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Abstract

This paper presents a detailed system descrip-
tion of our entry for the CHiPSAL 2025 shared
task, focusing on language detection, hate
speech identification, and target detection in
Devanagari script languages. We experimented
with a combination of large language mod-
els and their ensembles, including MuRIL, In-
dicBERT, and Gemma-2, and leveraged unique
techniques like focal loss to address challenges
in the natural understanding of Devanagari lan-
guages, such as multilingual processing and
class imbalance. Our approach achieved com-
petitive results across all tasks: F1 of 0.9980,
0.7652, and 0.6804 for Sub-tasks A, B, and C
respectively. This work provides insights into
the effectiveness of transformer models in tasks
with domain-specific and linguistic challenges,
as well as areas for potential improvement in
future iterations.

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing (NLP) yet South
Asian languages remain largely underrepresented
within these advancements despite being home
to over 700 languages, 25 major scripts, and ap-
proximately 1.97 billion people. Addressing these
gaps, this paper focuses on three critical NLP tasks
of CHiPSAL 2025 (Sarveswaran et al., 2025) in

* equal contribution

Devanagari-scripted languages: 5-way classifica-
tion of the text based on the language of the text
(Sub-task A), Binary classification for detecting
hate speech in the text (Sub-task B), and 3-way
classification for detecting target of hate speech
in a text (Sub-task C) (Thapa et al., 2025). Our
system leverages the multilingual capabilities of
open-source LLMs namely IndicBERT V2 (Dodda-
paneni et al., 2023), MuRIL (Khanuja et al., 2021),
and Gemma-2 (GemmaTeam, 2024) and their en-
sembles for natural language understanding of De-
vanagari script languages. Our work contributes
to advancing language technology in South Asia,
aiming for inclusivity and deeper understanding
across diverse linguistic landscapes.

2 Dataset & Task

The goal of Sub-task A is to determine the lan-
guage of the given Devanagari script among the 5
languages to address the critical need for accurate
multilingual identification. The dataset consists of
text in Nepali (Thapa et al., 2023; Rauniyar et al.,
2023), Marathi (Kulkarni et al., 2021), Sanskrit (Ar-
alikatte et al., 2021), Bhojpuri (Ojha, 2019), and
Hindi (Jafri et al., 2024, 2023). For Sub-task B, the
goal is to determine if the text contains hate speech
or not. The dataset consists of social media text
(tweets) in Hindi and Nepali languages. Sub-task
C follows Sub-task B, where the goal is to identify
the targets of hate speech among "individual", "or-



224

ganization", or "community". Similar to Sub-task
B, the dataset for Sub-task C is in Hindi and Nepali
languages. The distribution of labels for the three
datasets can be seen in table 1, 2, and 3 respectively.

Class Train Dev Test
Nepali 12544 2688 2688
Marathi 11034 2364 2365
Sanskrit 10996 2356 2356
Bhojpuri 10184 2182 2183
Hindi 7664 1643 1642
Total 52422 11233 11234

Table 1: Class distribution for Sub-task A

3 Methodology

The common approach to all three Sub-tasks was to
fine-tune a multitude of multilingual models in the
train set and use the dev set to select the best few
models during the Evaluation phase. The selected
best models were then fine-tuned again on both the
train and dev sets and their ensemble, by major-
ity voting, was used for the final prediction of the
test set during the Testing phase as shown in Fig-
ure 1. The models fine-tuned under this approach
include decoder-only models such as Gemma-2
9B, Llama 3.1 8B (LlamaTeam, 2024), and Mistral
Nemo Base 12B (MistralAI, 2024), and BERT (De-
vlin et al., 2019) based models such as IndicBERT
V2, MuRIL, XLM Roberta (Conneau et al., 2019),
mDistilBERT (Sanh et al., 2019) and mBERT (De-
vlin et al., 2018). For decoder-only models, each
Sub-task was formulated as a text-generation task
where each model was asked to generate only one
option among the given choices. For BERT-based
models, each Sub-task was formulated as a multi-
label classification task by adding a classification
head to the model.
For Sub-task A, each decoder-only models were
trained for 1 epoch with a learning rate of 2e-4. The
BERT-based models were trained for 5 epochs with
a learning rate of 4e-5 with weighted cross-entropy
loss. For Sub-task B, decoder-only models were
trained for 2-4 epochs with a learning rate of 2e-4.
The BERT-based models were trained for 5 epochs
with a learning rate of 4e-5.
To handle the class imbalance in sub-task B, focal
loss (Lin et al., 2018) was used for BERT-based
models. Focal loss modifies cross-entropy by re-
ducing the relative loss for well-classified exam-

Class Train Dev Test
Non-hate 16805 3602 3601
Hate 2214 474 475
Total 19019 4076 4076

Table 2: Class distribution for Sub-task B

Class Train Dev Test
Individual 1074 230 230
Organization 856 183 184
Community 284 61 61
Total 2214 474 475

Table 3: Class distribution for Sub-task C

ples, focusing more on hard, misclassified exam-
ples. The focal loss is given by formula 1:

Lfocal = −αt(1− pt)
γ log(pt) (1)

Where, αt is the balancing factor for class t, pt is
the model’s estimated probability for the correct
class, and γ is the focusing parameter that adjusts
the rate at which easy examples are down-weighted.
The hyperparameters αt and γ were determined us-
ing grid search as 0.35 and 4.0 respectively.
For Sub-task C, only decoder models were used
during the Testing phase as BERT-based models
massively underperformed in limited tests. An
additional Gemma-2 27B model was fine-tuned
for Sub-task B and C using Odds Ratio Prefer-
ence Optimization (ORPO) (Hong et al., 2024) for
better alignment. All the fine-tuning of decoder-
only models was carried out using Unsloth with
Low-Rank Adaptation of Large Language Models
(LoRA) (Hu et al., 2021). The rank (r) and alpha
(α) values used were 16 for both.

Model F1 Recall Precision
mBERT 0.9962 0.9962 0.9962
mDistilBERT 0.9955 0.9957 0.9954
XLM Roberta 0.9965 0.9966 0.9964
MuRIL 0.9978 0.9978 0.9977
IndicBERT V2 0.9978 0.9978 0.9977
Llama 3.1 8B 0.9957 0.9957 0.9958
Gemma-2 9B 0.9965 0.9965 0.9965
Mistral Nemo 12B 0.9962 0.9962 0.9961

Table 4: Performance metrics for Sub-task A on dev set
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Figure 1: System design workflow. The development set is initially used to select the best-performing models,
which are then retrained on the combined train and development set. Selected models are ensembled to generate
final predictions on the test set.

Model Description F1
MuRIL Fine-tuned on train+dev set 0.9968
IndicBERT V2 Fine-tuned on train+dev set 0.9977
Gemma-2 9B Fine-tuned on train+dev set 0.9973

Ensemble-1
MuRIL’s prediction as fallback
in case of no majority

0.9979

Ensemble-2
IndicBERT V2’s prediction as
fallback in case of no majority

0.9980

Ensemble-3
Gemma-2 9B’s prediction as
fallback in case of no majority

0.9979

Table 5: Performance metrics for Sub-task A on test set

Model F1 Recall Precision
mBERT 0.7142 0.7152 0.7133
mDistilBERT 0.6286 0.6093 0.6668
XLM Roberta 0.7182 0.7367 0.7037
MuRIL 0.6773 0.7741 0.6530
IndicBERT V2 0.7298 0.7215 0.7392
Gemma-2 9B 0.7094 0.6677 0.8051
Gemma-2 9B (Few-shot) 0.7412 0.7019 0.7929

Table 6: Performance metrics for Sub-task B on dev set

Model F1 Recall Precision
IndicBERT V2 0.7582 0.7732 0.7455
Gemma-2 9B (Few-shot) 0.7588 0.7360 0.7895
Gemma-2 27B Orpo 0.7494 0.7261 0.7814
Ensemble 0.7652 0.7441 0.7925

Table 7: Performance metrics for Sub-task B on test set

Model F1 Recall Precision
mDistilBERT 0.4173 0.4296 0.4560
mBERT 0.4398 0.4567 0.4926
XLM Roberta 0.5455 0.5765 0.5528
IndicBERT V2 0.4639 0.4648 0.4643
Gemma-2 9B 0.6937 0.6691 0.7520

Table 8: Performance metrics for Sub-task C on dev set

4 Results and Discussion

4.1 Evaluation Phase

During the Evaluation phase, various models were
assessed across Sub-tasks A, B, and C using the
dev set to identify the top-performing models for
each task. For Sub-task A (Table 4), the BERT-
based models and decoder-only models, both deliv-
ered strong performances, with IndicBERT V2 and
MuRIL emerging as the best models, each achiev-
ing an F1 score of 0.9978. They also had high
recall and precision, indicating their robustness
in effectively balancing sensitivity and specificity
in task A classification. mBERT, XLM-Roberta,
and larger generative models like Gemma-2 and
Mistral Nemo also scored close to the top con-
tenders, demonstrating that BERT-based and re-
cent LLMs both possess considerable ability in text
classification. For Sub-task B (Table 6), models’
performance varied more significantly, reflecting
the increased complexity compared to Sub-task A.
Among the evaluated models, fine-tuned Gemma-2
9B with few-shot prompting yielded an F1 score
of 0.7412. This shows Gemma-2’s effective adap-
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Model Description F1 Recall Precision

Gemma-2 9B
Fine-tuned on train+dev set with learning
rate 2e-4 and batch size of 4 for 2 epochs

0.6213 0.6084 0.6734

Gemma-2 9B
Fine-tuned on train+dev set with learning
rate 2e-4 and batch size of 2 for 2 epochs

0.6503 0.6371 0.6982

Gemma-2 27B
Fine-tuned on train+dev set using ORPO
with a batch size of 8 for 1 epoch

0.6804 0.6669 0.7183

Table 9: Performance metrics for Sub-task C on test set

tation in low-resource scenarios even with limited
examples. IndicBERT V2 and XLM-Roberta also
provided competitive results, with IndicBERT V2
achieving an F1 score of 0.7298, reinforcing its
efficacy across both tasks. This marked Gemma-2
9B and IndicBERT V2 as the top choices to be
further evaluated for Sub-task B during the Test-
ing phase. In Sub-task C (Table 8), Gemma-2 9B
demonstrated superior results with an F1 score of
0.6937. This outcome was significantly better than
all other models, indicating Gemma-2’s robust per-
formance for tasks with limited examples. XLM
Roberta achieved the second-highest F1 score of
0.5455. The performance of other models shows
the complexity of the task as except for Gemma-2,
other models couldn’t cross the F1 score of 0.6.

4.2 Testing Phase

For the testing phase, we retrained the top-selected
models from the Evaluation phase by incorporat-
ing both the train and dev sets to create a more
generalized model for final testing. For Sub-task
A (Table 5), ensemble techniques were applied to
enhance accuracy further, leading to notable im-
provements in performance. Three ensembles were
constructed, each with a different fallback model
for cases without a majority prediction. Among
these, Ensemble-2, which defaulted to IndicBERT
V2’s predictions when no majority was reached,
yielded the highest F1 score of 0.9980. This en-
semble strategy was instrumental in refining clas-
sification outcomes by leveraging the strengths of
multiple models while relying on IndicBERT V2’s
consistency as a fallback. As a result, Sub-task
A saw an optimal performance boost, indicating
the success of ensembling techniques in improv-
ing classification tasks with high base accuracy.
For Sub-task B (Table 7), we employed a similar
ensemble approach to maximize prediction perfor-
mance. Ensemble results demonstrated improved
robustness and balance across the metrics, culmi-

nating in an F1 score of 0.7652, with strong recall
(0.7441) and precision (0.7925). For the ensemble,
we employed an additional Gemma-2 27B trained
using ORPO with the two models selected dur-
ing the Evaluation phase. The overall gains from
the ensemble approach for this task underscore
its potential to improve tasks with more nuanced,
challenging data patterns. In Sub-task C (Table 9),
instead of using ensembling, we selected Gemma-2
27B ORPO as the optimal model for its strong per-
formance during testing. This model achieved an
F1 score of 0.6804, with balanced recall (0.6669)
and precision (0.7183), showcasing its capability
to handle more granular classification without the
need for ensemble interventions. The decision to
forego ensembling was based on the observation
that Gemma-2 27B’s setup offered robust, reliable
performance on its own, suggesting that, for some
tasks, a single, finely-tuned model can sometimes
match or exceed ensemble outcomes.

5 Conclusion

Our results demonstrate the importance of leverag-
ing tailored approaches to tackle complex natural
language understanding tasks across multiple lan-
guages in Devanagari script. By combining the
multilingual strengths of the BERT-based models,
focal loss for class sensitivity, and the generative
power of Gemma-2, we achieved notable perfor-
mance improvements across the subtasks. These
findings highlight the value of adapting model ar-
chitectures and training strategies to the nuances
of each task, especially in handling multilingual
contexts and imbalanced classes. This work lays a
foundation for more refined, scalable hate speech
detection systems for South Asian languages that
can respond effectively to diverse and complex on-
line discourse.
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Limitations

The datasets used for training and evaluation in
hate speech and target detection are relatively small,
which may impact the generalizability of the mod-
els in real-world applications. The challenges such
as unbalanced datasets, difficulties in data collec-
tion, and issues with code-mixed languages, as
noted in prior research (Parihar et al., 2021), re-
main significant hurdles in the accurate detection
of hate speech. Although techniques like focal loss
and Odds Ratio Preference Optimization (ORPO)
were applied to improve performance, the models
still struggle with fine-grained distinctions in am-
biguous hate speech contexts. Additionally, the
decoder-only models were trained in 4-bit preci-
sion due to computational limitations, and they
may perform better in full-precision mode. While
these models performed well in most tasks, they
are computationally intensive, requiring substan-
tial resources for both fine-tuning and inference.
On the other hand, BERT-based models performed
well in Sub-tasks A and B, and with larger datasets,
they may offer better performance for Sub-task C
at a lower computational cost than decoder-only
models.

Ethical Considerations

When developing models for detecting hate speech
and its targets, it’s important to address several
ethical concerns. A major issue is the potential for
bias in both the data and the model’s outputs. Since
the datasets used in the development are limited
and might not fully represent all social contexts,
there’s a risk that the models could unintentionally
reinforce biases or target specific groups unfairly.
These models might also be used in ways that could
cause harm, such as censoring or flagging content
incorrectly without human oversight. Given the
complex nuances of hate speech, it’s crucial to
avoid over-censorship, which may otherwise lead
to the unjust targeting of certain communities or
the stifling of legitimate free speech.
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A Appendix

A.1 Confusion Matrix

We provide the confusion matrix for all the models
we tested below:

A.1.1 Sub-task A: Language Detection

Evaluation Phase

Figure 2: mBERT’s Confusion Matrix for Language
Detection

Figure 3: mDistilBERT’s Confusion Matrix for Lan-
guage Detection

Figure 4: XLM Roberta’s Confusion Matrix for Lan-
guage Detection
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Figure 5: MuRIL’s Confusion Matrix for Language
Detection

Figure 6: IndicBERT V2’s Confusion Matrix for Lan-
guage Detection

Figure 7: Llama 3.1 8B’s Confusion Matrix for Lan-
guage Detection

Figure 8: Gemma-2 9B’s Confusion Matrix for Lan-
guage Detection

Figure 9: Mistral Nemo’s Confusion Matrix for Lan-
guage Detection

Testing Phase

Figure 10: MuRIL’s Confusion Matrix for Language
Detection
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Figure 11: IndicBERT V2’s Confusion Matrix for Lan-
guage Detection

Figure 12: Gemma-2 9B’s Confusion Matrix for Lan-
guage Detection

Figure 13: Ensemble-1’s Confusion Matrix for Lan-
guage Detection

Figure 14: Ensemble-2’s Confusion Matrix for Lan-
guage Detection

Figure 15: Ensemble-3’s Confusion Matrix for Lan-
guage Detection

A.1.2 Sub-task B: Hate Speech Detection

Evaluation Phase

Figure 16: mBERT’s Confusion Matrix for Hate Speech
Detection
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Figure 17: mDistilBERT’s Confusion Matrix for Hate
Speech Detection

Figure 18: XLM Roberta’s Confusion Matrix for Hate
Speech Detection

Figure 19: IndicBERT V2’s Confusion Matrix for Hate
Speech Detection

Figure 20: Gemma-2 9B’s Confusion Matrix for Hate
Speech Detection

Figure 21: Gemma-2 9B (Few-shot)’s Confusion Matrix
for Hate Speech Detection

Testing Phase

Figure 22: IndicBERT V2’s Confusion Matrix for Hate
Speech Detection
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Figure 23: Gemma-2 9B (Few-shot)’s Confusion Matrix
for Hate Speech Detection

Figure 24: Gemma-2 27B ORPO’s Confusion Matrix
for Hate Speech Detection

Figure 25: Ensemble’s Confusion Matrix for Hate
Speech Detection

A.1.3 Sub-task C: Hate Speech Target
Detection

Evaluation Phase

Figure 26: mBERT’s Confusion Matrix for Hate Speech
Target Detection

Figure 27: mDistilBERT’s Confusion Matrix for Hate
Speech Target Detection

Figure 28: XLM Roberta’s Confusion Matrix for Hate
Speech Target Detection
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Figure 29: IndicBERT V2’s Confusion Matrix for Hate
Speech Target Detection

Figure 30: Gemma-2 9B’s Confusion Matrix for Hate
Speech Target Detection

Testing Phase

Figure 31: Gemma-2 9B Alpha’s Confusion Matrix for
Hate Speech Target Detection

Figure 32: Gemma-2 9B Beta’s Confusion Matrix for
Hate Speech Target Detection

Figure 33: Gemma-2 27B’s Confusion Matrix for Hate
Speech Target Detection

A.2 System Replication

We provide the details of hyperparameters used in
training for replicating the process in Table 10 and
11.

Hyperparameter Values
Max length of input sequence 64
Batch size 512
Num of workers 2
Num of epochs 5
Learning rate 4e-5
Learning rate scheduler linear
Focal loss Alpha 0.35
Focal loss Gamma 4.0

Table 10: Hyperparameters’ values for BERT-based
models
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Hyperparameter Value
Learning rate 2e-4
Learning rate scheduler linear
Weight decay 0.01
LoRA rank 16
LoRA alpha 16
LoRA dropout 0
Language Detection
Max length (tokens) 2048
Batch size 9
Gradient accumulation 3
Warmup steps 5
Num of epochs 1
Hate Speech Detection
Max length (tokens) 1024
Batch size 16
Gradient accumulation 1
Warmup steps 10
Num of epochs 2-4
Hate Speech Target Detection
Max length (tokens) 1024
Batch size 2-4
Gradient accumulation 1
Warmup steps 0
Num of epochs 2

Table 11: Hyperparameters’ values for decoder-only
models across tasks

Table 11 presents the hyperparameters for
decoder-only models across tasks, with core values,
such as learning rate, weight decay, and LoRA val-
ues shared across tasks. Task-specific parameters
like maximum token length, batch size, gradient
accumulation, warmup steps, and epochs were ex-
perimented with to meet the requirements of each
task. For hyperparameters not listed, default values
were used for each model.

A.3 Prompts
The prompts used for decoder-only models are pro-
vided below:

A.3.1 Task A: Language Detection

Task: You are an expert linguist specializing
in Devanagari script languages. Your task
is to identify the language of the given
text.

### Instruction:
Analyze the following Devanagari script text

and determine its language. Choose the
correct language code from these options:

0: Nepali
1: Marathi

2: Sanskrit
3: Bhojpuri
4: Hindi

### Input:
Text: {text}

### Response:
The language code for the given text is: {label}

A.3.2 Task B: Hate Speech Detection

Task: You are fluent in Nepali and Hindi
languages. Your task is to classify if the
given input text contains hate speech or
not.

### Instruction:
The goal of this subtask is to identify the

targets of hate speech in a given text.
Choose the correct category from these
options:

1: Hate
0: Non-Hate

### Examples:
Input: {example_text1}
Response: {example_text1_label}

Input: {example_text2}
Response: {example_text2_label}

Input: {example_text3}
Response: {example_text3_label}

Input: {example_text4}
Response: {example_text4_label}

Input: {example_text5}
Response: {example_text5_label}

### Input:
{text}

### Response:
{label}

A.3.3 Task C: Hate Speech Target Detection

You are an expert linguist specializing in
detecting hate speech targets in
Devanagari-script tweets. Your task is to
classify the target of hate speech.

### Instruction:
Analyze the given tweet in Devanagari script

and determine who the hate speech is
targeting.

Step 1: First, decide if the target is an
individual or a group.

Step 2 (if group): If it’s a group, further
classify it as either an organization or a
community.

Classify the final label according to these
categories:

0. Individual: A specific person or a small set
of identifiable individuals
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1. Organization: A formal entity, institution,
or company

2. Community: A broader group based on
ethnicity, religion, gender, or other
shared characteristics

### Input:
{}

### Response:
{}


	Introduction
	Dataset & Task
	Methodology
	Results and Discussion
	Evaluation Phase
	Testing Phase

	Conclusion
	Appendix
	Confusion Matrix
	Sub-task A: Language Detection
	Sub-task B: Hate Speech Detection
	Sub-task C: Hate Speech Target Detection

	System Replication
	Prompts
	Task A: Language Detection
	Task B: Hate Speech Detection
	Task C: Hate Speech Target Detection



