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Abstract

Modern general-purpose speech recognition
systems are more robust in languages with
high resources. However, achieving state-
of-the-art accuracy for low-resource lan-
guages is still challenging. To deal with
this challenge, one of the popular prac-
tice is fine-tuning the pre-trained model
on low-resource settings. Nevertheless, a
pre-trained or fine-tuned model fails to cap-
ture the complex character and word con-
stituency in the Devanagari script transcrip-
tion. We proposed a complementary loss
function designed to force the model to
learn the character constituency of Devana-
gari script.

Our complementary loss function, called
Rule-Based Character Constituency Loss
(RBCCL), penalizes incorrect transcrip-
tions and updates the overall loss during
the model training phase. This loss func-
tion can also be combined with Connection-
ist Temporal Classification (CTC) loss or
cross-entropy loss which are widely used in
ASR training. Our experiment shows that
combining the existing cross-entropy loss
with a new complementary loss (RBCCL)
improves the Word Error Rate (WER), re-
ducing it from 47. 1% to 23. 41% which is
a very promising result.

1 Introduction

Automatic Speech Recognition (ASR) is a sub-
set of speech technology that uses machine
learning and neural networks to transcribe au-
dio data into its corresponding written text.
Machine learning-based ASR systems can be
trained using different methods such as super-
vised, semi-supervised, or unsupervised tech-
niques. In supervised approach the spoken
audio and its text transcription must match
exactly for the system to learn efficiently. This
requires a large amount of carefully selected
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data, with the precise alignment done manu-
ally. Ensuring that each spoken words matches
accurately with the written text. This necessi-
tates a considerable expenditure of time and
effort in human alignment.

The initial idea for implementing unsuper-
vised ASR was introduced by Liu et al. (2018).
Since then, unsupervised methods have be-
come quite popular. A recent study by Baevski
et al. (2022) showed that unsupervised models
now perform competitive to supervised mod-
els. This progress is mainly due to advances in
deep learning and better access to computing
resources, which have made large pre-trained
speech models more widely available. An ex-
ample of this progress is the recently released
Wav2Vec2 — BERT2.0 (Chung et al., 2023) is
trained on 4.5M hours of audio data covering
more than 143 languages. In line with this, the
whisper-large models (Radford et al., 2022) are
trained on 680, 000 hours of labeled audio data
and comprise 1550M parameters. These mod-
els capture complicated audio and linguistic
patterns properly, allowing them to generalize
across languages, accents, and sounds.

Training these models we need a extensive
amount of memory, storage, and computing
resources. Because of these high resource de-
mands, full parameter fine-tuning can be time-
consuming and resource-intensive. Parameter-
Efficient Fine-Tuning (PEFT) (Mangrulkar
et al., 2022) is ideal for resource-constrained
contexts and still yields comparable perfor-
mance. PEFT-based approach such as Low-
Rank Adaptation (LoRA) (Hu et al., 2022)
technique significantly reduces the number of
trainable parameters, making it computation-
ally efficient and reducing the risk of over-
fitting, particularly in low-resource settings.
For example, in the GPT — 3175B model,
LoRA reduced the trainable parameters by
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10,000 times and reduce the GPU requirements
by 3 times (Hu et al., 2022).

Connectionist Temporal Classifica-
tion (CTC) and cross-entropy loss are
popular choices for training ASR models.
CTC aligns input and target sequences
without predefined alignment, but struggles
with the complexities of the Devanagari
script, where ligatures and half-letters require
specific handling. Cross-entropy loss, used for
frame-wise classification, ensures alignment
but may miss linguistic nuances, especially
in scripts like Devanagari where characters
merge visually. Also, in low-resource settings,
fine-tuning can often lead to overfitting,
which may cause the model to overlook
language-specific patterns.

To address this issue, we propose a technique
that incorporates linguistic rules defined (de-
tails in Section 3) into the training process.
This is achieved by implementing a unique loss
function that utilizes the linguistic rules of a
particular language. Specifically, our proposed
loss function penalizes loss (cross-entropy loss
in our case) based on the word construction
rules of the Devanagari script (Nepali). This
enforces the model to learn the linguistic rules,
mitigates overfitting, and thereby improves
the prediction accuracy. We conducted exper-
iments using both full-parameter and PEFT-
based fine-tuning approaches.

The organization of the remainder of the
paper is as follows: In Section 2, the related
works are explained, followed by the method-
ology in Section 3. Section 4 presents the
experiments conducted. The discussion and
interpretation of the results are presented in
Section 5. Finally, the paper concludes with
Section 6, where a summary of the findings,
future plans, and potential extensions to the
work is explained.

2 Related Works

Pre-trained large speech models have revo-
lutionized speech-related downstream tasks,
such as ASR. We can use various types of
pre-trained models for the fine-tuning task.
We can effectively fine-tune multilingual, su-
pervised, semi-supervised, and unsupervised
models. Wav2Vec2-Conformer (Wang et al.,
2020), Whisper (Radford et al., 2022), MMS-
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1B (Pratap et al., 2023), HuBERT (Hsu et al.,
2021), Wav2Vec2-BERT 2.0 (Chung et al.,
2023), Wav2Vec2-Phoneme (Xu et al., 2022),
Wav2Vec2.0 (Baevski et al., 2020a; Baevski
et al., 2020b), Wav2Vec (Schneider et al., 2019)
are some examples of pre-trained speech mod-
els trained on massive amounts of multilingual
speech datasets. W hisper, for example, is a
powerful encoder-decoder model that can be
used for multilingual ASR. Wav2Vec and its
successors (Chung et al., 2023; Xu et al., 2022;
Wang et al., 2020) use contrastive learning to
learn robust speech representations. These pre-
trained models have significantly improved the
accuracy and robustness of ASR systems, mak-
ing them more accessible and useful in a variety
of applications. However, this is only true for
resourceful languages.

Various published research (Arunkumar
et al., 2022; Khare et al., 2021; Luo et al.,
2021; Singh et al., 2023; Zheng et al., 2023;
Ghimire et al., 2023a) show that the accuracy
of the ASR in low-resourced languages, includ-
ing Nepali, can be improved by fine-tuning pre-
trained models. This has been proven in work
proposed by Ghimire et al. (2023a) by decreas-
ing the Character Error Rate significantly. As
per these researches, the fine-tuning approach
requires less computing and also reduces the
model training time significantly compared to
full model training. However, due to the higher
number of parameters involved in the network,
the full parameter fine-tuning is still challeng-
ing.

The use of the Parameter-Efficient Fine-
Tuning (PEFT) approach, such as Low-Rank
Adaptation (LoRA) and its variants, is becom-
ing very common in fine-tuning of speech mod-
els. The effectiveness of the LoRA on Whisper
model is reported by various scholars (Liu et al.,
2024; Song et al., 2024).

The Nepali ASR is still in its early stages
of research and development. However, there
are some promising results as reported in var-
ious works (Ghimire et al., 2023a; Shrestha
et al., 2021; Regmi and Bal, 2021; Ghimire
et al., 2023b). Among them, the work reported
by Ghimire et al. (2023a) is the only work re-
lated to fine-tuning for building the Nepali ASR
system. The author proposes semi-supervised
fine-tuning of a pre-trained model using an
active learning approach. This research uses



the SLR54 (Kjartansson et al., 2018) dataset.
They obtained Character Error Rate (CER) of
6.77% by fine-tuning the Massively Multilin-
gual Speech (MMS-1B) model (Pratap et al.,
2023).

Dutta et al. (2018) has implemented three
complementary loss functions for the optical
character recognition task of Indic script while
training the model, but this is not explored
in the training of ASR model. The language-
specific rule-based ASR error correction mech-
anism is presented by Yang et al. (2022). This
work reported the use of rules in the decod-
ing phase. However, the use of the language-
specific loss function in ASR model training
and fine-tuning, which forces the model to learn
language-specific patterns, is not yet studied
for the Devanagari script.

Developing a customized loss function to
complement cross-entropy loss is essential when
dealing with sophisticated scripts like Devana-
gari, employed in languages like Nepali and
Hindi. Typically, cross-entropy loss penalizes
the inaccurate categorization of each character
separately, which may not adequately address
the complexities of scripts that include several
character combinations and contextual rela-
tionships.

An optimized loss function can incorporate
the linguistic feature of the Devanagari script,
including more efficient processing of conjuncts
and modifiers and enhanced management of
the sequence and context sensitivity necessary
for precise speech recognition. Adapting or
enhancing the cross-entropy loss by consider-
ing these aspects, the model can enhance its
resilience, reducing error rates while improving
its capacity to generalize from training data
to real-world scenarios. This overall purpose
serves as the primary motivation for our work.

3 Methodology

3.1 Fine-Tuning and
Parameter-Efficient Adaptation of
Pre-Trained Models

Fine-tuning a large, pre-trained model is criti-
cal for adapting it to the specific characteristics
of a new language dataset. Initially, we per-
form full-parameter fine-tuning to reintroduce
language-specific patterns into the model. Let
W represent the model weight matrix, with up-

dates AW derived as AW = «a x (=VLy),
where « is the learning rate and Ly the
loss function. The updated weights become
W' =W + AW. This stage is performed on a
representative subset, D;,troduce, Of the entire
data set D.

To achieve efficient adaptation with fewer
computational resources, we further apply
parameter-efficient fine-tuning, leveraging the
low intrinsic dimensionality of the model for
new tasks. Rather than updating the full
weight matrix, we approximate the weight up-
date AW by decomposing it into two smaller
matrices: AW = W4Wpg, where W4 € RAX"
and W € R"™B and r is a reduced dimension.
This approach, implemented through low-rank
adaptation (LoRA), keeps the original weights
(W) frozen, updating only the smaller matri-
ces W4 and Wp, thus forming a lightweight
adapter for the specific task. Figure 1 illus-
trates this LoRA fine-tuning architecture.

3.2 Error Analysis

Identification of the transcription errors of the
existing model is very important while con-
ducting the fine tuning of larger models. Both
before and after we fine-tuned the parameters
using the default loss function (Cross Entropy
Loss in the case of Whisper), we observed a
similar pattern of errors. A few samples of
transcription along with an error description
are presented in Table 1.

Based on our inspection, we identified that
the model was unable to predict the proper
order of the vowel markers (=Th vs. @ =T).
Likewise, the model sometimes fails to identify
the similar sounding consonants (T vs 9 vs ¥
OR @ vs ). Another issue arises when dealing
with complex characters. In Devanagari script,
a complex character typically consists of multi-
ple consonants or vowels, along with markers
or special characters. For example, & is a com-
bination of @ + :: + §. Since all three characters
are valid tokens in the Whisper model, the way
cross-entropy loss cannot well represent the
scenarios when the model predicts only two
tokens @ and :: instead of three tokens o,
and §.

This analysis leads us to the conclusion that
handling the character complexity, positional
awareness of the markers and special symbols,
and properly choosing the similar sounding
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Figure 1: LoRA fine tuning of base model

letter causes the higher Character Error Rate
(CER) and Word Error Rate (WER) in the
Whisper models. We can resolve this by forcing
the model to learn those patterns during fine-
tuning. We designed a custom loss function
based on the rules that detect the transcription
error and penalize the cross-entropy loss.

3.3 RBCCL: Rule-Based Character
Constituency Loss

Character constituency in the Devanagari
script refers to the organizational arrangement
of individual vowels, consonants, and other
characters to create coherent units such as syl-
lables, words, or phrases. The Devanagari lan-
guage employs letters that represent a conso-
nant, a vowel, or a mixture of both. Letters
also combine with diacritical signs (matras) to
denote complete syllables. The constituency is
essential for recognizing the linguistic arrange-
ment of words, since the configuration of letters
determines both the sound and the meaning.
These types of complexities are not captured by
widely used loss functions such as CTC and/or
cross-entropy loss. This motivates us to ex-
plore the complementary loss function, which
forces the model to learn patterns guided by
the rules and proves useful for the Devanagari
script. We named our method RBCCL which
statnds Rule-Based Character Constituency
Loss.

3.3.1 Character Constituency Rules

It is very important to document the generic
and script-specific rules. For Devanagari text,
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we considered following character constituency
rules as listed in the list below.

e Rule 1: The vowel markers should appear
only after consonants

¢ Rule 2: The vowel markers should not be
added to vowel characters

e Rule 3: Similar sounding characters should
be correct

The instances of those rules present in the word
will be used while computing RBCCL. Each
of these rules (Rules 1, 2, and 3) forms the
basis for calculating the counts C,,, C,, C.,
and C,. We assess the labels and predicted
text by evaluating its adherence to these rules,
allowing us to measure character correctness
according to the following:

Cin: Represents the count of instances in
the ground truth (label) where Rules 1, 2, and
3 are correctly applied. This is obtained by
verifying compliance with each rule in the true
labels and accumulating the instances.

C,: Counts the instances in the predicted
text where all rules should apply. This indi-
cates the expected adherence to each rule based
on the prediction output.

C.: Measures errors in the predicted text by
calculating the instances where rules were not
followed, even though they should have been
based on the ground truth. This difference
identifies specific rule violations.

Cy: Counts additional instances where rules
were applied in the predicted text, despite no



True Label Transcription

Observation

TIShIHT I TGTh!  aT3eh T IRe Tgdh

3 =3, F 3, 3 are similar sounding vowel
and its variations combined with matras.

- I = =T, but =T should be associated with
A forming AT as oIl

- 9T and g sounds similar

HTHYUTCTS 35! SIEEECIHCE]

- ¥ and ¥ sound similar

- & and & are different sound but some speaker
with different mother tongue generate similar
sounding speech

T fordTgent & gy fAeTgept &

- & and 9 sound similar. In most case they
are unable to recognized by the model

- There are some community who unable to
produce dT as they do not have d syllable in
their mother tongue. So they sound like €1

g &FCIg AT g & dXelTs ST

- & is complex character made up of 3 charac-
ters (o + =z + @). While recognizing only two
characters @ + :: are capture which leads to
half letter <

- A is also a complex character made from d +
=+ X but dis captured

Table 1: Analysis of transcription of full parameter fine tuned Whisper — Large — V2 model with Cross

Entropy Loss (Lcog).

corresponding rule requirement in the ground
truth.

3.3.2 Error Rate (LgRr)

The error rate provides the proportion of error
out of all predictions.

ErrorRate = Ce (1)
Ch

The error rate we calculated in Equation
(1) can be used for the loss function. We
should perform some mathematical operations
to smooth the value, prevent extreme gradi-
ents, and avoid negative values and logs of
zero. Following are the formulae for computing
LEr:

Ce
Lgr = 109(0* +1) (2)

Equation (2) can be further expanded for
batch processing and reduced to mean loss of
batch as shown in Equation (3).

EiB”wK%§%%4-D
| B

Where, |B| is number of batch and B; repre-
sents the individual label and predicted labels
used to compute necessary counts.

Lgr = (3)

3.3.3 Coverage Penalty (Lcp)

Now we have to penalize the loss function for
any imbalance between the number of ground
truth instances and the number of predictions.
We can accomplish this by applying the cover-
age penalty:

[Cm = Cal

W

This penalizes the difference between pre-
dictions and ground truth, normalized by the
number of ground truth instances. Using the
same convention as Equation 3, the loss value
based on the coverage penalty will be com-
puted, as in Equation 5.

CoveragePenalty =

o g B 1)
CP —
Bl

()

3.3.4 Penalizing for Additional Rule
(Lar)

We can penalize any additional or missing rules
explicitly by defining an additional loss term
based on the absolute number of excess or miss-
ing rules. This loss can be calculated, as in
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Equation (7).

Additional Rule Penalty = % (6)
1P Log( e + 1
Lan= Cnlt )

3.3.5 Combining all loss

All loss values are combined as a weighted sum
to obtain the total RBCCL.

Lrpcer = 1 X LEr + B2 x Lop + B3 X Lar

We can adjust the individual value of 51, B2,
B3 depending on whether we want to prioritize
error rate, coverage penalty, or additional rule.

3.4 Combining Cross Entropy Loss
with RBCCL

We can combine the cross-entropy loss with
newly computed loss values. For computational
efficiency, we can combine these two losses us-
ing a weighted sum.

L=axLcg+ B X LreocL

Where,
L is a total loss value
Lcg is a Cross Entropy Loss

Lrccor is a Rule-BasedCharacter Con-
stituency Loss computed as of Section 3.3

«a and ( are the weight which control the
emphasis on each part of the combined loss
computed.

For the sake of simplicity, and for easier pa-
rameter setting, we generalized the weight (pa-
rameters) as follows.

f=0-0a)

Br=pB2=03=p

Choosing the right values for « and 8 is
important. A higher value of o puts more em-
phasis on obtaining the correct classification
with the right probability, whereas a higher
value of the 8 directly penalizes the propor-
tion of incorrect predictions and the number
of prediction differences.
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4 Experimental Setup
4.1 Speech Corpus

We, the authors, are native Nepali speakers,
a language that uses the Devanagari script
for writing. So, we decided to use the Nepali
Speech Corpus (SLR54) (Kjartansson et al.,
2018) for our experiment, which is available
under the Open Speech Language Resources'.
This is the only publicly available speech cor-
pus and is suitable for ASR tasks. A small
subset of the SLR54 dataset is used for the
experiment. This closely resembles the very
low-resource setting and also allows for con-
ducting experiments in a limited computing
environment.

4.2 Selection of pre-trained model

The W hisper (Radford et al., 2022) model fam-
ily is used as the pre-trained speech model.
They have tiny, base, small, medium, and
large models ranging from 39M parameters to
1550M parameters. We used the multilingual
Large V2 model, which also includes the Nepali
language. The claimed WER of selected model
is 47.1% (Radford et al., 2022). However, a
thorough examination reveals that the tran-
scribed texts align rather with Hindi. This is
due to the fact that both languages, being writ-
ten in Devanagari script, utilize the same token.
To solve this issue, we decided to reintroduce
the language by full-parameter fine-tuning us-
ing 30 minutes of the labeled dataset. In this
experiment, we used the default loss function.

4.3 Choosing parameters and
Experimental setup

For this experiment, we used the Hugging Face
Transformer library? for training, fine-tuning,
data processing, etc.

We run each training for a total of 5 epochs.
All training parameters are summarized in Ta-
ble 2. These parameters are obtained from
hyperparameter tuning.

5 Result and Discussion

We performed various combinations of the ex-
periments that involve the full parameter fine-
tuning and LoRA fine-tuning. All experiments

'[SLR54] - https://www.openslr.org/54/
?Hugging Face: https://huggingface.co/docs/trans-
former



Details Parameters

Full parameter
fine tuning

- Precision:float16(fp16)

- 8-bit Adam optimizer
(adamw__bnb_ 8bit)

- learning rate: le — 5

- batch size: 4

PEFT (LoRA) Pa-

rameters

r:32
alpha : 64,
dropout : 10%

Loss Weight Pa-
rameters

a: 0.7
-3:0.3

Table 2: Model training parameters for both full-
parameter and LoRA fine-tuning

we performed and used for comparison pur-
poses, with their descriptions and results in
terms of WER and CER, are listed in Table 3.

The Whisper — Large — V2 (Radford et al.,
2022) is a base pre-trained model. Its WER
for Nepali is reported as 47.1%. When inspect-
ing the output, we found that the transcrip-
tion of the model more closely resembles the
Hindi text. To solve this issue, we reintroduced
the Nepali speech by full-parameter fine-tuning
the model using a 30-minute labeled dataset.
This fine-tuning itself significantly improved
the model, resulting in a WER of 36.2%. All
other subsequent experiments are now based
on this newly fine-tuned model, which we call
the fine-tuned base model (F'Tpgse)-

The performance of the fine-tuned model af-
ter incorporating the Cross-Entropy loss(Log)
and RBCCL(Lgrpccr) indivisually did not
show substantial improvement compared to
Flyuse. Specifically, Lrpcer, although de-
signed to enhance the robustness of the model,
achieved a WER of 34.2%, which represents
only a marginal improvement over baseline
FTyuse with a WER of 36.2%. This limited
improvement highlights the challenges of ef-
fectively using RBCCL in this context. In
contrast, using cross-entropy loss alone during
fine-tuning yielded a more notable improve-
ment, reducing the WER to 31.20%.

Among the various approaches explored,
the full parameter fine-tuning with the com-
bined loss function(£) achieved the best per-
formance, with a WER of 23.41% and a CER
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of 5.37%. This represents a significant im-
provement of 23.69% relative to the pre-trained
Whisper—Large— V2 model and 12.79% relative
to FTpuse, showcasing the effectiveness of the
loss function (£) in leveraging complementary
loss functions for improved transcription accu-
racy.

Full-parameter fine-tuning requires substan-
tial computational resources and time invest-
ment. To streamline the process and achieve
a high performance model efficiently, we ex-
plore directly fine-tuning the pre-trained Whis-
per—Large— V2 model. This approach yielded
a WER of 25.15% and a CER of 6.51%. Al-
though this performance is slightly lower than
the best results achieved through further fine-
tuning (23.41% WER and 5.37% CER), it rep-
resents a significant improvement over the base-
line Whisper—Large— V2 model with a WER of
47.1%. This outcome demonstrates that skip-
ping the initial fine-tuning step with F'Tjqse
is a viable alternative to obtain a model with
competitive performance. Direct fine-tuning of
Whisper—Large— V2 offers a balance between
accuracy and efficiency, reducing the effort re-
quired to achieve substantial improvements in
both WER and CER. These results are par-
ticularly encouraging for scenarios where com-
putational resources or time are limited, high-
lighting the flexibility and adaptability of the
proposed fine-tuning strategies.

For LoRA-based fine-tuning, the combined
loss function (£) led to a WER of 31.50% and a
CER of 7.47%. Although this approach did not
outperform full parameter fine-tuning with L,
it demonstrated a clear advantage over cross-
entropy-based training alone. The results sug-
gest that incorporating £ into the LoRA fine-
tuning framework effectively balances model
complexity and performance, achieving compet-
itive results with reduced parameter updates.

The findings highlight the efficacy of care-
fully designed loss functions, especially when
combining complementing objectives, to sig-
nificantly improve model performance in low-
resource ASR tasks. The exceptional results
obtained using L-based training, particularly
in terms of full-parameter fine-tuning, high-
light its importance as an essential element for
improving ASR models in Nepali.



Experiment Description WER% CER%
W hisper — Large — V2 by (Radford et al., 2022) 47.1 X
Nepali ASR module full-parameter fine-tuned on mms-1b by (Ghimire X 6.77%
et al., 2023a)

FTyuse: full parameter fine-tuning to (re)introduce Nepali to 36.2 15.4
W hisper — Large — V2 with Log

FTg,: full parameter fine-tuning of F'T}qs model with Lop 31.2 7.47
FTg,poc,: full parameter fine-tuning of F'Tj,s. model with Lrpccor 34.2 14.2
FTp: full parameter fine-tuning of FTp,s. model with £ 23.41 5.37
FTy: full parameter fine-tuning of Whisper — Large — V2 model with 25.15 6.51
L

FT LoRA.,,: LoRA fine-tuning of FTy,s model with Log 32.60 8.01
FT_ LoRA,: LoRA fine-tuning of FTp,s. model with £ 31.50 7.47

Table 3: WER % of models produced during experiment

6 Conclusion

Low-resource fine-tuning of large language mod-
els is a prevalent and growing practice, partic-
ularly in the context of speech-related tasks.
Since Nepali is a low-resource language, the
fine-tuning task has received relatively less at-
tention. Our study focused on introducing the
language-specific loss function to regularize and
force the model to learn the language-specific
patterns. We proposed a loss function based on
the set of rules built on a basic mathematical
foundation. We named it Rule-Based Charac-
ter Constituency Loss (RBCCL).

Our strategy involves the initial (re)intro-
duction of the language into the larger model,
achieved through full-parameter tuning with
default training parameters. After forming
the base model, we apply our loss function
to complement the cross-entropy loss. We
experimented with both full-parameter fine-
tuning and adapter-based fine-tuning using
LoRA. The complemented loss function in both
cases compelled the model to learn features
that the default loss function failed to capture
effectively.

Although we observed significant improve-
ments in the implementation of the suggested
strategy, there is still plenty of room to enhance
the precision of the mode. Our study focused
on the Whisper model. We could expand the
study to include larger models and compare
the corresponding results in other languages
that use the Devanagari script.
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7 Limitations

Throughout the experiments, we only inves-
tigated the Whisper model. W hisper uses
cross-entropy loss. We demonstrate through a
set of experiments that our loss function nicely
complements cross-entropy loss. However, we
did not extensively explore the impact of this
new function on other loss functions, such as
the CTC loss. We have a plan to extend this
to tests on other loss functions as well.

Another limitation of this work is computing
resources. Due to a lack of the high computing
resources demanded by the larger speech model,
we were unable to use the full available dataset.
We believe that using a full dataset further
enhances accuracy. We focused on the Nepali
language, but there are many other languages
that use the Devanagari script. Therefore, we
can expand the work to include other languages
as well.

Note: All the datasets (test, train, and
validation) and the final models can be ac-
cessed through Information and Language
Processing Research Lab’s website (https://il-
prl.ku.edu.np).
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