) luggage.n.01 (0.40) lobby.n.01 (0.40)
stool.n.02 stool.n.01 (0.59) stadium.n.01 (0.35) tooth.n.01 (0.30)
eagle.n.02 eagle.n.01 (0.19) eagle.n.01 (0.19) eagle.n.01 (0.19)
wallflower.n.03 wallflower.n.01 (0.52) vegetarian.n.01 (0.70) comedian.n.01 (0.73)
beetle.n.02 beelte.n.02 (0.00) bed.n.01 (0.61) shed.n.01 (0.55)
stake.n.05 stake.n.01 (0.13) storage space.n.01 (0.55) hull.n.06 (0.57)
hungarian.n.02 hungarian.n.02 (1.00) german.n.02 (0.57) french.n.01 (0.54)
pen.n.02 pen.n.01 (0.60) pen.n.01 (0.60) pen.n.01 (0.60)
pen.n.05 pen.n.01 (0.42) pen.n.01 (0.42) pen.n.01 (0.42)
gondola.n.02 gondola.n.01 (0.57) gun.n.01 (0.58) bottle.n.01 (0.61)
bug.n.03 bug.n.02 (0.19) coop.n.02 (0.52) disease.n.01 (0.17)
investigation.n.02 investigation.n.01 (0.33) practice.n.04 (0.78) wrongdoing.n.02 (0.82)
thrush.n.03 thrush.n.01 (0.17) lemur.n.01 (0.71) pigeon.n.01 (0.79)
song.n.04 song.n.01 (0.53) song.n.01 (0.53) song.n.01 (0.53)
admiral.n.02 admiral.n.01 (0.48) aunt.n.01 (0.54) crocodilian reptile.n.01 (0.57)
flower.n.02 flower.n.01 (0.45) flower.n.01 (0.45) flower.n.01 (0.45)
bloom.n.02 bloom.n.01 (0.33) blood.n.01 (0.33) blood.n.01 (0.33)
wren.n.02 wren.n.01 (0.57) grass.n.01 (0.56) oriole.n.01 (0.88)
bed.n.03 ocean bed.n.01 (0.00) picture.n.02 (0.47) beach.n.01 (0.77)
impression.n.04 impression.n.01 (0.38) tear.n.01 (0.38) smell.n.01 (0.33)
tripper.n.04 tripper.n.01 (0.40) tv set.n.01 (0.61) elevator.n.01 (0.76)
reel.n.05 reel.n.02 (0.12) ranch.n.01 (0.17) bike.n.02 (0.16)
course.n.07 course.n.01 (0.12) candy.n.01 (0.78) cup.n.02 (0.27)
mantle.n.08 mantle.n.02 (0.00) (0.00) coat.n.01 (0.86)
joint.n.06 joint.n.01 (0.32) jet.n.01 (0.23) joint.n.01 (0.32)
net.n.05 net.n.02 (0.70) napkin.n.01 (0.55) net.n.02 (0.70)
rally.n.05 rally.n.02 (0.47) initiation.n.01 (0.59) race.n.02 (0.62)
adder.n.03 adder.n.01 (0.38) back door.n.03 (0.37) astronaut.n.01 (0.56)
key.n.04 key.n.03 (0.13) key.n.01 (0.22) key.n.01 (0.22)
harrier.n.02 hard coat.n.01 (0.00) dog.n.01 (0.91) joiner.n.01 (0.47)
drive.n.10 drive.n.01 (0.12) dress.n.01 (0.63) engine.n.01 (0.80)
fugue.n.03 fugue.n.01 (0.29) music.n.01 (0.57) tune.n.01 (0.71)
grand.n.02 grand.n.02 (1.00) guitar.n.01 (0.78) restaurant.n.01 (0.52)
application.n.04 application.n.01 (0.30) comic book.n.01 (0.17) application form.n.01 (0.50)
bag.n.03 bag.n.01 (0.70) bag.n.01 (0.70) bag.n.01 (0.70)
cover.n.09 cover.n.01 (0.62) schoolroom.n.01 (0.57) mask.n.04 (0.60)
pain.n.04 pain.n.01 (0.20) pain.n.01 (0.20) pain.n.01 (0.20)
stripper.n.03 stripper.n.01 (0.29) wizard.n.02 (0.76) sailor.n.01 (0.73)
strip.n.06 strip.n.02 (0.21) trip.n.01 (0.50) trip.n.01 (0.50)
substance.n.04 substance.n.01 (0.67) object.n.04 (0.36) drug.n.01 (0.60)
ray.n.07 ray.n.01 (0.21) hedgehog.n.02 (0.69) sand.n.01 (0.25)
increase.n.05 increase.n.01 (0.15) eye blink.n.01 (0.21) rate.n.02 (0.30)
cut.n.19 cut.n.01 (0.27) art.n.02 (0.60) trade.n.01 (0.52)
antenna.n.03 antennae.n.01 (0.00) alarm.n.04 (0.20) muscle.n.01 (0.63)
entrance.n.03 entrance.n.02 (0.29) laugh.n.01 (0.38) landing.n.04 (0.89)

14 https://github.com/LastDance500/neural-symbolic-parsing.
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Gold LPS WID TAX

operation.n.05 operation.n.01 (0.31) war.n.01 (0.71) job.n.02 (0.78)
service.n.15 service.n.01 (0.74) sewing machine.n.01 (0.18) service.n.01 (0.74)
whisker.n.02 whisker.n.01 (0.10) cat.n.01 (0.25) mouse.n.01 (0.26)
attack.n.07 attack.n.03 (0.21) cold.n.01 (0.27) attack.n.07 (1.00)
appearance.n.04 appearance.n.01 (0.43) negotiation.n.01 (0.38) athletic game.n.01 (0.44)
sub.n.02 sub.n.01 (0.29) stuff.n.02 (0.40) dagger.n.01 (0.52)
dock.n.03 dock.n.01 (0.44) dog.n.01 (0.40) dog.n.01 (0.40)
touch.n.10 touch.n.01 (0.47) view.n.02 (0.53) improvement.n.01 (0.44)
weight.n.07 weight.n.01 (0.43) kilo.n.01 (0.75) value.n.02 (0.43)
pan.n.03 scale pan.n.01 (0.00) sweater.n.01 (0.63) tumbler.n.02 (0.84)
labor.n.02 labor.n.02 (1.00) behavior.n.01 (0.82) job.n.01 (0.82)
unit.n.03 offensive unit.n.01 (0.00) college.n.02 (0.75) school.n.01 (0.75)
period.n.07 period.n.01 (0.33) time.n.08 (0.33) time.n.03 (0.35)
top.n.10 top.n.01 (0.47) toe.n.01 (0.30) roof.n.01 (0.74)
top.n.09 top.n.02 (0.42) top.n.02 (0.42) frontier.n.02 (0.47)
carton.n.02 carton.n.01 (0.13) calculator.n.02 (0.70) ax.n.01 (0.61)
trunk.n.05 trunk.n.02 (0.26) hat.n.01 (0.27) ear.n.01 (0.73)
organ.n.03 organ onstage.n.01 (0.00) company.n.01 (0.21) piano.n.01 (0.82)
cape.n.02 cape.n.02 (1.00) calculator.n.02 (0.55) wash.n.07 (0.82)
song.n.05 song.n.01 (0.33) college.n.02 (0.32) (0.27)
heat.n.06 heat.n.02 (0.38) hour.n.01 (0.40) heat.n.02 (0.38)
mouth.n.04 mouth.n.01 (0.35) middle.n.01 (0.57) frontier.n.02 (0.53)
calf.n.02 calf.n.01 (0.42) calculator.n.02 (0.29) cheek.n.01 (0.58)
chemistry.n.03 chemistry.n.01 (0.35) chemistry.n.01 (0.35) natural science.n.01 (0.38)
crown.n.07 crown.n.01 (0.14) bus stop.n.01 (0.59) haunt.n.01 (0.62)
mole.n.03 mole.n.02 (0.22) bread.n.01 (0.40) cup.n.01 (0.26)
almond.n.02 almond.n.02 (1.00) sugar.n.01 (0.24) entity.n.01 (0.25)
bass.n.04 bass.n.02 (0.12) pretzel.n.01 (0.63) sandglass.n.01 (0.29)
steamer.n.02 steamer.n.01 (0.24) spoon.n.01 (0.52) refrigerator (0.43)
lock.n.02 lock.n.01 (0.48) shit.n.01 (0.30) screw.n.04 (0.48)
ace.n.06 ace.n.08 (0.00) extraterrestrial.n.01 (0.32) (0.00)
slide.n.03 slide.n.03 (1.00) soccer ball.n.01 (0.20) sunglasses.n.01 (0.19)
slip.n.11 slip.n.01 (0.11) sock.n.01 (0.73) wash.n.07 (0.86)
scrabble.n.02 scrabble.n.01 (0.11) rugby.n.01 (0.56) chess.n.01 (0.90)
decoy.n.02 decoy.n.01 (0.52) fly.n.01 (0.45) mosquito.n.01 (0.45)
jay.n.02 jay.n.01 (0.50) hedgehog.n.02 (0.69) dolphin.n.02 (0.62)
hole.n.03 hole.n.02 (0.29) hole.n.02 (0.29) shore.n.01 (0.33)
hawker.n.02 hawker.n.01 (0.55) hunter.n.01 (0.96) guest.n.01 (0.70)
merlin.n.02 merlin.n.01 (0.11) match.n.01 (0.40) bat.n.01 (0.71)
rocket.n.03 rocket.n.01 (0.48) rayon.n.01 (0.53) spoon.n.01 (0.45)
move.n.05 move.n.01 (0.63) movie.n.01 (0.59) assignment.n.05 (0.74)
barrel.n.02 barrel.n.02 (1.00) basket.n.01 (0.84) balcony.n.02 (0.67)
function.n.07 function.n.01 (0.38) baseball club.n.01 (0.30) job.n.02 (0.30)
string.n.05 string.n.01 (0.22) page.n.01 (0.21) lock.n.01 (0.20)
green.n.06 green.n.02 (0.53) tomb.n.01 (0.56) grey.n.05 (0.21)
surge.n.03 surge.n.01 (0.15) person.n.01 (0.24) person.n.01 (0.24)
wave.n.06 wave.n.01 (0.21) quantity.n.01 (0.27) marker.n.02 (0.22)
sling.n.04 sling.n.02 (0.59) soccer ball.n.01 (0.64) gun.n.01 (0.90)
sling.n.05 sling.n.01 (0.20) sock.n.01 (0.64) canopy.n.03 (0.67)
china.n.02 china.n.02 (1.00) continent.n.01 (0.42) orange juice.n.01 (0.29)
slug.n.07 slug.n.01 (0.32) goose.n.01 (0.59) mosquito.n.01 (0.72)
growth.n.04 growth.n.01 (0.29) fruit.n.01 (0.24) flower.n.01 (0.21)
bullfinch.n.02 bullfinch.n.01 (0.57) metatherian.n.01 (0.74) chicken.n.02 (0.76)
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Table F.2
Instances of the challenge set with verbs with out-of-vocabulary concepts.

Gold LPS WID TAX

drive.v.08 drive.v.01 (0.40) drive.v.01 (0.40) drive.v.01 (0.40)
house.v.02 house.v.01 (0.00) (0.00) (0.00)
run.v.22 run.v.01 (0.15) run.v.01 (0.15) run.v.01 (0.15)
release.v.05 release.v.02 (0.27) step out.v.01 (0.20) throw.v.03 (0.19)
serve.v.15 serve.v.07 (0.25) serve.v.06 (0.50) give.v.24 (0.50)
run.v.19 run.v.07 (0.24) work.v.04 (0.24) pass.v.14 (0.18)
recognize.v.08 recognize.v.01 (0.29) remind.v.01 (0.17) draw up.v.04 (0.14)
describe.v.02 describe.v.01 (0.17) kvetch.v.01 (0.29) mislead.v.02 (0.91)
give.v.19 give.v.03 (0.50) give.v.03 (0.50) give.v.01 (0.13)
balloon.v.02 balloon.v.02 (1.00) (0.00) bathe.v.01 (0.21)
dress.v.10 dress.v.01 (0.29) overcook.v.01 (0.26) repair.v.01 (0.25)
ace.v.03 ace.v.02 (0.29) improve.v.01 (0.18) dig.v.01 (0.20)
poach.v.02 poach.v.01 (0.18) catch.v.04 (0.18) pour.v.01 (0.18)
hawk.v.02 hawk.v.01 (0.44) sign.v.05 (0.29) meow.v.01 (0.19)
shuffle.v.02 shuffle.v.01 (0.20) braid.v.03 (0.17) toss.v.03 (0.22)
bust.v.02 bust.v.01 (0.33) push.v.01 (0.46) block.v.01 (0.44)
check.v.19 check.v.01 (0.19) recognize.v.04 (0.30) draw up.v.04 (0.30)
plug.v.04 plug.v.05 (0.25) bewitch.v.01 (0.33) search.v.01 (0.35)
ring.v.06 ring.v.01 (0.13) wave.v.01 (0.18) write.v.07 (0.42)
bark.v.03 bark.v.04 (0.17) (0.00) decapitate.v.01 (0.59)
refresh.v.02 refresh.v.01 (0.40) leak.v.04 (0.26) relax.v.01 (0.18)
take.v.27 take.v.09 (0.45) take.v.09 (0.45) run.v.01 (0.78)
draw.v.07 draw.v.06 (0.48) draw.v.06 (0.48) draw.v.13 (0.92)
order.v.05 order.v.02 (0.71) order.v.02 (0.71) dial.v.02 (0.56)
cram.v.03 cram.v.02 (0.15) demolish.v.03 (0.62) call.v.05 (0.12)
cram.v.02 cram.v.01 (0.20) tear.v.01 (0.83) slice.v.03 (0.80)
challenge.v.02 challenge.v.01 (0.15) pick up.v.02 (0.36) elect.v.01 (0.47)
moderate.v.03 moderate.v.03 (1.00) clear.v.24 (0.46) grow.v.02 (0.17)
book.v.03 book.v.02 (0.14) marry.v.01 (0.55) allow.v.04 (0.14)
solicit.v.03 solicit.v.02 (0.25) spy.v.02 (0.40) sentence.v.01 (0.46)
hobble.v.03 hobble.v.01 (0.25) brush.v.01 (0.11) trap.v.04 (0.16)
wax.v.03 wax.v.01 (0.40) shine.v.02 (0.19) wake up.v.02 (0.76)
breach.v.02 breach.v.01 (0.22) leave.v.05 (0.18) execute.v.03 (0.67)
swan.v.03 swan.v.01 (0.25) send.v.01 (0.70) swim.v.01 (0.45)
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Table F.3
Instances of the challenge set with modifiers with out-of-vocabulary concepts.

Gold LPS WID TAX

calm.a.02 calm.a.01 (0.16) (0.00) (0.00)
rare.a.03 rare.a.01 (0.42) capable.a.05 (0.42) large.a.01 (0.67)
firmly.r.02 firmly.r.02 (1.00) all of a sudden.r.01 (0.33) comfortably.r.02 (0.47)
sturdy.a.03 sturdy.a.02 (0.50) dirty.a.01 (0.47) dirty.a.01 (0.47)
short.a.02 short.a.02 (1.00) short.a.02 (1.00) short.a.02 (1.00)
muscular.a.02 muscular.a.01 (0.00) (0.00) fat.a.01 (0.50)
hard.a.03 (0.00) (0.00) jacket.n.01 (0.00)
grand.a.08 grand.a.01 (0.50) huge.a.01 (0.17) huge.a.01 (0.17)
extended.a.03 extended.a.01 (0.50) long.a.02 (0.93) long.a.01 (0.38)
gently.r.02 gently.r.01 (0.32) in public.r.01 (0.47) (0.50)
dry.a.02 dry.a.01 (0.38) surprised.a.01 (0.33) weak.a.01 (0.40)
broken.a.07 broken.a.03 (0.50) international.a.01 (0.44) right.a.02 (0.53)
special.a.04 special.a.01 (0.00) (0.00) bad.a.01 (0.18)
vicious.a.02 vicious.a.02 (1.00) fishy.a.02 (0.43) suspicious.a.01 (0.47)
rugged.a.03 rugged.a.01 (0.59) dirty.a.01 (0.42) upper.a.01 (0.16)
rather.r.04 rather.r.02 (0.86) rather.r.04 (1.00) rather.r.04 (1.00)
sleazy.a.02 sleazy.a.01 (0.50) overweight.a.01 (0.53) greasy.a.02 (0.42)
immature.a.05 immature.a.01 (0.50) tense.a.01 (0.20) impenetrable.a.01 (0.57)
plumy.a.03 (0.00) (0.00) (0.00)
fairly.r.03 fairly.r.02 (0.50) quickly.r.02 (0.50) seriously.r.01 (0.50)
unfledged.a.02 unfledged.a.01 (0.50) nuts.a.01 (0.17) wounded.a.01 (0.22)
furious.a.02 furious.a.02 (1.00) angry.a.01 (0.96) scared.a.01 (0.45)
uncontrollable.a.03 uncontrollable.a.01 (0.50) dirty.a.01 (0.27) unemployed.a.01 (0.52)
smart.a.05 smart.a.01 (0.35) long.a.01 (0.62) slow.a.03 (0.33)
horny.a.02 horny.a.01 (0.50) wild.a.02 (0.17) ridiculous.a.02 (0.17)
kafkaesque.a.02 (0.00) (0.00) armed.a.01 (0.20)
vivid.a.03 vivid.a.02 (0.50) tired of.a.01 (0.20) excruciating.a.01 (0.42)
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Appendix G. Hierarchy Reflection Score

Algorithm 1 shows the calculation of Hierarchy Reflection Score (HRS-all). To be more
detailed, in our four specificity levels, for the inequalities d(0, 1) < d(0, 2), d(0, 1) <
d(0, 3), d(0, 2) < d(0, 3), d(1, 2) < d(0, 2), d(1, 2) < d(1, 3), d(1, 3) < d(2, 3), d(2, 3) < d(0, 3),
HRS is 1

7 if one of them is satisfied; HRS is 2
7 if two of them is satisfied;. . .; HRS is 7

7 if all
of them are satisfied.

Algorithm 1 Calculate Score for n Embeddings

Require: Embeddings emb0, emb1, . . . , embn−1
1: score← 0
2: totalComparisons← 0
3: d(p, q)← 1− cos(embp, embq)
4: for i← 0 to n− 1 do
5: for j← 0 to n− 1 do
6: if i 6= j then
7: for k← 0 to n− 1 do
8: if k 6= i and k 6= j then
9: totalComparisons← totalComparisons + 1

10: if d(i, j) > d(k, j) then
11: score← score + 1
12: end if
13: end if
14: end for
15: end if
16: end for
17: end for
18: return score/totalComparisons
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