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Abstract

Code-switching (CS) presents a significant
challenge for Automatic Speech Recognition
(ASR) systems, particularly in low-resource
settings. While multilingual ASR models like
OpenAI Whisper Large v3 are designed to han-
dle multiple languages, their high computa-
tional demands make them less practical for
real-world deployment in resource-constrained
environments. In this study, we investigate
the effectiveness of fine-tuning both monolin-
gual and multilingual ASR models for Yoruba-
English CS speech. Our results show that un-
adapted monolingual ASR models outperform
Whisper Large v3 in a zero-shot setting on CS
speech. Fine-tuning significantly reduces WER
for both monolingual and multilingual mod-
els, with monolingual models achieving over a
20% WER reduction on CS and Yoruba speech
while maintaining lower computational costs.
However, we observe a trade-off, as fine-tuning
leads to some degradation in English recogni-
tion, particularly for multilingual models. Our
findings highlight that while multilingual mod-
els benefit from fine-tuning, monolingual mod-
els provide a computationally efficient and com-
petitive alternative for CS-ASR, making them
a viable choice for resource-constrained envi-
ronments.

1 Introduction and Related Works

Automatic Speech Recognition (ASR) has become
a vital component of Natural Language Process-
ing (NLP) and speech technology, enabling ma-
chines to understand and transcribe spoken lan-
guage. While early ASR systems were designed
for single languages, real-world linguistic environ-
ments are far more complex, as people naturally
switch between multiple languages. To address
this, multilingual ASR systems have been devel-
oped, allowing speech recognition across multiple
languages within a single model. State-of-the-art
models such as OpenAI’s Whisper (Radford et al.,

2022)and Meta’s MMS (Pratap et al., 2023) have
demonstrated impressive multilingual capabilities.
However, these systems face significant challenges,
particularly in handling code-switching (CS)—a
phenomenon where speakers alternate between lan-
guages within a conversation or an utterance. This
is a crucial issue in speech technology due to its
prevalence in multilingual communities.

CS is common in bilingual and multilingual com-
munities, such as Nigeria, where over 200 lan-
guages are spoken alongside English as the lin-
gua franca. Studies show that over 60% of Nige-
rians frequently switch between their native lan-
guages and English, especially in informal con-
versations, workplaces, and social media interac-
tions (Abosede and Ayomide, 2021). This phe-
nomenon is driven by Nigeria’s multilingual land-
scape, where English serves as the official language
while indigenous languages such as Yoruba, Igbo,
and Hausa remain central to daily communication.
Code-switching is particularly prevalent in urban
areas, where speakers alternate between languages
for clarity, social identity, and ease of expression.
Beyond social interactions, code-switching is also
widely used in healthcare, business, and economic
transactions, allowing speakers to bridge commu-
nication gaps, ensure better understanding, and fa-
cilitate more effective engagement in professional
and commercial settings. Additionally, digital plat-
forms, including social media and messaging apps,
have further amplified the use of code-switched
speech in both text and voice communication.

Code-switching (CS) can be categorized into
inter-sentential CS, where language switching oc-
curs at sentence boundaries, and intra-sentential
CS, where switching happens within a single sen-
tence (Poplack, 1980). Researchers have explored
various methods to improve multilingual ASR mod-
els for CS speech; however, these approaches often
introduce additional model complexity and higher
computational costs. One such approach involves
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fine-tuning the MMS model, a multilingual ASR
model with adapters for over 1,000 languages, us-
ing techniques like Transformer Code Switching
(TCS) and Post Adapter Code Switching (PACS).
These techniques integrate language adapters for
both matrix and embedded languages to improve
CS transcription accuracy (Kulkarni et al., 2023).
While effective, they require substantial compu-
tational resources due to the large size of multi-
lingual ASR models. Openai Whisper Multilin-
gual Small (244M parameters) and MMS Medium
(300M parameters) (Radford et al., 2022; Pratap
et al., 2023) are significantly larger than monolin-
gual models, many of which have fewer than 100M
parameters. Even the smallest versions of advanced
multilingual ASR models, such as Seamless M4T
Medium (1.2B parameters) (Barrault et al., 2023),
remain computationally large, making fine-tuning
for CS tasks more challenging. The sheer size
of these models results in higher computational
requirements, longer training times, and greater
memory usage. Moreover, multilingual ASR mod-
els must rapidly adapt between multiple languages
within an utterance, requiring an intricate balance
of language-specific features, which becomes even
more difficult with larger models. These challenges
are further exacerbated in low-resource settings,
where access to high-performance computing in-
frastructure is limited, making it difficult to fine-
tune and deploy such models effectively.

Another major challenge in enhancing CS-ASR
is the scarcity of labeled CS speech data. In low-
resource settings, particularly for language pairs
like Yoruba-English, Igbo-English, and Hausa-
English, the lack of sufficient labeled data signifi-
cantly impedes ASR models’ ability to generalize
effectively on code-switched speech. Without ade-
quate training data, these models struggle to learn
the diverse patterns of code-switching that natu-
rally occur between languages in speech, leading
to poor performance. Ogunremi et al. (2023a) ad-
dress this challenge by fine-tuning self-supervised
models, such as wav2vec 2.0 XLSR, on South
African CS speech data, achieving a 20% reduction
in word error rates (WER) compared to baseline
models trained from scratch. This approach demon-
strates that self-supervised pre-training can en-
hance model performance even when labeled data
is scarce. However, it remains resource-intensive,
requiring significant computational resources for
fine-tuning and careful hyperparameter tuning. A
study on Frisian-Dutch CS-ASR explored the use

of multilingual deep neural networks (DNNs) with
a two-step training process: (1) pretraining on mul-
tilingual speech data, including both the target lan-
guage and related high-resource languages, and (2)
retraining the shared hidden layers on a smaller
Frisian-Dutch dataset to better adapt the model to
code-switched speech. While this approach im-
proved ASR performance, it introduced challenges,
such as a reliance on high-resource languages and
increased computational demands due to the multi-
stage retraining process (Yılmaz et al., 2016).

Several studies have explored CS-ASR by adapt-
ing multilingual or monolingual models. In one
approach, the bi-encoder structure (Song et al.,
2022), fuses two monolingual ASR models for
language-specific predictions, combining outputs
in a two-stage process: Speech Awareness (SA)
and Language Fusion (LF). This method improves
efficiency by reducing reliance on large CS datasets
and was effective on a Mandarin-English CS cor-
pus.

Model WER Params (M)
OpenAI Whisper Large v3 0.6684 1550
FastConformer CTC Large 0.6473 120
Conformer CTC Large 0.6469 118.8
FastConformer Transducer Large 0.6294 120

Table 1: Zero-shot WER comparison of unadapted
monolingual ASR models and OpenAI Whisper Large
v3 on Yoruba-English CS speech.

As shown in Table 1, OpenAI Whisper Large
v3, despite being designed for multiple languages,
including both Yoruba and English, exhibits the
highest WER on Yoruba-English CS speech when
evaluated in a zero-shot setting using the CS test
set. Importantly, none of the models in this eval-
uation, including Whisper and the monolingual
ASR models, have been fine-tuned on CS data. Be-
yond its higher WER, Whisper’s large parameter
size (1.55 billion) results in significantly greater
computational demands. In contrast, the monolin-
gual ASR models, with approximately 120 million
parameters, achieve lower WERs while offering
substantial advantages in efficiency and resource
requirements.

These findings suggest that fine-tuned monolin-
gual models offer a computationally efficient and
high-performing alternative for CS-ASR in low-
resource environments. While multilingual ASR
models like Whisper large v3 provide broad lan-
guage coverage, their high computational demands
and inference latency make them less practical for
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real-world deployment in resource-constrained set-
tings.

Given these considerations, we propose fine-
tuning a monolingual ASR model—originally
trained on English—to efficiently recognize
Yoruba-English CS speech. This approach bal-
ances performance and computational efficiency,
enabling ASR systems that are both accurate and
deployable on low-resource hardware.

To assess the viability of this approach,we inves-
tigate the following key research questions:

1. Adaptability to Code-Switching: Can a fine-
tuned monolingual ASR model effectively rec-
ognize and transcribe speech that mixes En-
glish and Yoruba while maintaining a compu-
tational advantage over multilingual models?

2. Recognition of Yoruba-Specific Speech:
Given that the base model was trained on En-
glish, how well can it learn Yoruba-specific
phonetics, vocabulary, and linguistic struc-
tures while remaining computationally effi-
cient?

3. Retention of English Proficiency and Catas-
trophic Forgetting: Does fine-tuning for
code-switching degrade the model’s perfor-
mance on English-only speech, or can it retain
its original proficiency while improving CS
transcription?

4. Performance vs. Computational Trade-offs:
How does the trade-off between WER im-
provements and computational demands differ
between fine-tuned monolingual models and
multilingual models like Whisper Large v3?
What are the implications for ASR deploy-
ment in low-resource settings?

2 Monolingual ASR for Yoruba-English
Code-Switching

Monolingual models for code-switched ASR are
relatively underexplored, as most research has fo-
cused on multilingual or hybrid models (e.g., bi-
encoders) that handle multiple languages simulta-
neously (Radford et al., 2022; Pratap et al., 2023;
Mustafa et al., 2022; Kulkarni et al., 2023; Barrault
et al., 2023; Ogunremi et al., 2023a; Yılmaz et al.,
2016; Song et al., 2022). Monolingual models offer
a computationally efficient alternative, particularly
in resource-constrained settings.

Much of the CS-ASR research has concentrated
on high-resource language pairs such as Chinese-
English (Lovenia et al., 2021), Mandarin-English
(Lyu et al., 2010), and Arabic-English (Ali and
Aldarmaki, 2024; Mubarak et al., 2021), leveraging
large datasets and advanced models. In contrast,
research on African language CS-ASR specifically
Yoruba-English remains untouched.

The Yoruba language is spoken in several West
African countries, including Nigeria, Benin Repub-
lic, and parts of Togo and Sierra Leone, making it
one of the largest single languages in sub-Saharan
Africa. Additionally, Yoruba is spoken in dias-
pora communities, particularly in Cuba and Brazil.
Beyond these regions, Yoruba people are among
the most traveled African ethnic groups, often set-
tling in the United States, the United Kingdom,
and other parts of Europe. In these environments,
they tend to live in close-knit communities, where
code-switching between Yoruba and English be-
comes a sine qua non in daily interactions. This
widespread usage underscores the significance of
studying Yoruba-English code-switching for ASR
development.

Furthermore, only a few code-switched speech
datasets exist for African languages, with most
research focusing on South African language pairs
such as English-Zulu (Eng-Zul), English-Xhosa
(Eng-Xho), English-Sotho (Eng-Sot), and English-
Tswana (Eng-Tsn) (Ogunremi et al., 2023b). The
lack of resources and dedicated research on Yoruba-
English CS-ASR presents a significant gap in the
field.

3 Experimental Setup

This section presents the dataset, the selected mod-
els, and the fine-tuning strategy used in our experi-
ments.

3.1 Data

The data used in this study consists of 21 hours of
transcribed Yoruba-English code-switched speech
from 24 unique speakers. The dataset ensures diver-
sity in accents and speaking styles while capturing
both inter-sentential (switching between sentences)
and intra-sentential (switching within a sentence)
code-switching patterns. To enhance model robust-
ness, it includes a balanced mix of clean and noisy
recording conditions. The average utterance length
is 8 seconds.

To ensure broad linguistic and contextual rep-
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resentation, the dataset spans 10 diverse domains,
including family, sports, lifestyle, healthcare, busi-
ness, news, education, agriculture, general, and
entertainment.

This dataset is part of an ongoing collection
effort aimed at reaching 100 hours of annotated
Yoruba-English code-switched speech data. To
reproduce this research the 21 hours data can be
found here1. However, once the target of 100 hours
is reached, the full dataset will be released on Hug-
ging Face to support research in code-switching
ASR and ensure long-term accessibility for the re-
search community.

Split Hours Percentage (%) Samples
Training 17.00 80.5 13,121
Validation 2.19 10.4 1,645
Test 1.93 9.1 1,613
Total 21.12 100 16,379

Table 2: Dataset split for training, validation, and test-
ing.

Table 2 presents the dataset split used for fine-
tuning. The training set comprises 80.5% of the to-
tal 21.12-hour dataset, while the validation and test
sets account for 10.4% and 9.1%, respectively. This
split ensures ample training data while preserving
robust evaluation metrics. The test set utterances
were entirely excluded from the training and val-
idation sets. Although there was speaker overlap
between the training and validation sets, the test set
comprised only entirely unseen speakers, providing
a reliable measure of generalization.

3.2 Code-Switching Analysis
To quantify the extent of code-mixing in a given
sentence, we use the Code-Mixing Index (CMI)
(Chowdhury et al., 2020), which is defined as:

CMIi = wN

(
min(N i

y, N
i
e)

N i

)
+ wα

αi

N i
(1)

where:

• N i is the total number of words in the i-th
sentence,

• N i
y and N i

e represent the number of words
in Language y(Yoruba) and Language e (En-
glish), respectively, in the i-th sentence,

• αi is the number of code-switching points in
the i-th sentence,

1You can access the dataset here: Data.

• wN and wα are weight parameters (both set
to 0.5 in our implementation).

The term min(N i
y ,N

i
e)

N i captures the degree of bal-
ance between the two languages in the sentence, en-
suring that higher values indicate more intermixing.
The second term, αi

N i , accounts for the frequency
of code-switching points. The weights wN and
wα control the relative contribution of these two
factors.

A higher CMI value indicates a greater degree
of code-mixing, while a lower value suggests that
the sentence is more monolingual.

3.2.1 Sentence Classification Based on
Dominant Language

To better understand the nature of code-switching
in our dataset, we categorize sentences based on
their dominant language, which is determined by
the majority language of tokens in each utterance:

• English-Dominant Sentence: A sentence in
which English constitutes the majority of to-
kens, with Yoruba words appearing as inser-
tions.

• Yoruba-Dominant Sentence: A sentence
where Yoruba is the primary language, but
it includes insertions from English.

The classification allows us to analyze whether
code-switching is more prominent when speakers
primarily use Yoruba or English.

Sentence Type Avg. CMI Sentences
English-Dominant 33.94 9,327
Yoruba-Dominant 32.19 7,052
Overall 33.23 16,379

Table 3: Code-Mixing Index (CMI) statistics by sen-
tence type.

The overall average CMI for our dataset is 33.23,
indicating a moderate degree of code-mixing across
English and Yoruba. The slightly higher CMI for
English-dominant sentences (33.94) compared to
Yoruba-dominant ones (32.19) suggests that speak-
ers tend to integrate more words from the dominant
language when mixing. These findings highlight
the linguistic complexity of our dataset, reinforc-
ing the need for ASR models capable of handling
mixed-language utterances effectively. The ob-
served code-mixing patterns also provide insights
into language dominance shifts, which can inform
the development of better multilingual and code-
switching ASR systems.
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4 ASR Models

For our experiments, we evaluated a range of ASR
models, including both monolingual and multilin-
gual models, as well as their fine-tuned versions, on
Yoruba-English code-switched speech. We selected
three monolingual ASR models from NVIDIA’s
STT (Speech-to-Text) series, which are some of the
best-performing models on the open ASR leader-
board on Hugging Face.2. These models include:

• fastconformer_ctc_large: A Conformer-
based model optimized with CTC loss for effi-
cient speech recognition (Rekesh et al., 2023).

• conformer_ctc_large: A variant designed
for enhanced ASR performance, utilizing the
Conformer architecture (Gulati et al., 2020) .

• fastconformer_transducer_large: A faster
version that incorporates Transducer loss, suit-
able for real-time applications (Rekesh et al.,
2023).

We fine-tuned these monolingual models on
our Yoruba-English code-switched dataset to adapt
them for code-switching speech. This fine-tuning
was aimed at enabling the models to recognize both
Yoruba and English phonetics, tonal variations, and
mixed-language structures. Additionally, we fine-
tuned OpenAI Whisper large v3, a state-of-the-art
multilingual ASR model, on Yoruba-English code-
switched speech. Since Whisper was pretrained on
a large multilingual corpus that includes English
and Yoruba, we sought to determine if this prior
exposure could enhance its ability to transcribe
code-switched speech compared to the monolin-
gual models. The fine-tuning of both monolingual
and multilingual models involved adapting them
to handle spontaneous code-switching in Yoruba-
English speech, with specific strategies tailored to
each model’s architecture.

4.1 Fine-tuning Monolingual and
Multilingual ASR Models

We fine-tuned both monolingual and multilingual
ASR models on our Yoruba-English code-switched
dataset. For monolingual models, we adapted pre-
trained English-only models, which lacked expo-
sure to Yoruba phonetics and mixed-language struc-
tures. Fine-tuning included training a new Senten-

2https://huggingface.co/spaces/hf-audio/open_
asr_leaderboard

cePiece tokenizer, using their respective loss func-
tions (CTC or transducer loss), and adapting the
models to the combined Yoruba-English dataset.
For the multilingual Whisper Large v3 model, fine-
tuning focused on improving its ability to handle
code-switching. We fine-tuned the model using
its default sequence-to-sequence loss, optimizing
both encoder and decoder components for better
mixed-language speech recognition.

Model Params (M) Decoder Type
nvidia/conformer_ctc_large 118.8 CTC Mono
nvidia/fastconformer_ctc_large 120.0 CTC Mono
nvidia/fastconformer_transducer_large 120.0 RNN-T Mono
openai/whisper-large-v3 1550.0 Seq2Seq Multi

Table 4: ASR Models Used in Our Experiments

Table 4 provides details on the ASR models used.
The Nvidia Conformer and FastConformer mod-
els with CTC decoders predict sequences frame-
independently, while the FastConformer model
with a transducer (RNN-T) decoder is designed
for streaming ASR. Unlike these models, OpenAI
Whisper v3 employs an encoder-decoder Trans-
former architecture, where the encoder processes
input audio into a latent representation, and the de-
coder autoregressively generates text tokens. The
decoder uses cross-attention to incorporate con-
textual dependencies across entire sequences, en-
abling accurate transcriptions, particularly in code-
switched and multilingual scenarios.

Resource Specification
GPU Model NVIDIA RTX 6000 Ada
Number of GPUs 1
Memory (RAM) 48GB
Framework PyTorch + NeMo

Table 5: Compute Resources Used for Fine-Tuning

Table 5 presents the compute resources used for
fine-tuning, including the training hyperparameters
and time spent for fine-tuning. The fine-tuning
process was conducted on a single NVIDIA RTX
6000 Ada GPU with 48GB of memory. The NeMo
framework, built on PyTorch, was utilized for effi-
cient model training.
Note:The monolingual models were trained for 50
epochs in approximately 11 hours, while the mul-
tilingual Whisper model was trained for only 10
epochs over 12 hours. Training Whisper for 50
epochs would have been impractical due to its sig-
nificantly larger size and computational demands.
Additionally, we observed signs of catastrophic for-
getting after extended fine-tuning (as evidenced by
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Hyperparameter Value Training Time
Batch Size 16 -
Learning Rate 1.0 × 10−6 -
Optimizer AdamW -
Monolingual Models
Number of Epochs 50 11 hours (50 epochs)
Loss Function CTC / RNN-T -
Multilingual Whisper Large v3
Number of Epochs 10 12 hours (10 epochs)

Table 6: Training Hyperparameters and Time for Fine-
Tuning

Table 7), which led us to conclude that 10 epochs
was an optimal stopping point to preserve its multi-
lingual capabilities while improving code-switched
ASR performance.

ASR Model CS Yor Eng
Unfinetuned Models
fastconformer_ctc_large 0.6473 1.0531 0.1647
conformer_ctc_large 0.6469 1.0516 0.1660
fastconformer_transducer_large 0.6294 1.0347 0.1423
Whisper large v3 (Multilingual) 0.6684 1.0222 0.1299
Finetuned Models
fastconformer_ctc_large 0.3340 0.8339 0.4089
conformer_ctc_large 0.3414 0.8157 0.4592
fastconformer_transducer_large 0.1481 0.8212 0.5342
Whisper large v3 (Multilingual) 0.3335 0.9859 0.5860

Table 7: WER for unfinetuned and finetuned ASR mod-
els on code-switched, Yoruba, and English test sets.

5 Experimental Results

This section presents the results of fine-tuning
monolingual and multilingual ASR models for
English-Yoruba code-switching, addressing our re-
search questions. We evaluate performance us-
ing three test sets: code-switched (CS), Yoruba-
only (Yor), and English-only (Eng) speech. The
Yoruba test set is from OpenSLR3, and the English
test set is from OpenSLR4, both providing high-
quality speech data for ASR evaluation. We as-
sess monolingual models, including FastConformer
and Conformer, as well as multilingual Whisper
Large v3. While monolingual models focus on
single-language speech, multilingual models lever-
age cross-lingual knowledge, making them suit-
able for code-switching. We use Word Error Rate
(WER) to measure transcription accuracy based on
word substitutions, deletions, and insertions.

6 Discussion

Our study evaluates the effectiveness of fine-tuning
monolingual and multilingual ASR models for

3https://openslr.org/86/
4https://openslr.org/70/

Yoruba-English code-switching (CS) while prior-
itizing computational efficiency. We analyze four
key aspects:

6.1 Adaptability to Code-Switching

Table 7 shows that un-finetuned monolingual ASR
models struggle with code-switched speech due to
their English-only training. However, after fine-
tuning, their WER on CS speech drops signifi-
cantly—demonstrating that exposure to CS data
enables monolingual models to effectively tran-
scribe mixed-language utterances.

Whisper Large v3, despite being a multilingual
model trained on both English and Yoruba, initially
performs worse than some monolingual models in
recognizing CS speech, with an un-finetuned WER
of 0.6684. This suggests that general multilingual
training does not automatically confer strong code-
switching capabilities. However, after fine-tuning,
Whisper Large v3 achieves a WER of 0.3335, mak-
ing it competitive with the best-performing mono-
lingual models.

Critically, Whisper Large v3’s improved CS tran-
scription comes at a significantly higher computa-
tional cost, requiring more processing power during
both training and inference. This makes fine-tuned
monolingual models a more practical choice for
low-resource environments, where computational
efficiency is paramount.

6.2 Recognition of Yoruba-Specific Speech

Un-finetuned monolingual ASR models perform
poorly on Yoruba speech, with WER values
around 1.05, as expected due to their lack of ex-
posure to Yoruba phonetics, tones, and linguis-
tic structures. Fine-tuning significantly improves
Yoruba recognition, reducing WER to 0.8212
for fastconformer_transducer_large. Whis-
per Large v3, which has seen Yoruba during pre-
training, starts with a slightly better WER (1.0222)
but still requires fine-tuning for optimal recognition.
However, after fine-tuning, monolingual models
outperform Whisper Large v3 on Yoruba speech,
suggesting that domain-specific adaptation is more
effective than multilingual pretraining for handling
Yoruba’s unique linguistic features. Despite these
gains, WER remains relatively high for Yoruba
speech across all models, indicating that additional
Yoruba-language data could further improve ASR
accuracy.
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6.3 Retention of English Proficiency and
Catastrophic Forgetting

Table 7 shows that fine-tuning improves CS and
Yoruba recognition but leads to performance degra-
dation on English-only speech. After fine-tuning,
the WER on English speech increases from 0.16
to 0.41–0.53 for monolingual models and from
0.1299 to 0.586 for Whisper Large v3 The sharper
decline in Whisper Large v3’s English accuracy
suggests that multilingual models may be more sus-
ceptible to catastrophic forgetting, as fine-tuning on
CS speech shifts their linguistic distribution away
from English. This trade-off must be considered
when adapting ASR models for multilingual or CS
applications.

6.4 Performance vs. Computational
Trade-offs

A major consideration in ASR development is
the balance between performance and computa-
tional cost. While Whisper Large v3 benefits
from large-scale multilingual pretraining, its signif-
icantly higher resource requirements make it im-
practical for many real-world applications.

Model WER (CS) Time (s) GFLOPs/sec
fastconformer_ctc_large 0.3340 0.26 2.78
conformer_ctc_large 0.3414 0.56 8.04
fastconformer_transducer_large 0.1481 1.57 2.63
Whisper Large v3 0.3335 1.98 1295.75

Table 8: WER vs. Inference Time and GFLOPs for
Finetuned Models.

Table 8 highlights that while Whisper Large
v3 and monolingual models achieve similar WER
after fine-tuning, monolingual models are signifi-
cantly faster and require far fewer computational
resources. GFLOPs (Giga Floating Point Opera-
tions per Second) measure how many billion cal-
culations a model performs per second. Whisper
Large v3’s extremely high GFLOPs/sec value sug-
gests a substantial increase in processing demands,
making it less feasible for deployment in real-time
or resource-constrained environments.

In contrast, FastConformer-based models offer
a more efficient trade-off between accuracy and
computational cost, making them a practical choice
for applications requiring low-latency processing
and reduced computational overhead.

6.5 Key Takeaways

Our findings highlight several critical insights for
CS-ASR:

• Fine-tuned monolingual models can achieve
comparable or superior performance to Whis-
per Large v3 on CS and Yoruba speech while
maintaining significantly lower computational
costs.

• Inference efficiency is a major bottleneck for
Whisper Large v3, making monolingual mod-
els a more practical alternative for real-time
ASR in low-resource settings.

• Fine-tuning monolingual models on CS data
enables effective adaptation to Yoruba phonet-
ics and mixed-language speech, even though
some English degradation occurs.

• Multilingual pretraining does not inherently
optimize for CS speech, reinforcing the need
for domain-specific fine-tuning.

7 Conclusion

Our results show that while large-scale multilingual
models like Whisper v3 are designed for cross-
lingual speech recognition, their computational
cost makes them impractical for real-time, low-
resource CS-ASR systems. Instead, fine-tuning
monolingual ASR models provides a computation-
ally efficient alternative that achieves competitive
performance on code-switched speech while main-
taining lower inference latency and hardware re-
quirements. Future research should explore more
efficient multilingual adaptation techniques that
balance accuracy and computational efficiency.

7.1 Future Works
Future research should explore hybrid approaches,
such as combining the efficiency of monolingual
models with selective fine-tuning of multilingual
models, to optimize both WER and inference effi-
ciency. This suggests that Whisper’s multilingual
architecture is more susceptible to shifts in linguis-
tic focus after fine-tuning, leading to greater loss in
its original English proficiency compared to mono-
lingual models. This is a key trade-off that must be
considered when adapting large-scale multilingual
models for specific code-switched domains.

Limitations

Our study highlights the effectiveness of monolin-
gual ASR models for Yoruba-English CS speech,
but limitations remain. Fine-tuning leads to catas-
trophic forgetting, increasing WER on English-
only speech. Second, our evaluation is limited
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to Yoruba-English, and further research is needed
to assess the generalizability of these findings to
other language pairs. The extent to which mono-
lingual models can adapt to different CS contexts
remains an open question. Lastly, data scarcity lim-
its training and evaluation, underscoring the need
for larger, more diverse CS datasets.
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