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Abstract

Continual learning has emerged as an impor-
tant research direction due to the infeasibility
of retraining large language models (LLMs)
from scratch in the event of new data availabil-
ity. Of great interest is the domain-adaptive
pre-training (DAPT) paradigm, which focuses
on continually training a pre-trained language
model to adapt it to a domain it wasn’t origi-
nally trained on. In this work, we evaluate the
feasibility of DAPT in a low-resource setting,
namely the Nepali language. We use synthetic
data to continue training Llama 3 8B to adapt
it to the Nepali language in a 4-bit QLoRA
setting. We evaluate the adapted model on its
performance, forgetting, and knowledge acqui-
sition. We compare the base model and the
final model on their Nepali generation abili-
ties, their performance on popular benchmarks,
and run case-studies to probe their linguistic
knowledge in Nepali. We see some unsurpris-
ing forgetting in the final model, but also sur-
prisingly find that increasing the number of
shots during evaluation yields better percent
increases in the final model (as high as 19.29%
increase) compared to the base model (4.98%),
suggesting latent retention. We also explore
layer—head self-attention heatmaps to estab-
lish dependency resolution abilities of the final
model in Nepali. All code will be available at
github.com/sharad461/DAPT-Nepali.

1 Introduction

Advancements in natural language processing
(NLP) have enabled large language models (LLMs)
to generate human-like text, follow instructions and
perform well on a wide range of complex under-
standing tasks (Brown et al., 2020; OpenAl, 2024;
Dubey et al., 2024). A big driver behind the contin-
ued success of LLMs is the fact that scaling LLMs
(increase in parameter count and dataset size) con-
tinues to provide decent returns on all performance
benchmarks (Kaplan et al., 2020). This scaling-up,

however, affects the accessibility and availability
of these models and comes with its myriad issues
(Bender et al., 2021). Very large language models
require huge amounts of resources, have a large
carbon footprint (Strubell et al., 2019; Patterson
et al., 2021), and training them is feasible only for
languages with large quantities of high-quality data
and reasonable access to compute. It is costly also
to perform inference on them.

Besides scaling, the other direction is generaliz-
ability of models with focus on optimal use of data.
Given how human text data is projected to run out
soon (Villalobos et al., 2024), methods like repeat-
ing data, using synthetic data, and using code data
are being explored with good returns (Muennighoff
et al., 2023; Shimabucoro et al., 2024; Aryabumi
et al., 2024). Many of these tools have been ex-
plored for research in low-resource languages.

Nepali is a low-resource language. (Arora et al.,
2022) classify Nepali among the "Scraping-By"
languages in South Asia. While the frontier LLMs
today can understand and generate Nepali (Ope-
nAl, 2024), they do not officially support it. One
major issue is tokenization: Nepali tokenization is
costly in models like GPT4. While NLP research
in South Asian languages has picked up recently,
many languages are still behind and, as a result,
low-resourced.

One possible way to ease the data-compute bind
for these low-resource languages (Nepali included)
is the use of continual learning (CL) for domain
adaptation on high-resource LLMs (SarvamAl,
2023; Gururangan et al., 2020). The idea behind
continual learning is to incrementally update an
LLM with availability of new data so that the old
knowledge isn’t forgotten and the new knowledge
can be properly assimilated into the model.

Domain adaptation with CL involves continued
training of an LLM so that the knowledge of the
base LLLM can be repurposed to another domain.
Since the knowledge of the base model can be
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reused, we do not need large amounts of world
knowledge data in the new domain (or language).
Also, because adaptation requires training only
a fraction of the total parameters in the original
model, the compute requirements are significantly
reduced.

In this work, we focus on domain adaptation
of the Llama 3 8B (Meta, 2024) model to the
Nepali language using synthetically generated data.
We continually train the Llama model, run experi-
ments to determine performance, catastrophic for-
getting, and linguistic knowledge acquisition of the
model after the domain adaptation. We compare
the adapted model against the original model on
several benchmarks. Additionally, we analyze the
attention heatmaps to gauge the knowledge of the
adapted model. The emphasis of this work is on
evaluating DAPT methods to adapt an LLM to a
low-resource scenario with only synthetic data.

The main contributions of this work are:

1. We develop and test out methodologies to per-
form domain-adaptive continual pretraining
on an open-weights model using only synthet-
ically generated data.

2. We evaluate and compare the performance of
the adapted model against the base model.

3. We interpret the linguistic knowledge of the
final model on the new task.

2 Related Work

Continual Learning. Continual learning is an im-
portant research direction because its goal is to
make it possible to train large models on new data
efficiently, often allowing lifelong learning LLMs.
This could take place in the form of adding new
information to it, teaching it a new subject, or adapt-
ing it to a different domain.

Domain-adaptive pretraining (DAPT) has been
known to provide performance gains in low-
resource settings (Gururangan et al., 2020; Cagatay
Yildiz et al., 2024). This has been extended to
multilingual domain-adaptive pretraining where a
single multilingual model is trained for a specific
domain, which outperforms general models on said
domain (Ker Jgrgensen et al., 2021).

Synthetic data has also been applied for good per-
formance gains in a continual pretraining domain-
adaptation strategy (Zhang et al., 2020).

However, a problem in continual learning is
catastrophic forgetting, which happens during full
finetuning probably due to retraining of weights or

because a model has reached knowledge saturation
and to learn any more information it forgets old
information (Cagatay Yildiz et al., 2024).
Continual learning has great potential in
unlocking areas in low-resource language research.

Synthetic data. Data augmentation using
synthetic methods is central to research in
low-resource languages. In NLP, some methods
for synthetic data generation are backtranslation
(Sennrich et al., 2016), paraphrasing, synonym
replacement, sentence-level replacement, random
insertion, etc. (Feng et al., 2021) and (Chen
et al., 2023) provide detailed studies on methods
available for data augmentation for NLP tasks.

Compared to real data, synthetic data has its
own set of advantages and disadvantages. While
synthetic data makes low-resource tasks accessible,
scalable, and overall cost-effective, it might not
always reflect realistic scenarios. There could often
be challenges with validating synthetic data and it
can magnify biases of the original model.

Organic data available for training purposes is
finite and (Villalobos et al., 2024) predict we will
run out of all publicly available text data as soon
as 2026. Guided synthetic data generation, which
will be an important part of future data acquisition
technique, is a research direction where data is
generated toward non-differentiable objectives
(Shimabucoro et al., 2024).

Low-rank adaptation. LoRA (Hu et al,
2021) and QLoRA (Dettmers et al., 2023) are
fine-tuning techniques that reduce the number
of trainable parameters in a model, making
training faster and memory-efficient. Instead of
updating all weights in a model, these methods
train low-rank matrices that capture task-specific
information, freezing the model itself. In addition
to the lower rank adaptation in LoRA, QLoRA
quantizes the model so that it requires even lesser
memory to train. The tradeoff in performance
between full finetuning and low-rank techniques
has been well-established (Biderman et al., 2024;
Xia et al., 2024), and more work is being done in
this space (Zhao et al., 2024; Lialin et al., 2023),
but in a resource-constrained scenario, QLoRA
makes training large models feasible.

Knowledge in attention heads. Many in-
terpretative studies have been applied to the
attention mechanism used in Transformer ar-
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chitectures. (Voita et al., 2019) investigate the
function of attention heads in the multi-head
self-attention in encoders and try to interpret how
they contribute to the performance of the entire
network. They also prune attention heads in an
ablation study. Similarly, to analyze how well the
attention mechanism models a language and its
syntax, (Vig and Belinkov, 2019) evaluate attention
heads to find that different layers in a model
specialize in different parts-of-speech tags. They
use BertViz (Vig, 2019) for their experiments. (Liu
et al., 2019) study the contextual representations
generated by several popular models to understand
why they are so effective in solving NLP tasks.
They use seventeen probing tasks to establish the
transferability of the representations and what
linguistic knowledge is stored and in which part of
the model.

3 Method

We use parallel data in Nepali—-English (instead
of Nepali-only text) to perform continual pretrain-
ing. Our aim here is to align the model and its
knowledge to Nepali since it already has an under-
standing of English. We generate the parallel data
using synthetic methods, perform pretraining on
this data, and then finetune.

3.1 Data Generation

We use Nepali text available online (news reports,
essays, etc.) collected in datasets like OSCAR
(Abadji et al., 2022) and preprocess it for trans-
lation. For the translation system, there were a
few alternatives to choose from: NLLB (Costa-
jussa et al., 2022), IndicTrans2 (Gala et al., 2023),
Google Cloud Translate. We use the Flores test-set
for Nepali—English (Guzman et al., 2019) to eval-
uate the open-source systems. We also compare
scores across the different model sizes available
and the various quantized versions of the models.
We decided to go with 8-bit NLLB for the trans-
lation. IndicTrans2 performed marginally better
in terms of BLEU scores, but NLLB had very lit-
tle computational overhead and supported larger
batches out-of-the-box.

Since we also plan to later finetune the model
on Nepali instructions and since there aren’t in-
struction sets for Nepali, we also translate English
instruction sets to Nepali. We use IndicTrans?2 for
this. For the instruction set, we translate Alpaca
(Taori et al., 2023), Databricks Dolly (Conover

et al., 2023) and WebGLM-QA (Liu et al., 2023)
to Nepali. To ensure the quality of the synthetic
instruction sets, we backtranslate the instructions
to English (again using IndicTrans2) and calculate
the chrF++ score between the original and the back-
translated sets. We apply a chrF++ cut-off of 50
and all samples with lower scores were discarded.

At the end of this step, we have 5M pairs
of Nepali-English parallel paragraphs and 114K
triplets of (input, instruction, output) instructions.

3.2 Training

We perform 4-bit QLoRA continual pretraining of
a Llama 3 8B model on the synthetic parallel data
we generated in 3.1. We use Unsloth (Han, 2023).
We pretrain the model with the task to translate
from English to Nepali. We do this because the
English part of the parallel data is synthetic and the
Nepali part is organic.

We loosely follow the steps suggested by (Sarva-
mAl, 2023) and divide the pretraining process into
two steps:

3.2.1 Pretraining using translation

The aim of this step is to familiarize the model with
Nepali using the translation data and the model’s
own knowledge in English. We train the model to
translate from English to Nepali. We use this trans-
lation direction because for our parallel data, En-
glish is synthetic and Nepali is organic. By training
the model to generate the (non-synthetic) Nepali
given the (synthetic) English, we teach it to gen-
erate Nepali as originally written. The alternative
would be to teach the model to generate system-
generated English.

For this step, we set the rank to 128, which se-
lected 335M parameters to train. We pretrain the
model on 1.5M paragraph pairs for this first task.

3.2.2 Bilingual next token prediction

Second, we train the model on a bilingual next to-
ken prediction task. This is the standard next token
prediction task with sentences ordered in alternate
language. We choose the next 1.5M paragraph
pairs and consolidate each of the pairs such that
every sample paragraph switches language every
sentence. If the first sentence in a paragraph is
Nepali, the second picks up in English, then back
to Nepali. An example paragraph would be:

Before the unification of Nepal, the
Kathmandu Valley was known as Nepal.
S9TT SRl detd Joaia e
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< | But it can be dated back to the fourth
century AD.

The training settings are much the same for this
step as the first step. The presumption here is that
instead of training with a Nepali next token pre-
diction task, if we leverage the English knowledge
already present into the model, the training should
be more effective. (SarvamAl, 2023) found that a
model trained with this objective performed better
than a model trained on the standard token predic-
tion objective on 5X more data.

3.3 Finetuning

After these steps aligning the model (3.2.1 and
3.2.2) to the Nepali language, we perform a su-
pervised finetuning step. We perform a QLoRA
finetuning lower-rank than both these pretraining
steps. We set the rank to 16. This updates around
41M parameters in the model. The instruction data
we generated in 3.1 is used to finetune the model
here. We choose to perform finetuning on a mixed
instruction set because we want the model to learn
both Nepali and English instructions.

4 Performance Study

After the pretraining followed by finetuning, we
perform experiments on both the base model
(Llama 3 8B 4-bit) and the continual trained model
with the view to answer the following research
questions:

Q1. Has the model learned Nepali?

Q2. Has the model retained its knowledge of En-
glish? What does catastrophic forgetting look
like?

Q3. From a linguistic perspective, how well does
the new model model the Nepali language?

5 Experimental Setup

5.1 LM Evaluation Harness

LM Evaluation Harness (Gao et al., 2024) is a
framework for evaluating language models. It sup-
ports generative LLMs trained on transformers,
GPT-NeoX, and Megatron-DeepSpeed and as of
writing it supports more than 60 academic bench-
marks to run evaluations on. For our task, we focus
on English benchmarks and evaluate first the base
model, then the adapted model in order to quantify
the change in model knowledge and performance.

5.2 BertViz

BertViz (Vig, 2019) is a tool designed to help
visualize attention in language models. Origi-
nally designed to support only BERT-type models,
decoder-only and encoder-decoder model support
was added later. It provides a user-friendly inter-
face to explore and interpret the attention patterns
within the model, offering valuable insights into
how LLMs process and relate different parts of the
input with itself or with the output, facilitating in
interpretative study of LLMs.

5.2.1 Attention pooling for word tokens

Since Nepali is not officially supported by the
Llama 3 tokenizer, the token fertility of Nepali
is high. This should be true for many other South
Asian languages as well. The study of the atten-
tion maps is complicated by this because higher the
tokens per word the more difficult it is to map atten-
tion between the tokens. Higher fertility not only
complicates evaluation, but also makes inference
and training costly.

To address this issue, we experimented with
methods to pool the token attentions in order to
construct word attentions. We applied max-pooling
and mean-pooling. For max-pooling, for every
Nepali word we take the element-wise max be-
tween the vectors corresponding to each constituent
token to get the word attention. For mean-pooling,
we take the element-wise mean.

Our experiments show max-pooling to be more
suitable. We found mean-pooling normalizes atten-
tion weights to a great degree, decreasing variance.
Thus, for our studies, we max-pool the token atten-
tions to get word attention.

5.3 Questions

For Q1, we prompt the base and final models with
a set of Nepali questions to generate answers. We
then use GPT-40 to score these responses. Auto-
matic evaluation of LM generations has been used
with good results due to the multilinguality of fron-
tier language models. GPT4 and GPT-40 perform
well even in languages they do not officially sup-
port, Nepali included (OpenAl, 2024; Romanou
et al., 2024; Hada et al., 2024). We let GPT-40
score the answers on different qualities on scales of
0-10. We analyze the score distributions to answer
Ql.

For Q2, we use LM Evaluation Harness to eval-
uate the performance of both the models on sev-
eral English benchmarks and study how the scores
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Figure 1: GPT4o scores for Nepali answers generated by the base model (Llama 3 8B 4-bit) and our model on five
attributes: correctness, grammar, usability, hallucination and overall quality. Empty generations from the models are
scored 0 on all attributes. c) and d) are the distribution of scores among the attributes with medians and outliers.

change, or do not. This gives us insight into the for-
getting in the final model. Though the base model
was trained on eight languages, we only focus on
its retention of English-language knowledge. We
evaluate the model on MMLU (Hendrycks et al.,
2021), ARC (Clark et al., 2018), Winogrande (Sak-
aguchi et al., 2019), and TruthfulQA (Lin et al.,
2022) benchmarks.

Q3. Dependency relations are an important fea-
ture of languages. The ability of a language model
to resolve a language can be studied by analyzing
the layer-head attentions of the model. We use
BertViz to analyze the models at the layer- and
attention head—level to accomplish this.

We curate Nepali sentences focusing on adjec-
tives and pronouns to study how the layers in the
final model encode the information about depen-
dency relation in the sentences. We visualize self-
attention in the model.

6 Results

To answer Q1, we evaluate text generated by the
base model and our model based on five attributes:

correctness, grammatical correctness, usability, hal-
lucination tendency, and overall quality.

First, we prompt both the models to answers 78
Nepali questions extracted from a traffic license
exam in Nepali. Once we have the generated out-
puts, we let GPT-40 grade each generation on a
scale of 0—10, for all five attributes.

The score distributions in the charts show the dis-
tinction between the two models. The base model
(Figure 1a) shows a heavy concentration of scores
at 0-1 across all metrics. This suggests that the base
model’s Nepali generation abilities are limited.

Our model has a more balanced score distribu-
tion (Figure 1b). While some generations still re-
ceive low scores, we observe higher scores overall
compared to the base model. This is specifically
evident in the scores for grammatical correctness.
Our model shows strong performance here, with
many generations scoring 8 or above, suggesting
the model has learned how Nepali sentence are
structured.

Hallucination scores demonstrate that our model
has a higher median compared to the base model.
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Our model Base (Llama 3 8B 4-bit)
0-shot 5-shot 0-shot 5-shot
MMLU 0.3506 0.3462 (—1.25%) 0.6056 0.6340 (+4.69%)
ARC-Easy 0.6271 0.7020 (+11.94%) 0.7950 0.8346 (+4.98%)
ARC-Challenge 0.3183 0.3797 (+19.29%) 0.5017 0.5179 (+3.23%)
Winogrande 0.5801  0.6275 (+8.17%) 0.7340 0.7561 (+3.01%)
TruthfulQA MC1  0.2827 - 0.2656 -
TruthfulQA MC2 0.4351 - 0.4305 -

Table 1: Our model v/s the base model on English Benchmarks. As expected, the domain adaptation has caused
forgetting. The % change in the scores in 5-shot runs compared to 0-shot runs are also provided. The greater
improvements in the 5-shot runs show possible latent retention.

This seems counterintuitive given higher halluci-
nation is a bad quality for a language model to
have. But it also suggests that our model’s gener-
ations contain content that is more verifiable and
can be assessed for hallucination, whereas the base
model’s outputs may be too limited or generic to
evaluate factual accuracy.

Both box-plots (Figure 1c and 1d) confirm these
observations, evidenced by broader distributions
and higher medians for the final model across all
metrics.

These results show that our model achieves im-
provements over the base model across all evalu-
ated dimensions. The broader distribution suggests
that our model is capable of generating more so-
phisticated and varied responses, even though this
comes with some increased variability in perfor-
mance.

For Q2, we evaluate the final model on popular
English benchmarks in order to identify whether
it was able to retain its knowledge in English post-
pretraining. The scores of our model versus the
base model in the selected benchmarks are reported
in Table 1. On MMLU, our model scores 0.3506
and 0.3462 for 0-shot and 5-shot settings respec-
tively. The base model scores 0.6056 and 0.6340
respectively, which suggests some forgetting has
taken place.

On ARC-Easy, our model achieves scores of
0.6271 (0-shot) and 0.7020 (5-shot), while showing
lower performance on the more challenging ARC-
Challenge subset with scores of 0.3183 and 0.3797
for O-shot and 5-shot settings respectively. The
base model unsurprisingly scores higher on both
benchmarks.

On the Winogrande benchmark, our model
scores 0.5691 (0-shot) and 0.6022 (5-shot). For the
Truthful QA evaluation, our model achieves scores

of 0.2607 and 0.4243 on MC1 and MC?2 variants
respectively, showing comparable performance to
the baseline’s 0.2656 and 0.4305.

With these numbers, it is easy to establish that
forgetting has happened. However, it is notewor-
thy that 5-shot prompting over 0-shot generally
yields higher percent increase for our model than
the base model, suggesting that our model lever-
ages few-shot examples more effectively than the
final model. The highest increase in performance
is for the ARC-Challenge dataset where we see
a 19.29% performance increase in the 5-shot set-
ting compared to 0-shot. This might suggest that if
properly pretrained, forgetting can be curtailed by
increasing shots while prompting.

Finally, to answer Q3, we annotate a set of
Nepali sentences by mapping adjectives to cor-
responding nouns. We explore the dependency
resolution ability of the model by analyzing the
attentions from the adjectives to their respective
nouns across all attention heads in all layers. For
each (adjective, noun) pair we extract attentions
across all attention heads and find the mean of
such attention heatmaps for multiple samples to
get an adjective concept. For English we average
the heatmaps from 17 adjective-noun pairs and for
Nepali 26 pairs. We compare the heatmaps for
the base model and the final model to establish
whether the final model actually captures some un-
derstanding of the language that was not present in
the base model. In Figure 2 the heatmaps visualize
self-attention patterns across the 32 layers (y-axis)
and the 32 attention heads (x-axis) of the models.
The darker blue colors indicate stronger attention
weights.

Comparing our model’s attention heatmaps (a,b)
with the base model’s heatmaps (c,d), we observe
that our model has learned to process Nepali ad-
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Figure 2: Layer-head heatmaps visualizing attention from adjectives to their respective nouns in Nepali (a,c) and
English (b,d) for our model (a,b) and the base model (c,d). Rows are layers and columns are attention heads. From
a) and c), we can see our model has learned to attend to Nepali adjectives the way the base model attends to English

ones in d).

jectives in a manner very similar to how the base
model processes English adjectives. This is ev-
idenced by the sparser and focused attention pat-
terns in (a) as compared to the more diffuse patterns
in (c). This alignment suggests improved cross-
lingual transfer during pretraining. As suggested
in other studies (Liu et al., 2019; Vig and Belinkov,
2019), we found that some of the most prominent
attention heads are located in the middle layers.

The models have very different attention patterns
in the lower layers (1-8), indicating that language-
specific processing is perhaps performed in the
earlier layers of the network. The attention patterns
for English adjectives (b,d) are similar between the
two models, which suggests that the DAPT only
impacted the processing of Nepali in the model

without disturbing its understanding of English
structures.

7 Conclusion

We explored the utility of the continual learning
paradigm in low-resource tasks, with a focus on
the Nepali language. We experimented with the
Llama 3 8B model to establish a simple and in-
tuitive pretraining procedure, followed by mixed-
language fine-tuning. We used automatic evalua-
tion to grade model responses and established that
the model after DAPT can generate semantically
correct Nepali. We performed evaluations with
several benchmarks to gauge the forgetting in the
model. We finally investigated attention heatmaps
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to evaluate the model’s grammatical knowledge
in Nepali. By adapting a pretrained model to the
Nepali language using only synthetic data and very
limited resources and establishing generation abil-
ities and linguistic knowledge in the new model,
we make a case for domain-adaptive pretraining
as a meaningful direction to explore for data- and
resource-constrained languages.

8 Limitations

This work focuses on resource-constrained domain
adaptation. Experiments are performed in a quan-
tized 4-bit setting and the data used is synthetically
generated. Pretraining sessions were run only for
a single epoch and the data is mostly from online
news sources, which we conjecture lead to more
hallucination. Resource constraints are therefore
the biggest limitation of this work. Second, we use
GPT-4o0 for evaluation of model output. While auto-
evaluation is becoming widely-adopted in multilin-
gual research, use of human evaluators (especially
domain experts for Nepali) could lead to a more
definitive assessment. Similarly, there are no LM
benchmarks in Nepali, which could have helped
with the evaluation.

A possible extension of this work could be to
study how other low-resourced languages in South
Asia respond to these methods. It would also be
interesting to investigate if transfer from another
Indic language (opposed to English) would yield
different results.
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