A Grammar-Based Method for Instilling Empirical
Dependency Structure in LLMs

Olle Torstensson and Oskar Holmstrom
Linkoping University
{olle.torstensson, oskar.holmstrom}@liu.se

Abstract

We investigate whether synthetic pretrain-
ing data generated from a formal grammar
modeling syntactic dependencies can im-
prove English language models. Build-
ing upon the structured pretraining data
approach of Papadimitriou and Jurafsky
(2023), we develop a grammar that more
closely mirrors empirical dependency struc-
tures. Our results are negative — this type
of pretraining significantly degrades model
performance, with both our and their pre-
training approach performing worse than
no pretraining at all. We analyze potential
explanations for these findings and discuss
implications for future work on structured-
data pretraining.

1 Introduction

Language learners — human and artificial ones alike
—are able to pick up on structural features of natural
language without being subjected to any explicit
structural supervision. Recently, Papadimitriou and
Jurafsky (2023) investigated the question of what
makes this learning possible — specifically by what
structural biases it is facilitated (throughout, we
will refer to this paper as (PJ23)). In this under-
taking, they lean on theories about structural pre-
dispositions, such as recursion, being inherent in
humans (Hauser et al., 2002). To test this, they
instilled an artificial language learner with struc-
tural knowledge of language, without teaching it
anything about the actual contents of language. In
more practical terms, they pretrained a neural lan-
guage model on synthetic languages — whose vo-
cabulary consists of integers rather than words —
meant to model dependency structures of natural
language, in order to then finetune it on actual nat-
ural language.

While their main goal was understanding hu-
man language acquisition, their results suggest lan-

45

guage models may benefit from this pretraining ap-
proach. So, with the alternative goal of improving
language models, the question of whether there are
more suitable pretraining languages for this type of
transfer learning arises. We construct a weighted
context-free grammar that formally generates one
such language, in which the distribution of word
dependencies more closely follows that of natural
language. The weights in our grammar model the
frequencies of dependency links in a given natu-
ral language; for higher-resourced languages these
frequencies can be directly extracted from depen-
dency treebanks, whereas for lower-resourced lan-
guages they would need to be estimated in some
other way. Formalisms like Constraint Grammar
(Karlsson, 1990) are perfectly capable of this task
and well-developed for several low-resourced lan-
guages (Pirinen et al., 2023). In such a setting
our approach could be particularly valuable since
existing linguistic knowledge can be leveraged to
increase the speed of model convergence during
training without consuming additional textual re-
sources.

We use our generated language to pretrain a neu-
ral language model and compare the performance,
measured in terms of perplexity after finetuning on
English, to that of (PJ23).

2 Background: Word dependencies

Word dependencies appear in both syntactic and
semantic analysis of natural language. In the case
of syntax, the structure of a sentence is usually
represented by a tree (see Figure 1a) in which
edges denote dependencies, whereas the seman-
tics may be represented by a directed acyclic graph
(DAG) (see Figure 1b). Some subsets of depen-
dencies form recursive patterns, i.e., ones in which
edges are nested, whereas others contain crossing
edges (see Figure 2). The distribution of depen-
dency lengths (the distance between two dependent
words) is largely language-dependent (Oya, 2021)

Proceedings of the 9th Workshop on Constraint Grammar and Finite State NLP, pages 45-49
March 5, 2025 ©2025 University of Tartu Library

want
b N
po]ice arrest
4 N)
The to Karras 13
Singapore

(a) Syntax tree

want-01
K ~
police «+——— arrest-01

™~

person Singapore

+
name
+

"Karras"

(b) Abstract meaning representation (AMR) graph

(c) Flattened and undirected version of the syntax tree (top, in blue) and the AMR (bottom, in red)

Figure 1: Syntactic and semantic representations of the sentence The police want to arrest Karras in
Singapore. Example taken from (Wang et al., 2015).

N —

(23 (76 (9))76 (88)23)88 (45)45

9

Figure 2: Example string from pretraining data. For
the sake of presentation, we view matching num-
bers as numbered bracket pairs. Crossing edges are
marked in red.

and furthermore very much dependent on sentence
length (Ferrer-i-Cancho and Liu, 2014).

3 Generating pretraining data

Following (PJ23), to instill knowledge of depen-
dency structure in an untrained neural language
model without granting it access to the vocabulary,
we generate synthetic pretraining data consisting
of numeric sequences (see Figure 2), where match-
ing numbers indicate a dependency between the
indices.! While our data generation process shares
these features with (PJ23), there are some key dif-
ferences.

3.1 The NEST-MIX-p language of (PJ23)

In (PJ23), the authors define a formal probabilis-
tic model for generating strings which they call
NEST-MIX-p, where p is a parameter. A string
is constructed sequentially, and at each step a new
bracket pair is opened with probability 0.49 and the
most recently opened one is closed with probability

'"Thus, dependencies have no direction in these strings.

46

0.51 — with the exception that with probability p, a
newly opened bracket pair will be a crossing one
and its length randomly decided based on an em-
pirical distribution of dependency lengths.? This
process is continued until the sequence is of length
exactly H12.

3.2 Our EMP-DEP language

An advantage of generating the pretraining data
in a completely artificial way without relying on
an empirical distribution is that one can attempt
to model both syntactic and semantic dependen-
cies at the same time. Since we wish to model
the dependencies from natural language, a choice
between the two is required. Mainly due to data
availability, we choose to model our data on syn-
tactic dependencies. For the same reason, we also
need to commit to a target language from which we
model the dependencies already in the pretraining
phase (although, technically this is also the case for
NEST-MIX-p — see footnote 2).

To synthesize strings, we perform a weighted
sampling from a formal language EMP-DEP de-
fined via a weighted context-free grammar — a
context-free grammar where production rules are
equipped with weights, which are then multiplied
upon application. In our grammar, these weights
represent the frequencies at which a dependency

2While the fact that the length of the crossing dependencies
follow an empirical distribution makes the language somewhat
grounded in reality, the distribution is not exclusive to crossing
dependencies and does not take sentence length into account.
Note also that because of this, a bias toward a specific natural
language is introduced.

link between two indices occur in syntactical depen-
dency trees, given the sentence length. Although
these frequencies could in principle be estimated
with the help of Constraint Grammar or other rule-
based methods of dependency parsing, we have
opted to utilize the readily available dependency
trees found in the English Universal Dependencies
Treebank’. From this collection of trees, we ex-
tract (1) a distribution over sentence lengths; and
(2) for each sentence length, a distribution over de-
pendence arcs (i.e., not just their lengths, but also
their positions in the sentence).

In what follows, let m be the size of our integer
vocabulary, let ny,x denote a maximum sentence
length, and, for all positive integers n,¢,j with
1,5 <n < Npax, let p(”) denote the (normalized)
frequency of sentence length n and let pg-l) denote
the (normalized) frequency of the undirected de-
pendency arc ¢-j given sentence length n.

Before we define our grammar, we cover a cou-
ple of additional notational conventions: for any
positive integer k, we let [k] = {1,...,k} and
[k]o = {0, ..., k}, and, for any two non-negative
integers ¢ and j, we let T;,;) denote the string
xp--xj. i > j, then ;5 = &, where €
denotes the empty string. Finally, we construct
EMP-DEP via the weighted context-free grammar
(N, [m — 1]p, P, S), defined as follows:

First, let A = {u} U {ay | k € [m — 1]p}, after
which we define the set of non-terminals

N ={S}U{(w) | we A" and |w| < nmax}

Then, for all positive integers n < mnpyax and
k,ki,...,k, € [m — 1]o, P contains the rules

€)) S&(uu}

n

p jm
=

() (T[i—1) U Tlig1j—1] U Tligim])
(Tliim1) Ok Tlig1—-1) Ok Tljt1m))
forall4,j € [n] and xy € A, where ¢ € [n],
such that pz(-;”) #0
— — I/m_ _ _

) (T(1:i—1) U T (i 1)) — (T[1:i—1) U T[i41:m))
for all i € [n| and z;, € A, where ¢ € [n],

(n)

such that p;,” = 0 or z¢ # u

4) <ak1"‘akn>i>k1"'kn

3https ://universaldependencies.org/

47

The elements in A are used to denote whether
an index is unassigned (u) or assigned a number
k (ag). Rules (1) produce a non-terminal with a
number of unassigned indices depending on the
sentence length distribution. Rules (2) pair indices
by assigning them the same random number, ac-
cording to the dependency distribution conditioned
on the specific sentence length. Via rules (3), re-
maining indices that cannot be paired (these will
exist, e.g., whenever n is odd) are filled with ran-
dom numbers. Finally, in rules (4), the strings of
numbers themselves are produced.

Generating the pretraining data in this way al-
lows for a virtually unlimited number (depending
on parameters) of samples, in which all dependen-
cies appear in empirical data. Note however that
dependencies that do not occur together empiri-
cally in a sentence, may do so in our samples, and
that the (non-)crossing property of edges may not
be preserved.

4 Experiments

All the necessary code to generate the data and run
the experiments can be found at https://github.
com/olletorstensson/emp-dep.

4.1 Data

For our experiments, we produce two datasets:
one generated from our language EMP-DEP, and
one generated by the NEST-Mi1x-0.1 procedure
of (PJ23).* Following the experimental setup
of (PJ23), each dataset consists of 1 billion to-
kens from a vocabulary of integers in the interval
[0,499], and pretrain a language model each on
them. The baseline is a randomly initialized model
that is not subjected to any pretraining.> We then
finetune all three models on the relatively modestly
sized WikiText-103 English dataset (Merity et al.,
2017) made up of 103 million tokens, and evaluate
the models in terms of perplexity on its test set.

4.2 Setup

All three models in the experiments have a 124-
million-parameter-sized GPT-2 architecture with
a vocabulary size of 50,257 which were (with the
exception of the baseline model) trained on the pre-
training data for 5,000 steps using a batch size of

*While their procedure CROSS performs better than NEST-
Mix-0.1 by a small margin, there seems to be no dedicated
code or sufficiently precise description of it.

SThis baseline is different from the one in (PJ23), due to
our different end goals (see Section 5).

https://universaldependencies.org/
https://github.com/olletorstensson/emp-dep
https://github.com/olletorstensson/emp-dep

Pretraining Perplexity (Mean + Std)
None (baseline) 36.04 £ 0.07
NEST-Mi1x-0.1 69.66 + 6.44
EMP-DEP 261.60 4+ 69.29

Table 1: Perplexity of different pretrained models
and the baseline on the finetuning test data. Aver-
age over 5 random seeds, lower is better.

512. The models are then finetuned on the English
data during 2 epochs. To handle the different size
of the pretraining and finetuning vocabularies, the
new word embeddings are randomly sampled from
the old ones as opposed to being randomly initial-
ized, as this has been observed to facilitate transfer
learning (Wu et al., 2023).

4.3 Results

The results of the evaluation are given in Table 1.
It is clear from these numbers that pretraining in
any of the two forms does more harm than good in
this experimental setting, and that, in addition, the
performance of the model biased using our EMP-
DEP language falls far behind the one trained on
NEST-Mi1x-0.1.

5 Discussion

Three key aspects of our results warrant an expla-
nation.

The baseline model performed best. Our exper-
imental setup largely follows that of (PJ23), which
in the end might be more adapted to their research
question, i.e., “How is language learning affected
by a structural bias?” than ours, i.e., “Can lan-
guage models be improved with a structural bias?”.
Specifically, the effects of pretraining and finetun-
ing data size could play a role here. In their ex-
periments they use a different baseline model from
ours, namely an already trained model for which
the word embeddings had been resampled (before
finetuning), as opposed to a randomly initialized
one. It might be the case that the embedding resam-
pling is such a setback that the amount of finetuning
data is not enough for such a model to recover from
it, whereas our baseline model has no such setback
to recover from.

The worst performing model, by far, is ours. In
our data generation process, we make a number of
compromises. Firstly, the commitment to syntax

48

over semantics results in data that is perhaps less
useful for learning some dependencies — especially
long-term ones. Secondly, only empirical sentence
lengths and dependencies appear in the produced
data, without any extrapolation it is probably more
difficult for the model to generalize in the finetun-
ing phase. Thirdly, as sentence length is integral
to the process, the examples from our data are of
variable length, in contrast to the constant length
produced by NEST-M1X-0.1. As a consequence,
our pretraining language is more difficult for the
model to learn® and may not model English struc-
ture as effectively as NEST-M1x-0.1.

The experiments fail to replicate the results of
(PJ23). The fact that the perplexity of our NEST-
Mix-0.1-infused model is much higher than re-
ported in (PJ23) has several possible explanations,
the most likely of which being that some of the
training parameters not presented in (PJ23) differ
between the two experiments. Our baseline’s supe-
rior performance, unlike in (PJ23), results from us-
ing different baseline models (see first paragraph).

6 Conclusion and Future Work

In this paper, we have limited ourselves to only
investigate the perplexity effects of pretraining a
language model on specific structured data. While
our results do not demonstrate immediate benefits,
it would be valuable to examine whether our model
actually learns anything useful from our type of
pretraining by studying attention patterns. Future
research directions include alternative grammars,
different model architectures, and more targeted
downstream tasks. One promising avenue, sug-
gested by a reviewer, would be hybrid approaches
using formalisms like Constraint Grammars to en-
rich training data with full dependency structure,
which could help determine whether adding struc-
tural information to lexical information benefits
model performance.

As recent work supports the potential of struc-
tured pretraining data (Lindemann et al., 2024b;
Finn et al., 2017; Krishna et al., 2021; Lindemann
et al., 2024a; Wu et al., 2021), the injection of
structural biases into language models continues
to be an important research direction, particularly
for less-resourced languages where synthetic data
could compensate for scarce resources.

®While the decrease in validation loss during pretraining
indicates that the model made progress in this respect, it was
higher than for NEST-M1X-0.1 in the end.

Acknowledgements

This work was partially supported by the Wal-
lenberg AI, Autonomous Systems and Software
Program (WASP), funded by the Knut and Alice
Wallenberg Foundation, and the National Graduate
School of Computer Science in Sweden (CUGS).
The computations were enabled by the Alvis cluster
provided by the National Academic Infrastructure
for Supercomputing in Sweden (NAISS), partially
funded by the Swedish Research Council through
grant agreement no. 2022-06725. We also thank
Marco Kuhlmann for inspiring discussions and for
providing feedback on an early version of this pa-
per, and Kevin Glocker for assisting with various
code-related issues.

References

Ramon Ferrer-i-Cancho and Haitao Liu. 2014. The
risks of mixing dependency lengths from sequences
of different length. Glottotheory, 5(2):143-155.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Re-
search, pages 1126—-1135. PMLR.

Marc D. Hauser, Noam Chomsky, and W. Tecumseh
Fitch. 2002. The faculty of language: What is
it, who has it, and how did it evolve? Science,
298(5598):1569-1579.

Fred Karlsson. 1990. Constraint grammar as a frame-
work for parsing running text. In COLING 1990
Volume 3: Papers presented to the 13th International
Conference on Computational Linguistics.

Kundan Krishna, Jeffrey Bigham, and Zachary C. Lip-
ton. 2021. Does pretraining for summarization re-
quire knowledge transfer? In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 3178-3189, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Matthias Lindemann, Alexander Koller, and Ivan Titov.
2024a. SIP: Injecting a structural inductive bias into
a Seq2Seq model by simulation. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6570-6587, Bangkok, Thailand. Association
for Computational Linguistics.

Matthias Lindemann, Alexander Koller, and Ivan Titov.
2024b. Strengthening structural inductive biases
by pre-training to perform syntactic transformations.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages

49

11558-11573, Miami, Florida, USA. Association for
Computational Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Masanori Oya. 2021. Three types of average depen-
dency distances of sentences in a multilingual paral-
lel corpus. In Proceedings of the 35th Pacific Asia
Conference on Language, Information and Computa-
tion, pages 652—661, Shanghai, China. Association
for Computational Lingustics.

Isabel Papadimitriou and Dan Jurafsky. 2023. Inject-
ing structural hints: Using language models to study
inductive biases in language learning. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 8402—8413, Singapore. Associ-
ation for Computational Linguistics.

Flammie Pirinen, Sjur Moshagen, and Katri Hiovain-
Asikainen. 2023. GiellaLT — a stable infrastruc-
ture for Nordic minority languages and beyond. In
Proceedings of the 24th Nordic Conference on Com-
putational Linguistics (NoDaLiDa), pages 643-649,
Torshavn, Faroe Islands. University of Tartu Library.

Chuan Wang, Nianwen Xue, and Sameer Pradhan. 2015.
A transition-based algorithm for AMR parsing. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 366-375, Denver, Colorado. Association for
Computational Linguistics.

Yuhuai Wu, Markus N. Rabe, Wenda Li, Jimmy Ba,
Roger B. Grosse, and Christian Szegedy. 2021.
LIME: learning inductive bias for primitives of math-
ematical reasoning. In Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages
11251-11262. PMLR.

Zhengxuan Wu, Alex Tamkin, and Isabel Papadimitriou.
2023. Oolong: Investigating what makes transfer
learning hard with controlled studies. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 3280-3289,
Singapore. Association for Computational Linguis-
tics.

https://doi.org/doi:10.1515/glot-2014-0014
https://doi.org/doi:10.1515/glot-2014-0014
https://doi.org/doi:10.1515/glot-2014-0014
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.1126/science.298.5598.1569
https://doi.org/10.1126/science.298.5598.1569
https://aclanthology.org/C90-3030/
https://aclanthology.org/C90-3030/
https://doi.org/10.18653/v1/2021.findings-emnlp.273
https://doi.org/10.18653/v1/2021.findings-emnlp.273
https://aclanthology.org/2024.acl-long.355
https://aclanthology.org/2024.acl-long.355
https://doi.org/10.18653/v1/2024.emnlp-main.645
https://doi.org/10.18653/v1/2024.emnlp-main.645
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://aclanthology.org/2021.paclic-1.69
https://aclanthology.org/2021.paclic-1.69
https://aclanthology.org/2021.paclic-1.69
https://doi.org/10.18653/v1/2023.findings-emnlp.563
https://doi.org/10.18653/v1/2023.findings-emnlp.563
https://doi.org/10.18653/v1/2023.findings-emnlp.563
https://aclanthology.org/2023.nodalida-1.63/
https://aclanthology.org/2023.nodalida-1.63/
https://doi.org/10.3115/v1/N15-1040
http://proceedings.mlr.press/v139/wu21c.html
http://proceedings.mlr.press/v139/wu21c.html
https://doi.org/10.18653/v1/2023.emnlp-main.198
https://doi.org/10.18653/v1/2023.emnlp-main.198

