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Abstract

This paper presents the findings of the Americ-
asNLP 2025 Shared Tasks: (1) machine trans-
lation for truly low-resource languages, (2)
morphological adaptation for generating educa-
tional examples, and (3) developing metrics for
machine translation in Indigenous languages.
The shared tasks cover 14 diverse Indigenous
languages of the Americas. A total of 12 teams
participated, submitting 27 systems across all
tasks, languages, and models. We describe the
shared tasks, introduce the datasets and evalua-
tion metrics used, summarize the baselines and
submitted systems, and report our findings.

1 Introduction

The recent rapid progress in Natural Language Pro-
cessing (NLP), significantly accelerated by the im-
proved architectures, training methods, and the rise
of Large Language Models (LLMs), has primarily
benefited high-resource languages, languages that
have large amounts of digital text available such
as English or French. In contrast, languages with
low amounts of data, known as low-resource lan-
guages, still face considerable challenges in terms
of both data availability and the development of
appropriate models (e.g., Ignat et al., 2024). Low-
resource languages that are native to a specific re-
gion, or Indigenous languages, remain challenging
for even the most novel NLP techniques (Mager
et al., 2024; Weerasinghe et al., 2025; Hettiarachchi
et al., 2025).

*In order, the main organizers for shared tasks 1, 2, and 3.
† Irrespective of Manuel Mager’s listed affiliation, this

work is independent of his employment at Amazon.

Figure 1: Map of Central and South America presenting
an approximate distribution of where each Indigenous
language covered by the three Shared Tasks is spoken.

To address these disparities, the Workshop on
NLP for Indigenous Languages of the Americas
(AmericasNLP) was established with the goal of
advancing NLP research for Indigenous languages
from the American continent.

Building on the success of last year’s Shared
Tasks (ST) (Ebrahimi et al., 2024; Chiruzzo et al.,
2024), the 2025 edition expands its scope with
three STs designed to address critical challenges in
working with Indigenous languages. Many of the
languages included in the STs are polysynthetic,
agglutinative or tonal languages, features which are
not mutually exclusive. In addition, they often lack
a standardized orthography, exhibit dialectal vari-
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ation and frequent code-switching with dominant
regional languages (Mager et al., 2019).

The goal of this effort is not only to advance
methodologies for low-resource settings but also
to support the development of tools for language
learning, preservation, and revitalization. More-
over, we expect to develop technologies that can
include the native speakers of these languages in
the recent developments in our field. This year’s
STs include:

• ST1: Machine Translation (MT) for low-
resource languages, translating between
Spanish and 13 Indigenous languages with
limited parallel data. This year, it features two
new languages (Awajun and Wayuunaiki), and
a new translation direction (into Spanish).

• ST2: Morphological adaptation to gener-
ate educational examples transforming sen-
tences to create grammar exercises for lan-
guage learners. This year, we include Nahuatl
as an additional language.

• ST3: Developing metrics for MT in Indige-
nous languages designing evaluation met-
rics suited to the linguistic properties of low-
resource languages. The first edition of its
kind.

Across all tasks, languages, and models, a total
of 12 teams participated, submitting 27 systems.
The consistent interest from the community high-
lights the continued interest in developing NLP
tools for Indigenous languages.

We publicly release the training and develop-
ment data through our GitHub repository.1

2 Languages

The STs feature 14 Indigenous languages spoken
across North, Central, and South America, listed in
Table 1. These languages differ in language fam-
ily, number of speakers, geographical distribution,
and resource availability; reflecting their diversity.
They vary in their levels of official recognition, and
in many cases, speaker population data is based
on outdated census information. Figure 1 shows
the approximate geographical distribution of the
languages included in the tasks. Below, we briefly
introduce each of the languages.

1https://github.com/AmericasNLP/
americasnlp2025/

LANGUAGE FAMILY ISO 639-3 GLOTTOLOG ST

Asháninka Arawak cni asha1243 1
Awajun Chicham agr agua1253 1
Aymara Aymaran aym nucl1667 1
Bribri Chibchan bzd brib1243 1,2,3
Chatino Oto-Manguean ctp chat1268 1
Guarani Tupi-Guarani grn para1311 1,2,3
Maya Mayan yua yuca1254 2
Nahuatl Uto-Aztecan nah azte1234 1,2,3
Otomí Oto-Manguean oto otom1300 1
Quechua Quechuan quy ayac1238 1
Rarámuri Uto-Aztecan tar tara1321 1
Shipibo-Konibo Panoan shp ship1253 1
Wayuunaiki Arawak guc wayuu1243 1
Wixarika Uto-Aztecan hch huic1243 1

Table 1: Languages of the Shared Tasks, their language
families, ISO 639-3 and Glottolog codes, and Shared
Tasks were they are included.

Asháninka (aka Campa) is an Arawakan lan-
guage spoken primarily in Peru and Brazil by ap-
proximately 74,500 speakers. It is agglutinative
and polysynthetic and has a Verb-Subject-Object
(VSO) word order.

Awajun (aka Aguaruna) is a Chicham language
spoken in northern Peru, by around 53,400 speak-
ers. It follows a Subject-Object-Verb (SOV) and
has rich morphology that consists of agglutinative
suffixes. We use the Marañón variant.

Aymara is an Aymaran language spoken in the
Andean regions of Bolivia and Peru, with approx-
imately 1.7 million speakers. It is recognized for
its agglutinative morphology and polysynthetic na-
ture, typically following a SOV word order. We
use Central Aymara variant, spoken in Aymara La
Paz.

Bribri is a Chibchan language spoken in south-
ern Costa Rica, by an estimated 7,000 people. The
language exhibits morphological ergativity and is
tonal, with SOV word order. We use the Amburi
variant.

Chatino refers to a group of indigenous
Mesoamerican languages within the Zapotecan
branch of the Oto-Manguean family, spoken in Oax-
aca, Mexico. These languages are tonal and have
complex systems of verbal inflection. We use the
San Juan Quiahije variant, spoken by about 5,000
people.

Guarani is a Tupi–Guarani language spoken
mainly in Paraguay, where it is one of the official
languages, as well as in parts of Bolivia, Argentina,
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and Brazil. It has approximately 6.5 million speak-
ers. It is an agglutinative language. We use the
Paraguayan variant, except the training data for
ST1, which consists of a mix of dialects.

Maya is a Mayan language spoken on the Yu-
catán Peninsula of Mexico, northern Belize, and
parts of Guatemala, with approximately 800,000
speakers. It is characterized by its use of glottalized
consonants and a Verb-Subject-Object (VSO) word
order. We use the Yucatec Maya variant.

Nahuatl Nahuatl is a group of related Uto-
Aztecan languages spoken throughout Mexico and
in parts of Central America, with approximately
1.6 million speakers in total. There are over 30
variants of the language. It is polysynthetic and
agglutinative.

For ST1, we use a diverse set of variants, in-
cluding colonial-era written Nahuatl, for training
(from the Axolotl corpus (Gutierrez-Vasques et al.,
2016)) and Huasteca Nahuatl for ST1 evaluation
as well as for ST3. ST2 focuses on Western Sierra
Puebla Nahuatl, a relatively understudied Nahuatl
variety.

Otomí (aka Hñähñu2) is an Oto-Manguean lan-
guage spoken in central Mexico by about 300,000
people. It has nine variants. Otomí languages are
tonal and exhibit a complex system of verb inflec-
tion, typically following SVO word order. We fo-
cus on the Ixtenco Otomí (OTX), a variant with less
than 460 speakers, in the Mexican state of Tlaxcala.

Quechua is a family of languages spoken across
the Andean regions of Argentina, Bolivia, Chile,
Colombia, Ecuador, and Peru, with approximately
7.2 million speakers. It is recognized as an official
language in Peru and Bolivia and is known for its
agglutinative structure and SOV word order. We
use the Quechua Ayacucho variant, although the
training data also includes text in Quechua Cuzco.

Rarámuri (aka Tarahumara) is a Uto-Aztecan
language spoken in northern Mexico, by around
70,000 speakers. It is polysynthetic and agglutina-
tive. We use the highlands variant.

Shipibo-Konibo is a Panoan language spoken in
Peru by approximately 26,000 people. It is char-
acterized by its agglutinative morphology and pre-
dominantly SOV word order and uses postposi-
tions.

2Other names for the language are used, depending on the
language variant.

Wayuunaiki is an Arawakan language spoken in
northern Colombia and Venezuela, primarily by the
Wayuu community, with about 420,000 speakers.
It is an agglutinative language with a predominant
SOV word order.

Wixarika (aka Huichol) is a Uto-Aztecan lan-
guage spoken in Mexico, by approximately 35,000
speakers. It is official in Mexico with four vari-
ants. It is an agglutinative morphology with strong
polysynthetic characteristics and follows the SOV
word order. We use the Nayarit version, spoken in
Zoquipan.

3 ST1: A ST on Machine Translation on
Truly Low-resource Languages

Description Low-resource MT (Haddow et al.,
2022) is mainly characterized by the limited avail-
ability of parallel corpora, but it also faces addi-
tional challenges, such as the scarcity of monolin-
gual data and issues related to data quality.

This task focuses on translation between Spanish
and 13 indigenous languages. Now in its fourth
iteration (Mager et al., 2021; Ebrahimi et al., 2023,
2024), it continues to push the boundaries of MT
for these languages, emphasizing generalization
strategies for low-resource MT and the creation of
new linguistic resources to support these efforts.

For this year’s edition, we introduce two new
languages (Awajun, Wayuunaiki) for the ST1 task
and expand the ST to cover both translation into
an Indigenous language from Spanish (Track 1),
as well as translation from an Indigenous language
into Spanish (Track 2). These two translation direc-
tions are organized as separate tracks within the ST.
Furthermore, following the spirit of open science,
this year we only take into account submissions
which rely solely on open-source weights for the
final ranking.

Data Table 7 in the Appendix shows our data
statistics. We use the same training data as in pre-
vious editions for the repeating languages. This
consists of the organizers’ collection of parallel
sentences, and the data collected by Vázquez et al.
(2021) and De Gibert et al. (2023), a combina-
tion of scraped sources, and synthetically generated
data, obtained through back-translation.

For Wayuunaiki, the train dataset was derived
from the work of Prieto et al. (2024), with a thor-
ough curation and selection of the data. It was
compiled from grammar books, the Bible, short
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stories, a dictionary and the Colombian constitu-
tion, with a total of 59,715 sentences. To process
this data, different extraction techniques were ap-
plied based on the structure of each source. Web
scraping was used for highly structured texts like
the Bible, ensuring precise verse alignment. For
more complex sources, such as grammar books
and linguistic studies, GPT-4 was used to identify
sections of the text containing translated sentences,
extracting and tabulating them into a standardized
format. In cases were texts were available only as
scanned documents or unstructured PDFs, OCR
combined with GPT-4 processing enabled the re-
trieval of bilingual content. Finally, a manual re-
view process was conducted across all sources to
filter incomplete translations and correct formatting
inconsistencies.

For Awajun, the main part of the training data
was extracted from various web sources such as
poems, stories, laws, protocols, guidelines, hand-
books, the Bible, and news published by Ojo
Público,3 a news media organization that supported
the first iteration of the dataset (Moreno et al.,
2024). An official translator validated all sources
for the corpora to ensure the same dialect is used.
Only a few of the sources were aligned automati-
cally, using line breaks and sentence length heuris-
tics as reference, while most of the sources were
aligned manually to retain the quality of the trans-
lations.

For development and evaluation, we use the
AmericasNLP 2021 data (Mager et al., 2021), a
multi-way parallel dataset of the XNLI (Conneau
et al., 2018) test set into 10 languages of the Amer-
icas (Asháninka, Aymara, Bribri, Guarani, Nahuatl,
Otomí, Quechua, Rarámuri, Shipibo-Konibo, and
Wixarika). The Chatino data comes from Mexi-
can court proceedings. For an in-depth review of
the development and evaluation data, please refer
to Ebrahimi et al. (2022, 2024) and Mager et al.
(2021).

For the new languages, the Wayuunaiki develop-
ment set is sourced from the work of Prieto et al.
(2024), while the test set is created by translating
the first 95 pages of the book Journey to the Cen-
ter of the Earth by Verne (1874), with an average
of 150 words per page. To uphold high ethical
standards, we ensured that translators received fair
compensation. The test set also includes the trans-
lation of the short story Benjamin Bunny by Potter

3https://ojo-publico.com/

(1904). In the case of Awajun, the development set
was split from the available training data. We com-
pile a small test set that contains translations pro-
vided by a professional translator in texts extracted
from news within the Territorio Amazonas domain,
and another portion of the test set are examples
extracted from a dictionary by Espejo Apikai et al.
(2021) not processed for the train or development
set.

Metrics We use ChrF++ (Popović, 2017) as the
main metric of the task, although we also report
BLEU (Papineni et al., 2002).

ChrF++ is an overlap-based metric at the
character-level, which is more suitable than BLEU
for our task since most languages are morphologi-
cally rich, and BLEU often penalizes morphologi-
cal variants (Chauhan et al., 2023). The final score
for each submission (ChrF++ column in Table 8)
is calculated by taking an average over all thirteen
languages; if there is no model output for a given
language, the score is taken as 0.

Baselines For our baseline, we follow the train-
ing set-up of “Submission 3” to the 2023 edition
of the ST by Gow-Smith and Sánchez Villegas
(2023). We extend the embedding matrix of NLLB-
200-distilled-1.3B4 with language tags for the lan-
guages not already covered, and finetune on the
task data as well as additional training sources. We
finetune two separate models for Track 1 and 2.
See the original paper for further training details,
our only modification for this year is the addition of
the two new languages. We choose the best check-
point based on the highest average ChrF++ across
all languages.

Aiming to assess the current performance of
LLMs on the task languages, we also imple-
mented a fine-tuned a LLaMA3.2 model (Dubey
et al., 2024) 5 using Low-Rank Adaptation (LoRA)
adapters (Hu et al., 2022). This baseline performed
poorly, only managing to copy the source sentence;
however, we do not rule out the possibility of bugs
in our implementation.

Submitted Systems For this year’s ST1 we re-
cieved a total of 5 submissions by 3 different teams.
Below, we briefly describe each team’s participa-
tion:

• George Mason University (GMU) (Hus
et al., 2025): this team submits two systems

4facebook/nllb-200-distilled-1.3B
5meta-llama/Llama-3.2-3B-Instruct
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TEAM AGR AYM BZD CNI CTP GRN GUC HCH NAH OTO QUY SHP TAR

TRACK 1: SPA-XXX

Baseline 36.76 31.21 25.52 24.39 36.53 35.68 24.18 28.26 22.42 12.78 31.88 25.76 15.96
GMU 35.09 22.91 22.51 22.22 13.33 29.95 22.93 26.14 20.33 11.31 32.70 19.46 13.89
Syntax Squad 35.16 27.72 22.77 23.17 - 16.21 12.83 26.77 12.64 12.02 31.01 12.76 -
UCSP - - - - - - - - - - 16.75 - -

TRACK 2: XXX-SPA

Baseline 38.39 35.60 30.14 24.86 35.84 35.91 24.74 26.33 26.36 20.81 37.18 47.81 18.75
GMU 36.59 26.09 27.86 22.44 26.16 33.84 23.93 24.37 25.58 18.24 33.02 38.01 19.72
Syntax Squad 33.70 25.78 26.22 20.13 - 24.70 14.40 22.02 13.88 17.80 31.71 30.83 -
UCSP - - - - - - - - - - 17.87 - -

Table 2: The best CHRF++ scores for ST1 for each team (across all submitted systems) across all languages. Bold
values represent the best performing system overall, while underlined values are the best performing submission to
this year’s shared task.

for all language pairs in both tracks. First, they
finetune NLLB-200-3.3B with the provided
data for each language pair separately. Then,
they prompt GPT-4o-mini model with external
knowledge coming from bilingual dictionar-
ies (a translation word is provided for each
word of the sentence), two sample parallel
sentences (few-shot approach), a full gram-
mar book on the Indigenous language and a
suggested translation, which is the generated
hypothesis of the first NLLB-based system.
Since GPT4-0-mini is a closed-source model,
we only use their NLLB-based approach for
the ranking. GMU is the only team to submit
entries for all language pairs.

• Syntax Squad (Yahan and Amanul Islam,
2025): this team submits one system for 11
language pairs in both tracks and one extra
system for translation from Spanish into Ay-
mara. They perform data normalization and
then finetune NLLB-200-600M, LLaMA 3.1
8B Instruct, XGLM 1.7B (Lin et al., 2021).
They submitt their NLLB-based model, which
outperforms the other two in the develoment
set.

• Universidad Católica San Pablo (UCSP)
(Congora et al., 2025): this team participates
in the task for Quecha translation from/into
Spanish. They dedicate efforts to data col-
lection and data cleaning. Furthermore, they
expand their datasets by generating synthetic
sentences via the replacement of subjects and
verbs in the sentences. They use two meth-
ods: Wordnet, which is deemed unsatisfac-
tory, and an LLM (Phi3-mini for English and

Phi3.5 for Spanish). Then, they train two dif-
ferent architectures on the augmented dataset:
transformer-base (Vaswani et al., 2017) and
mT5-small (Xue et al., 2021).

Results The best performance per language for
each team is shown in Table 2. In the Appendix, Ta-
ble 8 provides the official ranking of the ST, which
excludes closed-source models, and Table 9 reports
the complete results for all submissions and teams.
The baseline is hard to beat in both tracks. In both
tracks, GMU is the only team to beat it for any
language. The strong performance of the baseline
indicates the importance of multilingual training, as
NLLB is finetuned across all language pairs simul-
taneously, unlike GMU’s NLLB-based submission,
which is finetuned on each language individually.

In Track 1 (SPA→XXX), GMU’s NLLB-based
submission achieves the highest average perfor-
mance, with a ChrF++ score of 21.95, closely
followed by Syntax Squad (17.93) and GMU’s
GPT-based system (18.81). GMU surpasses the
baseline only for Quechua, achieving a +0.82 gain
in ChrF++. While Syntax Squad performs well
overall, its results are notably weaker for Guarani,
Wayuunaiki, Nahuatl, and Shipibo-Konibo.

In Track 2, the best-performing model is also
GMU’s NLLB-based submission, with an average
ChrF++ score of 26.62, slightly ahead of their own
GPT-based system (26.41), which performs signifi-
cantly worse for Chatino. They surpass the baseline
for Rarámuri, achieving a +0.97 gain in ChrF++.
Overall, GPT-based models appear effective at post-
grammar correction for Spanish, but show weaker
performance for the Indigenous language targets.

Submissions for Quechua from UCSP underper-
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Language Num. Sentences Textual features Grammatical changes

(train-dev-test) Words/Sent Chars/Word TTR Changes/Sent Num Changes

Nahuatl 391-176-120 3.05 7.69 (20) 0.06 3.5 47
Maya 584-149-310 5.48 4.66 (14) 0.03 1.1 34
Bribri 309-212-480 3.75 3.39 (8) 0.02 2.8 28
Guarani 178-79-364 3.92 6.17 (14) 0.07 1.0 19

Table 3: A comparison of descriptive statistics of the corpora for ST2, calculated on the combination of the train
and dev sets. Included features about the text are the average sentence length, average word length, the length of the
longest word (in parentheses after the average word length), and the type-token ration for the corpus. With respect
to the "Grammatical features", we report the average number of requested grammatical changes per sentence, as
well as the total number of unique grammatical changes (i.e. feature-value pairs) in the entire corpus.

form when compared to other submissions, suggest-
ing that training models from scratch has stopped
being the most effective approach in low-resource
settings.

Findings MT where the target is an Indigenous
language appears to have reached a performance
plateau. Improvements in the AmericasNLP work-
shop seem to be difficult given current data limita-
tions. While this may not be the case in general,
the most effective strategy in the AmericasNLP
workshop remains to be the finetuning of a highly
multilingual pretrained model (such as NLLB). In
contrast, for translations where the target langauge
is a high-resource language like Spanish, LLMs
can provide a boost in performance. This is likely
due to their extensive pretraining and a stronger rep-
resentation of the higher-resource target language.
However, whether the performance gains justify
the practical costs of running these models remains
an open question.

4 ST2: A ST on Morphological
Adaptation to Generate Educational
Examples

Description Language education initiatives,
which are critical to many language revitalization
efforts, require educational materials that are costly
and time-consuming to create.

This task focuses on generating grammar exer-
cises for learners of four Indigenous languages. In
its first edition (Chiruzzo et al., 2024), the task in-
volved automatically transforming a given base sen-
tence by modifying its tense, aspect, or other mor-
phosyntactic features into a target sentence. These
sentences can later be used to create educational
materials for language learners. This year’s edition
features the addition of an endangered variety of
Nahuatl.

Data Four languages are included in this year’s
task: Bribri, Guarani, and Maya, which were all
included in last year’s task, and a new addition,
Nahuatl. Since the data for the first three languages
is the same as in last year’s task, we refer the reader
to Chiruzzo et al. (2024) for details.

Mexico’s Instituto Nacional de Lenguas Indíge-
nas (INALI) recognizes 30 Nahuatl varieties (IN-
ALI, 2012). The variant included in ST2 is com-
monly referred to as Western Sierra Puebla Nahuatl
or Zacatlán-Ahuacatlán-Tepetzintla Nahuatl (Náhu-
atl de la Sierra Oeste de Puebla, ISO-639-3: nhi),
spoken in the northwestern sierra region of the
state of Puebla, Mexico by less than 20,000 peo-
ple. This Nahuatl variety is relatively understudied,
with most linguistic work, such as a short unpub-
lished grammar and some examination of morpho-
logical and phonological phenomena, focusing on
the subvariety spoken in the community of San
Miguel Tenango, Zacatlán (Schroeder and Tuggy,
2010; Schroeder, 2014, 2015) or the municipality
of Ahuacatlán (Sasaki, 2014).

The sentences used (see. Table 3) for the ST
come from the community of Omitlán, Tepetz-
intla, where the specific Nahuatl communalect has
been less studied, though it has been included in
some recent computational work for the variety,
such as a morphological analyzer (Pugh and Ty-
ers, 2021b) and a Universal Dependencies treebank
(Pugh et al., 2022). The base sentences are a part
of a currently-unreleased corpus of grammatical
example sentences, and the transformed sentences
were verified by a native-speaking expert from the
community.

The set of features used to annotate the Nahuatl
data were:

• Person and number: Person/number of the
subject, object, and indirect object of the Verb,
and the possessor of the Noun in the sentence.
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System Name Bribri Maya Guarani Nahuatl Avg Rank

NAIST 41.25 42.90 32.69 17.50 33.59 1♢

JHU_1 22.71 63.87 43.68 3.33 33.40 2♢

JHU_4 18.75 60.00 40.93 1.67 30.34 3
JHU_2 20.21 59.35 38.19 3.33 30.27 4
JHU_5 15.83 59.03 41.21 2.50 29.64 5
JHU_3 20.21 56.77 38.74 1.67 29.35 6
Syntax Squad 0.42 13.55 1.92 0.00 3.97 8
JHU_6 5.42 9.68 6.32 0.00 5.35 7
FPUNApy 0.00 0.00 8.52 0.00 2.13 9
IUNLP 0.00 2.26 3.85 0.00 1.53 10
RaaVa 1.25 0.00 2.20 0.00 0.86 11

Vasselli et al. (2024) 54.17 53.55 36.81 - - -
Baseline 5.66 26.17 22.78 0.00 13.65 -

Table 4: Final Accuracy results table for ST2. Note that while 6 teams submitted results on the test set, only 2 teams
submitted system description papers, therefore we only describe the systems for two of the teams (NAIST and JHU).
We also report the results from the previous year’s winning system and the edit-tree baseline. The overall accuracy
difference between ranks 1 and 2 is not significant (see ♢).

Person and number are represented together:
1_SG, 1_PL, 2_SG, 2_PL, 3_SG, 3_PL.

• Tense: Past, Present or Future (PRE_SIM,
PAS_SIM, FUT_SIM, respectively).

• Aspect: Perfective (PERFV) and Imperfective
(IMPFV) aspects occur with the past tense, and
the Durative (DUR) aspect can occur with Past,
Present, or Future tenses.

• Mood: Optative (OPT), Imperative (IMP, Con-
ditional (COND), Interrogative (INT), or Indica-
tive (NA).

• Transitivity: Nahuatl uses indefinite object
prefixes to reduce the valency of a verb (e.g.
nechinnextiliah “They show them to me" vs.
tetlanextiliah “They show things to people").
When the valency is reduced by one of these
morphemes, the transformation contains the
tag TRANSITIV:ITR.

• Purposive: Nahuatl verbs can take a Purpo-
sive suffix indicating directionality of motion,
e.g. “Go and do VERB". This directionality
can be either away from (VET) or toward (VEN)
the speaker.

• Honorific: Nahuatl varieties have as many as
four levels of honorifics (Hill and Hill, 1978),
though we only include the first in our dataset
since it is the most common.

• Polarity: Positive or negative.

Metrics The main metric of this task is accuracy
(fraction of times the system output matches the
expected output). Systems for every language are
evaluated separately, in addition to the overall av-
erage score, which is used to determine the shared
task’s winner.

Baselines This year, the baseline was the same
as last year’s, namely a simplified adaptation of the
Prefer Observed Edit Trees (POET) method, which
involves learning the edit operations required to
convert a source string into a target string (Kann
and Schütze, 2016). Learning is performed by cal-
culating the edit tree for each pair of source and
target sentences in the training data, and counting
the total number of each edit tree associated with
the specific grammatical change. During testing,
the edit trees for the given grammatical change are
applied to the given source sentence in order of de-
creasing frequency until the succeeding edit tree is
found. If no such tree is found, the source sentence
is returned as the output.

Submitted Systems We received 11 submissions
from 6 teams for the task, but unfortunately only
three teams submitted system description papers.
Given the lack of description papers from the other
3 teams, we are unable to discuss their submissions.

• NAIST: The NAIST submission (Vasselli
et al., 2025) developed three different systems:
example-based LLM prompting system with
additional synthetic data, a transformation-
based prompting system where each token
is annotated according to its required opera-

140



tion to achieve the sentence-level transforma-
tion, and, for Nahuatl, a purely rule-based sys-
tem which heuristically assigns part-of-speech
tags and uses them to infer grammatical fea-
tures.

• JHU: There were a total of six JHU sub-
missions (Lupicki et al., 2025). The sub-
mitted systems include multiple variations of
prompt-engineering with LLMs, including ex-
perimenting with chain-of-thought, few-shot
prompting, using additional linguistic data
such as parts of speech and a reference book
(for Maya, Bribri, and Guarani), and ensem-
bling multiple LLM-based systems. Addi-
tionally, they train a pointer generator LSTM
model.

• Syntax Squad: This team investigated LoRA
fine-tuning of LLMs, namely Llama models
and XGLM, for the sentence transformation
task. The process also involved some text pre-
processing, such as removing punctuation and
diacritics, and post-processing of the LLM
output. They did not describe results for the
Nahuatl data.

Results The results of all submissions are listed
in Table 4. Two of the three submitted sys-
tem descriptions correspond to the two highest-
performing submissions. The JHU team achieved
the best performance for Maya and Guarani with
their ensemble method, surpassing the last year’s
best-performing system on the same data. NAIST
achieved the best score for both Bribri (41.25%
acc.) and Nahuatl (17.5%), though their system
did not outperform last year’s winning system for
Bribri, a fact the authors attribute to their appli-
cation of transformations all at once, instead of
incrementally as was done in last year’s winning
system. On the other hand, JHU system 1 had
the best performance for Maya (63.87% acc.) and
Guarani (43.67% acc.). The overall difference be-
tween NAIST and JHU System 1 is not significant6

we decided for having both teams as winners of
this years edition. It is also important to notice the
poor performance of most teams on Nahuatl, with
5 submitted systems achieving 0% accuracy, and
all, except for NAIST, achieveing less than 4% acc.

6Average sample-wise accuracy values with 95% confi-
dence intervals, calculated with the bootstraping approach
(Ferrer and Riera), are 36.97 [34.46, 39.56] for the NAIST
system, and 36.89 [34.30, 39.48] for the JHU_1 system

The Syntax Squad submission underperformed
the baseline for all languages. While it warrants
further investigation, it is likely that the dataset
sizes were too small to effectively fine-tune the
LLMs for this task. Furthermore, they highlight
the potential negative impact of excessive prepro-
cessing of the text. For example, for languages like
Maya where changes in tone can indicate a change
in Voice (one of the features in the Maya dataset),
removing this may introduce unwanted noise and
make it more challenging for a model to learn the
necessary sentence transformations.

Findings For the three languages represented in
last year’s shared task, we saw year-over-year im-
provements in the best-performing system for two
(Maya and Guarani). None of the submitted sys-
tems improved on last year’s best performing sys-
tem on the Bribri data.

Interestingly, Nahuatl proved to be quite chal-
lenging, with all teams achieving their lowest score
on the Nahuatl data. The best performance on
this data was achieved with the purely rules-based
system. We suspect that this is due to a combina-
tion of lack of representation of the Western Sierra
Puebla variety in LLM training data, and a num-
ber of language- and dataset-specific features, e.g.
longer words, many grammatical transformations
per sentence, the largest number of unique gram-
matical transformations compared to the other lan-
guages in the shared task (see Table 3 for details).

While the trend of leveraging pretrained LLMs
via prompt engineering and reference data contin-
ues to show promise for some languages, the results
on the Nahuatl data show that knowledge-based
approaches still merit attention, particularly when
dealing with complex tasks and data (multiple inter-
acting grammatical transformations, complex mor-
phology with long words) and/or languages with
minimal resources (both with respect to LLM train-
ing data as well as reference materials and digital
dictionaries).

5 ST3: A ST on Creating Metrics for
Machine Translation in Indigenous
Languages

Description Automatic metrics are a crucial al-
ternative to human evaluation for efficiently evalu-
ating the output of MT systems. However, indige-
nous languages present unique challenges that stan-
dard metrics are not designed to handle. MT evalu-
ation commonly relies on two types of automatic
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Language Num. Sentences Textual features

(dev-test) Words/Sent Chars/Word TTR

Nahuatl 100-200 6.68-6.78 8.27-7.83 0.27-0.23
Bribri 100-200 12.23-11.23 4.78-4.7 0.16-0.14
Guarani 100-200 6.24-6.36 7.94-7.43 0.28-0.24

Table 5: Data statistics for ST3. The textual statistics are for the reference translations, for dev and test sets. We
report the average sentence length, average word length, and the type-token ration for the corpus. Overall, 300
sentence pairs were annotated for each language.

metrics: overlap-based and neural. Overlap-based
metrics, such as BLEU and ChrF , are less effec-
tive for Indigenous languages as these languages
often lack standardized orthographies and exhibit
polysynthetic structures, making exact word or (to
a lesser degree) character overlap unreliable. The
limitations of BLEU are well documented (Mathur
et al., 2020), and the overreliance of the MT com-
munity can potentially negatively affect MT de-
velopment (Kocmi et al., 2021). Neural metrics,
such as COMET (Rei et al., 2020), are also lim-
ited because they rely on pretrained models trained
on large datasets that rarely include low-resource
languages. In the first edition of its kind, this task
consists in building metrics to evaluate the quality
of translations from Spanish into three Indigenous
languages: Guarani, Bribri, and Nahuatl.

Data For each language, a set of 100 sentence
pairs are selected from the submissions to Ameri-
casNLP 2024 MT ST, from multiple systems. Al-
though the initial pool of sentences are selected
randomly, it is important to select pairs of varying
quality to ensure that the metrics can effectively
distinguish these differences in quality. We use
ChrF++ as a proxy of the quality of submissions,
and for a portion of sentences we also include the
gold translations 7. The same set of Spanish sen-
tences were used for all the languages. For the test
data, we repeated this process. These sentences
were then given to annotators for the human judg-
ment. The annotators are asked to rate each trans-
lation on a 5-point scale on two axes: semantics
and fluency (Koehn and Monz, 2006). As bilingual
speakers, the annotators have access to the source
sentence in Spanish, and a candidate translation in
the target Indigenous language. Table 5 reports the
textual statistics for dev and test sets.

7Note that using ChrF++ as a metric could introduce bias.
We use ChrF++ mainly to detect the “best” and “worst” trans-
lations, but for the majority of Spanish sentences we include
random translations. Also, since most of the systems are of
lower quality, we expect the introduced bias to be negligible.

Metrics The winning submission will be the one
with the highest correlation with the ratings on a
held-out test set of size 200. We employ Pearson
correlation coefficient as the main evaluation met-
ric, but also report Spearman correlation values.
We choose Pearson over Spearman as it measures
the linearity of the relationship. Linear metrics are
preferred since they offer greater interpretability.

Baselines We use BLEU and Chrf++ as our
automatic baselines. ChrF++ is character-based
and is shown to correlate better than BLEU with
morphologically-rich languages. ChrF outperforms
BLEU on non-standardized orthographies as well
(Aepli et al., 2023). Therefore, we consider it as
the main baseline to beat.

Submitted Systems This ST got a total of 11
submissions by 3 different teams. We only have
the descriptions of two of these teams. Below is a
concise overview of each team’s contribution.

• Tekio: The submission of R. Krasner et al.
(2025) relies mainly on finetuning Language-
agnostic BERT Sentence Encoder (LaBSE;
(Feng et al., 2022)) to develop better seman-
tic representations for Indigenous languages.
They use the data for the MT ST for con-
trastive alignment in the finetuning. This fine-
tuned LaBSE is the backbone of four metrics:
1) YiSi-1 (Lo, 2019, 2020) is an MT quality
metric that needs representations to evaluate
semantic similarity. In the first submission,
for each language, they chose the top three
intermediate layers based on the performance
on the development set and averaged their to-
ken embeddings. 2) The same as #1, but they
use the three layers that that did best on av-
erage for all the languages to avoid overfit-
ting. 3) COMET Estimator Model (Rei et al.,
2020) with the finetuned LaBSE as the pre-
trained model and mean absolute error (MAE)
as the loss function. 5-fold cross-validation is
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Guarani Bribri Nahuatl Average

Method Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson

ChrF++ 0.6725 0.6263 0.4517 0.3823 0.6783 0.5549 0.6008 0.5212
BLEU 0.4676 0.4056 0.4518 0.3456 0.3541 0.4061 0.4245 0.3857

Tekio_1 0.6611 0.7196 0.5622 0.6244 0.668 0.6115 0.6304 0.6518
Tekio_2 0.6611 0.7196 0.5569 0.63 0.6132 0.5845 0.6104 0.6447
Tekio_3 0.5597 0.7209 0.4892 0.6261 0.4963 0.529 0.5151 0.6254
Tekio_4 0.5605 0.7234 0.4909 0.6268 0.5036 0.5351 0.5183 0.6285
RaaVa_1 0.6723 0.6249 0.5356 0.4223 0.6766 0.5657 0.6282 0.5377
RaaVa_2 0.6516 0.6776 0.5755 0.5662 0.6145 0.5921 0.6139 0.612
RaaVa_3 0.656 0.7038 0.4829 0.5931 0.6364 0.6263 0.5918 0.6411
RaaVa_4 0.656 0.7038 0.4829 0.5931 0.6364 0.6263 0.5918 0.6411
RaaVa_5 0.6526 0.7209 0.5379 0.654 0.6195 0.6362 0.6033 0.6704
RaaVa_6 0.6429 0.6964 0.5332 0.6523 0.6132 0.6351 0.5965 0.6613
LexiLogic 0.6811 0.6529 0.5021 0.3763 0.6717 0.5504 0.6183 0.5265

Table 6: Final results for ST3. The best score for each column is bolded, while the second best score is underlined.
The difference between RaaVa_3 and RaaVa_4 is minuscule and can only be seen in the later decimals.

used on all the available annotated scores. 4)
The same as #3, but with mean squared error
(MSE) as the loss function.

• RaaVa: The submission of Raja and Vats
(2025) combines various linguistic and com-
putational features, including lexical simi-
larity via Levenshtein distance (Levenshtein
et al., 1966), phonetic similarity using Meta-
phone (Philips, 1990) and Soundex encoding
(Russell, 1918), semantic similarity through
LaBSE sentence embeddings, and fuzzy token
matching to account for morphological vari-
ations (Kondrak, 2005). They submit 6 sys-
tems: 1) this system integrates character-level
lexical overlap via Jaccard similarity with pho-
netic similarity from Metaphone encodings. 2)
Lexical (Damerau-Levenshtein edit distance),
phonetic (Metaphone encodings), and seman-
tic similarity (LaBSE sentence encoding) are
linearly combined with fixed weights. 3) This
system incorporates four similarity metrics,
adding fuzzy similarity to the lexical, phonet-
ics, and semantic similarities. Again, the final
metric is a weighted average of the individ-
ual metrics. 4) Two separate linear regression
models are trained for semantic and fluency,
based on the four similarity metrics of #3. The
regression models are trained on the develop-
ment sets. 5) Same as #4 but a Ridge regres-
sion is used for semantic similarity estimation,
while Random Forest regression is used to
model fluency. 6) Same as #5, but a Gradient
Boosting Regressor (GBR, (Zemel and Pitassi,
2000)) is trained to model fluency.

Results Table 6 shows the final correlation scores
for the submitted systems. Overall, RaaVa_5 has
the best Pearson performance and is the winner
of the shared task, while RaaVa_6 follows closely
as the second best system. Tekio_1 has the best
Spearman correlation on average, and the third best
according to Pearson. None of the systems beat
ChrF++ on Spearman for Nahuatl.

Findings In our schema, we weigh fluency and
adequacy the same, which could partially explain
the superior performance of RaaVa_5 and RaaVa_6
that model those two aspects separately. RaaVa_5
increases the Pearson correlation by 0.149 on aver-
age. It must be noted that this framework of human
judgment for MT has drawn criticisms (Graham
et al., 2013). We adopt this schema for its simplic-
ity for annotators and consistency with previous
iterations of MT shared task, but this could poten-
tially change in future iterations.
Table 10 demonstrates the correlation scores of
each submitted system with semantics and fluency.
Tekio_1 has the highest overall correlation with se-
mantics at 0.6446, while RaaVa_5 is a close second
at 0.6432. However, RaaVa_5 has a much higher
correlation with fluency than Tekio_1.
The baseline performance on Bribri is relatively
poor, hinting that string-based methods are partic-
ularly lacking for this language. However, it is
important to note that Bribri has much longer sen-
tences in terms of number of words in our study
(Table 5). It sees the biggest boost in performance
(+0.27) among the three languages. In contrast,
Guarani and Nahuatl exhibit more modest gains
(+0.1 and +0.08, respectively) but have stronger
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baseline results. The agglutinating morphology
of Nahuatl could in part explain the strong per-
formance of ChrF++ (Pugh and Tyers, 2021a),
whereas Bribri is a fusional language. Taken to-
gether, the results suggest that neural approaches
hold significant potential for Indigenous languages.
This corroborates the findings of Aepli et al. (2023)
where neural models based on COMET far outper-
formed string-based baselines for language varia-
tions with non-standardized orthographies.

6 Conclusions

We have introduced the three STs held this year at
the AmericasNLP workshop: (1) MT for truly low-
resource Languages, (2) morphological adaptation
for generating educational examples, and (3) met-
ric development for MT in Indigenous languages.
Overall, 12 teams participated across a total of 27
submissions.

In the MT task, the baseline (a 1.3B encoder-
decoder model) proves hard to beat for translation
from Spanish. The new translation direction into
Spanish benefits from the use of GPT-based mod-
els. This highlights both the limitations imposed by
the current available data and the strength of well-
adapted, smaller-scale approaches. For the task
on generating examples for educational material,
while the use of LLMs through prompt engineer-
ing and reference-based approaches proves effec-
tive for certain languages, our results suggest that
knowledge-based methods still hold value, espe-
cially for morphologically complex, low-resource
languages and tasks involving multiple interacting
grammatical phenomena. In the metrics ST, we
find that neural methods far outperform the string-
based baselines; in spite of the amount of available
data that limits the performance of neural models.

These shared tasks contribute to the broader
NLP community by advancing methods specific to
highly diverse, underrepresented languages. They
also provide publicly available datasets, tools, and
benchmarks that serve both academic research and
community-driven language technology efforts.
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A Dataset Statistics for ST1

Table 7 shows the number of sentences for each
language in the dataset.

LANGUAGE TRAIN SOURCE TRAIN EXTRA SYN. DEV. TEST

Chatino (ctp) (Ebrahimi et al., 2023) 357 2,246 - 499 1,000
Asháninka (cni) (Ortega et al., 2020; Romano and Richer,

2008; Mihas, 2011)
3,883 - 13,195 883 1,003

Otomí (oto) (Mager et al., 2021) 4,889 9,012 - 599 1,003
Aymara (aym) (Prokopidis et al., 2016; Tiedemann,

2012)
6,531 24,331 16,750 996 1,003

Bribri (bzd) (Feldman and Coto-Solano, 2020;
Margery Peña, 2005; Murillo, 2018a;
Umaña et al., 2004; Murillo and Segura,
2013; Murillo, 2018b)

7,508 - - 996 1,003

Wixarika (hch) (Mager et al., 2018) 8,966 2,653 511 994 1,003
Shipibo-Konibo (shp) (Montoya et al., 2019; Galarreta et al.,

2017; Loriot et al., 1993)
14,592 16,721 23,595 996 1,003

Rarámuri (tar) (Brambila, 1976) 14,720 2,254 - 995 1,003
Nahuatl (nah) (Gutierrez-Vasques et al., 2016) 16,145 2,493 9,222 672 1,003
Awajun (agr) (Moreno et al., 2024) 21,964 - - 1,018 358
Guarani (grn) (Chiruzzo et al., 2020) 26,032 42,186 40,516 995 1,003
Wayuunaiki (guc) (Prieto et al., 2024) 59,715 - - 6,635 498
Quechua (quy) (Agić and Vulić, 2019; Huar-

caya Taquiri, 2020)
125,008 6,469 60,399 996 1,003

Table 7: Dataset statistics for ST1, together with the sources for the training data of each language pair.
Languages are listed in increasing order of available training data. AmericasNLP translated all test splits into
indigenous languages from a set of different sources (please see the corresponding ST Findings paper).

B ST1 Ranking

Table 8 shows the main ranking of all submitted
systems for ST1.

RANK TEAM VER. COUNT TOT. BLEU TOT. CHRF TOT. CHRF++ AVG. BLEU AVG. CHRF AVG. CHRF++

TRACK 1: SPA-XXX

1 GMU 2 13 43.72 324.12 285.37 3.36 24.93 21.95
2 Syntax Squad 1 11 36.24 265.50 233.07 2.79 20.42 17.93
3 Syntax Squad 2 1 2.02 30.13 26.31 0.16 2.32 2.02
4 UCSP 1 1 0.07 21.73 16.75 0.01 1.67 1.29
- GMU 1 13 31.83 273.23 244.56 2.45 21.02 18.81

TRACK 2: XXX-SPA

1 GMU 2 13 93.44 368.14 346.06 7.19 28.32 26.62
2 Syntax Squad 1 11 75.31 279.68 261.19 5.79 21.51 20.09
3 UCSP 1 1 1.52 20.70 17.87 0.12 1.59 1.37
- GMU 1 13 99.19 363.52 343.34 7.63 27.96 26.41

Table 8: Main ranking of all submitted systems for ST1. VER denotes the team’s submission number, COUNT
denotes the number of languages a particular system was submitted for, with the TOT columns showing the
total sum of the metric score across submissions. The final three columns represent the average over all 13
languages of the shared task, with CHRF++ being used to calculate the overall ranking.
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C ST1 Full Results

Table C shows the full results of ST1.

LANG. TEAM VER. BLEU CHRF CHRF++

TRACK 1: SPA-XXX

agr-spa GMU 0 16,81 38,73 36,59
agr-spa GMU 1 15,17 38,73 36,52
agr-spa Syntax Squad 0 13,21 36,11 33,70

aym-spa GMU 0 6,51 27,50 26,09
aym-spa Syntax Squad 0 5,89 27,53 25,78
aym-spa GMU 1 5,17 26,49 25,23

bzd-spa GMU 0 6,98 29,14 27,86
bzd-spa GMU 1 6,11 28,77 27,41
bzd-spa Syntax Squad 0 5,87 27,53 26,22

cni-spa GMU 0 5,32 23,72 22,44
cni-spa GMU 1 4,00 22,94 21,57
cni-spa Syntax Squad 0 3,06 21,34 20,13

ctp-spa GMU 1 11,74 28,04 26,16
ctp-spa GMU 0 3,76 15,60 14,47

grn-spa GMU 0 13,81 34,93 33,84
grn-spa GMU 1 11,23 33,57 32,31
grn-spa Syntax Squad 0 15,14 26,15 24,70

guc-spa GMU 1 4,20 26,00 23,93
guc-spa GMU 0 2,92 25,06 23,10
guc-spa Syntax Squad 0 3,14 16,19 14,40

hch-spa GMU 0 5,46 25,91 24,37
hch-spa GMU 1 4,69 25,53 24,04
hch-spa Syntax Squad 0 3,98 23,69 22,02

nah-spa GMU 0 7,22 27,14 25,58
nah-spa GMU 1 5,08 26,18 24,31
nah-spa Syntax Squad 0 4,00 15,40 13,88

oto-spa GMU 0 2,25 19,69 18,24
oto-spa Syntax Squad 0 1,50 19,91 17,80
oto-spa GMU 1 1,36 17,76 15,99

quy-spa GMU 0 12,27 34,64 33,02
quy-spa GMU 1 10,38 33,50 31,77
quy-spa Syntax Squad 0 10,60 33,26 31,71
quy-spa UCSP 0 1,52 20,70 17,87

shp-spa GMU 0 13,83 39,93 38,01
shp-spa GMU 1 12,55 39,40 37,43
shp-spa Syntax Squad 0 8,94 32,58 30,83

tar-spa GMU 0 2,07 21,53 19,72
tar-spa GMU 1 1,75 21,23 19,39
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LANG. TEAM VER. BLEU CHRF CHRF++

TRACK 2: XXX-SPA

spa-agr Syntax Squad 0 7,82 40,10 35,16
spa-agr GMU 1 8,64 39,75 35,09
spa-agr GMU 0 1,30 19,16 16,67

spa-aym Syntax Squad 0 1,96 31,61 27,72
spa-aym Syntax Squad 1 2,02 30,13 26,31
spa-aym GMU 1 1,14 26,26 22,91
spa-aym GMU 0 0,88 23,12 20,45

spa-bzd Syntax Squad 0 4,55 21,68 22,77
spa-bzd GMU 1 4,41 21,56 22,51
spa-bzd GMU 0 3,85 19,42 20,61

spa-cni Syntax Squad 0 2,43 26,96 23,17
spa-cni GMU 1 2,47 25,60 22,22
spa-cni GMU 0 3,63 24,62 21,77

spa-ctp GMU 0 1,64 15,04 13,33
spa-ctp GMU 1 1,27 15,31 12,25

spa-grn GMU 0 5,47 32,50 29,95
spa-grn GMU 1 4,04 27,23 25,00
spa-grn Syntax Squad 0 3,46 17,84 16,21

spa-guc GMU 1 1,48 27,42 22,93
spa-guc Syntax Squad 0 0,11 15,86 12,83
spa-guc GMU 0 0,20 10,94 9,12

spa-hch Syntax Squad 0 11,07 30,47 26,77
spa-hch GMU 1 10,04 29,59 26,14
spa-hch GMU 0 5,98 27,00 23,59

spa-nah GMU 1 2,02 23,82 20,33
spa-nah GMU 0 0,64 18,76 15,98
spa-nah Syntax Squad 0 0,65 15,73 12,64

spa-oto Syntax Squad 0 0,76 14,16 12,02
spa-oto GMU 1 1,33 13,23 11,31
spa-oto GMU 0 0,98 11,55 10,03

spa-quy GMU 1 3,70 38,02 32,70
spa-quy GMU 0 3,80 36,30 31,68
spa-quy Syntax Squad 0 3,07 36,14 31,01
spa-quy UCSP 0 0,07 21,73 16,75

spa-shp GMU 1 2,79 21,99 19,46
spa-shp GMU 0 2,68 19,39 17,49
spa-shp Syntax Squad 0 0,37 14,94 12,76

spa-tar GMU 0 0,77 15,45 13,89
spa-tar GMU 1 0,39 14,35 12,53

Table 9: Full results of ST1.

D ST3 Results
Table 10 shows the results for ST3 broken down
between semantics and fluency scores.
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Method Semantics Fluency Semantics Fluency Semantics Fluency Semantics Fluency

ChrF++ 0.63 0.5323 0.4078 0.3018 0.5681 0.4929 0.5353 0.4424
BLEU 0.4207 0.3314 0.3515 0.2908 0.4257 0.351 0.3993 0.3244

Tekio_1 0.6899 0.6474 0.6369 0.5236 0.6069 0.5618 0.6446 0.5776
Tekio_2 0.6899 0.6474 0.6404 0.5307 0.5789 0.5381 0.6364 0.5721
Tekio_3 0.603 0.7411 0.6002 0.5657 0.49 0.5203 0.5644 0.609
Tekio_4 0.6054 0.7433 0.6036 0.5634 0.4972 0.5248 0.5687 0.6105
RaaVa_1 0.6367 0.5227 0.4644 0.3187 0.5818 0.5 0.561 0.4471
RaaVa_2 0.6518 0.6073 0.5852 0.4667 0.5896 0.5423 0.6089 0.5388
RaaVa_3 0.6793 0.6284 0.5689 0.5355 0.625 0.5722 0.6244 0.5787
RaaVa_4 0.6793 0.6284 0.5689 0.5355 0.625 0.5722 0.6244 0.5787
RaaVa_5 0.6816 0.6584 0.6314 0.5862 0.6165 0.5991 0.6432 0.6146
RaaVa_6 0.6661 0.628 0.6372 0.5768 0.621 0.5927 0.6414 0.5992
LexiLogic 0.6512 0.5608 0.4233 0.274 0.5645 0.488 0.5463 0.4409

Table 10: Pearson correlation scores of each submitted system with adequacy (semantics) and fluency of the
annotated instances in the test dataset for ST3. The best score(s) for each column is bolded, while the second
best score is underlined.
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