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Abstract

The EvaCun 2025 Shared Task, organized as
part of ALP 2025 workshop and co-located
with NAACL 2025, explores how Large Lan-
guage Models (LLMs) and transformer-based
models can be used to improve lemmatization
and token prediction tasks for low-resource an-
cient cuneiform texts. This year our datasets
focused on the best attested ancient Near East-
ern languages written in cuneiform, namely,
Akkadian and Sumerian texts. However, we
utilized the availability of datasets never before
used on scale in NLP tasks, primarily first mil-
lennium literature (i.e. "Canonical") provided
by the Electronic Babylonian Library (eBL),
and Old Babylonian letters and archival texts,
provided by Archibab. We aim to encourage
the development of new computational meth-
ods to better analyze and reconstruct cuneiform
inscriptions, pushing NLP forward for ancient
and low-resource languages. Three teams com-
peted for the lemmatization subtask and one for
the token prediction subtask. Each subtask was
evaluated alongside a baseline model, provided
by the organizers.

1 Introduction

Natural Language Processing for low-resource lan-
guages presents unique challenges, especially in
an era where bigger models and more data are
seen as the key to success. Ancient languages be-
fore the spread of the alphabet in the first millen-
nium BCE, were primarily morphosyllabic, written
using a combination of logograms (i.e. "word"
signs) and syllabic signs (Fedorova; Daniels, 2023).
Cuneiform in particular was used to encode more
than a dozen languages across Western Asia, from
languages of unknown or limited familial origin,
like Sumerian or Hurrian, to several Semitic and
Indo-European, languages, like Akkadian, Hittite,
and Luwian.

Ancient Language Processing deals primarily
with solving the challenges of the computational

analysis of ancient morphosyllabic scripts, like the
pictographic nature of signs, their iconically mean-
ingful and complex visual arrangement, and lexical
homonymy to name a few (Gordin, 2014; Gabriel
et al., 2021). Some languages, particularly Semitic
ones, are even more difficult due to their rich mor-
phology, which leads to complex word forms and
intricate grammatical structures (Weninger et al.,
2011; Zitouni, 2014). Additionally, ancient lan-
guages often suffer from fragmented texts because
the sources we rely on—inscriptions, manuscripts,
and other historical records—are incomplete due
to damage, erosion, and loss over time. These
challenges make two key downstream NLP tasks,
token prediction (used, for example, in BERT pre-
training) and lemmatization, particularly difficult.
To address this, we introduce a shared task with
two subtasks: lemmatization, which reduces words
to their base forms, and token prediction, which
predicts the original token replaced with a mask.

The lemmatization and token prediction tasks
for EvaCun 2025 focus on Akkadian and Sumerian
cuneiform texts. Even though cuneiform was used
to write on clay for more than 3,000 years, many
cuneiform languages are low-resource languages.
Existing corpora of texts consist of a relatively lim-
ited amount of data for each historical period of
cuneiform, which is moreover divided into different
geographical areas, archaeological contexts, and
text genres.1

Existing language models have relied mostly
on the tens of thousands of first millennium BCE
Assyrian and Babylonian archival documents and
royal inscriptions from the Open Richly Annotated
Cuneiform Corpus (ORACC) (Gordin et al., 2020;
Lazar et al., 2021; Gutherz et al., 2023), as well
as the many thousands of sporadic Akkadian and
Sumerian sources on the Cuneiform Digital Library

1For a good textual and linguistic overview of Akkadian
and its periodization see (Vita, 2021)

https://www.ebl.lmu.de/
https://www.archibab.fr/
https://oracc.museum.upenn.edu/
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Initiative (CDLI) (Pagé-Perron et al., 2017; Chen
et al., 2023). We therefore wanted to introduce new
text genres and large scale corpora that have be-
come systematically available over recent decades
in the Electronic Babylonian Library (eBL) and
Archibab. For more details on the content and
genre of the text in the dataset provided for the
shared task see Data section below.

2 Previous Research

The origins of Computational Assyriology can be
traced back to the 1960s, and since then over 200
relevant papers have been published. Almost all as-
pects of Assyriological research were experimented
with computationally, from artifact reconstruction
to transliteration of cuneiform, text annotation, and
content analysis. In this section, we briefly sum-
marize past attempts on cuneiform tablet recon-
struction and lemmatization of Akkadian. For a
more detailed survey on the history of Computa-
tional Assyriology see Sahala (2021), on vision
related tasks for cuneiform see Bogacz and Mara
(2022), and for Assyriological digital resources see
Charpin (2014), and the DANES resources on the
OpenDANES platform.

2.1 Lemmatization
Traditionally Akkadian lemmatizers have been
based on dictionary look-ups or morphological
analysis. The first2 published lemmatizer and mor-
phological analyzer of Akkadian was implemented
by Kataja and Koskenniemi (1988), but this system
was more of a tech-demo to demonstrate, how dis-
continuative morphology could be implemented as
a finite-state grammar (FSG). Further morphology-
based models were published for Babylonian by
Barthélemy (1998), Macks (2002), Sahala (2014)
and Sahala et al. (2020b), and for Old Assyrian
by Bamman (2012). To date, the most used lem-
matizer for Akkadian, and cuneiform languages
in general, is L2 (Tinney, 2019). L2 is a dictio-
nary based lemmatizer, transcriber and POS-tagger
that uses bigram look-up for disambiguation. It
has been used to annotate ORACC texts, one of
the largest open collection of annotated cuneiform
texts.

2Giorgio Buccellati built tools for Akkadian already in the
1970s but to our knowledge these have not been published
Buccellati (1977); for the goals of his project see the web-
site of Cybernetica Mesopotamica. Tools were also created
for the Neo-Assyrian Text Corpus Project by Simo Parpola
and Robert M. Whiting. Their dictionary-based lemmatizer,
however, remains also unpublished.

Both, dictionary and morphology based lemma-
tizers have their shortcomings, which ultimately
emerge from the Akkadian spelling variation and
discontinuative morphology. Dictionary-based
models suffer from spelling-variation and morphol-
ogy induced out-of-vocabulary words (OOV) that
they are unable to lemmatize. Morphology-based
models, on the other hand, suffer from the ambi-
guity and irregularity of the Akkadian writing sys-
tem, especially concerning the spelling of phoneme
quantities. For this reason, morphology-based mod-
els rely almost exclusively on phonologically tran-
scribed inputs, which limit their usability, since
most unannotated digitized texts exist in translit-
eration. The only exception to this is Bamman’s
Old Assyrian morphological analyzer, which uses
a brute-force approach to map between translitera-
tion and transcription.

Treatment of discontinuative morphology was a
long-standing challenge in Natural Language Pro-
cessing, since it could not be elegantly expressed
with FSGs. Over time, various extensions were
introduced to FSGs, such as the compile-replace
algorithm, flag diacritics, memory registers and
multi-tape automata (Cohen-Sygal and Wintner,
2006), and after the memory requirements allowed
it, some implementations relied on linearizing the
morphology with procedural pregeneration. Yet,
whereas the state-of-the-art analyzers for morpho-
logically concatenative languages had been domi-
nated by FSGs since the 1980s, still in the 2000s,
some state-of-the-art computational models of dis-
continuative morphologies were implemented pro-
cedurally, such as Buckwalter (2002) for Arabic.

During the last decade, neural sequence-to-
sequence models have opened new avenues for
lemmatizing languages (Bergmanis and Goldwater,
2018; Kanerva et al., 2018). These models have
introduced promising ways to deal with complex
orthographies and morphologies, as well as syn-
chronic and diachronic variation, like those found
in Akkadian. Training neural models for lemmatiz-
ing Akkadian has been largely possible only due
to Oracc’s open data policy and the invaluable ef-
fort of dozens of Assyriologists, who have con-
tributed their data to Oracc and annotated it semi-
automatically using Tinney’s L2.

The first neural network based attempt to linguis-
tically annotate Akkadian was Sahala et al. (2020a).
This system phonologically transcribed Akkadian
using sequence-to-sequence models feeding the
output into a finite-state transducer to produce lem-

https://cdli.mpiwg-berlin.mpg.de/
https://www.ebl.lmu.de/
https://www.archibab.fr/
https://opendanes.org/nav/DANES-resources.html
https://cyb-mes.net/3-texts.htm
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mata, POS-tags and morphological labels. This
approach suffered from morphological ambiguity
and the lemmatization pipeline was later simpli-
fied into BabyLemmatizer (Sahala et al., 2022),
which predicted the lemmata directly from translit-
eration without intermediate steps. Another suc-
cessful Akkadian neural network-based lemma-
tizer was published by Ong and Gordin (2024),
who developed AkkParser, a language model im-
plemented within the spaCy framework, with cus-
tomized pipeline components for morphological
analysis and syntactic dependency parsing specif-
ically adapted to Akkadian cuneiform texts. This
model was trained through an iterative bootstrap-
ping methodology on a treebank of Neo-Assyrian
letters, with human annotators providing correc-
tions to progressively improve performance across
annotation cycles. The only model so far specifi-
cally trained to annotate lemmas in Old Babylonian
is Smidt et al. (2024), who conducted experiments
on Part-of-Speech tagging for Old Babylonian let-
ters using the Flair toolkit, finding that Multilingual
BERT Transformer-based embeddings achieved
good accuracy, despite working with a limited train-
ing corpus.

2.2 Token Prediction
Clay tablets, the medium on which the texts of an-
cient mesopotamia were written, are often found
in fragmentery condition, causing a sigificant po-
tential loss of text (Fetaya et al., 2020). Work has
been conducted to collate 3D-scanned cuneiform
tablet fragments by using join-surface heatmaps
(Collins et al., 2014) and script feature analysis
(Cammarosano, 2014; Fisseler, 2019). Systems for
joining disconnected transliterated fragments have
also been implemented (Tyndall, 2012; Simonjetz
et al., 2024).

Token prediction differs fundamentally from
these reconstruction approaches, as it aims to infer
the content of missing text rather than identifying
fragment matches in a database. Although rela-
tively underexplored, some studies have employed
machine learning models to reconstruct missing
sign sequences in cuneiform texts. In Fetaya et al.
(2020), RNN models are used to predict missing to-
kens. Another study, by Lazar et al. (2021), frames
the problem using a masked language modeling
approach similar to BERT pretraining, leverag-
ing multilingual training with BERT-based models.
This task is also popular in works on other ancient
languages, see Sommerschield et al. (2023).

3 Data

Statistics for the shared task datasets are provided
in tables 1, 2 and 3. Our data comes from two
primary sources: the Electronic Babylonian Li-
brary Dataset (eBL) (Cobanoglu et al., 2024) and
Archibab. The eBL data is drawn from transliter-
ated cuneiform tablets via the eBL API provided by
Enrique Jiménez on Nov. 2024; an earlier image of
the data is also published on Zenodo (Cobanoglu,
2023). The data used is novel for NLP purposes
as it focuses on a considerable number of literary
texts. Although like ORACC texts it is also dated to
the first millennium BCE, the eBL corpus make up
very different kinds of literary and scientific genres
subsumed here under the term canonical, using the
accepted terminology of Hallo (1991). Archibab
texts, on the other hand, primarily consist of Old
Babylonian archival documents from the early sec-
ond millennium BCE (2004–1595 BCE), of which
a subset mostly made up of letters was provided
for the shared task with the kind permission of
Dominique Charpin (Collège de France) and Ma-
rine Béranger (FU Berlin). Where more metadata
was provided in the dataset itself, as in the case
of Archibab texts, or available via the eBL API,
we included information about genre, find location,
and language. To avoid potential bias, we replaced
tablet IDs with randomized numbers. Additionally,
any words that were entirely missing from the texts
were removed.

Dataset Split Fragments Unique Values

Lemmatization Total (Train + Test) 10,214 46,966
Train 8,171 40,640
Test 2,043 15,539

Token Prediction Total (Train + Test) 28,472 118,550
Train 22,777 102,639
Test 5,695 38,825

Table 1: Statistics for Lemmatization and Token Predic-
tion datasets.

Dataset Category Details

Lemmatization Akkadian 377,000
Sumerian 51
Emesal 2

test function words 17,686 / 73,357 samples
test OOV 7,379 / 73,357 samples

Token Prediction Akkadian 970,237
Sumerian 130,596
Emesal 33,237

test function words 3,826 / 44,517 samples
test OOV 4,161 / 44,517 samples

Table 2: Breakdown for Lemmatization and Token Pre-
diction datasets. Language is reported per word in the
dataset as tablets may have words in multiple languages.
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Dataset Genre Count

Lemmatization Canonical 4659
Unclassified 4217

Archival 869
Administrative letter 242

Monumental 119
Political letter 72

Other 26
Private letter 8

Diplomatic letter 2

Token Prediction Canonical 11332
Unclassified 10994

Archival 2940
Other 2321

Monumental 344
Administrative letter 276

Political letter 242
Private letter 13

Diplomatic letter 8

Table 3: Lemmatization and Token Prediction Genre
Distribution.

Each dataset was split into training and testing
sets, with 80 percent of the tablets allocated to the
training split, which was provided to participants
in the first step. The remaining 20 percent were
used for evaluation, and all results are based on
this held-out test set. It is worth noting that the
two datasets had slight differences in translitera-
tion conventions: this is taken into account during
evaluation, as detailed below.

3.1 Lemmatization Data

For the lemmatization data, we applied cleaning
steps to ensure consistency and usability. If a word
in a given context had several possible lemmatic
interpretations, we kept only the first lemma from
that list. Any words that lacked a corresponding
lemma were filtered out, ensuring that all remaining
tokens in the dataset had a valid lemmatized form.

3.2 Token Prediction Data

For the word completion task, we focused on re-
moving noise and ensuring that only complete,
readable words were included. We excluded any
words that contained fragmentary markers (such
as "...", "[", "]", "x", "X", or "?"), as well as any
numbers. Additionally, we cleaned the "value" col-
umn by removing non-alphabetical characters like
< and #, which are additional editorial marks. We
masked 20 percent of the data in each of the splits.

4 Shared Task

The task was structured to ensure consistency and
transparency in assessing the performance of the
lemmatization and token prediction models. Partici-
pants submitted both their generated predictions for
the test set and technical reports through the Soft-
Conf system. The train datasets provided contained
pre-processed cuneiform texts, ensuring all partic-
ipants worked with the same linguistic resources
without modifications. While no strict measures
were in place to prevent fine-tuning on the test set,
the competition relied on participant integrity to
avoid unfair data contamination. The evaluation
compared submitted predictions against a held-out
test dataset, with participants encouraged to doc-
ument their methodologies in detail in the techni-
cal report, which were reviewed by the organiz-
ers. To promote replicability, participants were
expected to share their scripts, system source code,
and, where possible, trained models on platforms
such as GitHub and Hugging Face.

5 Evaluation Metrics

We use accuracy as our primary evaluation measure
in both, lemmatization and token prediction tasks,
that is, the percentage of valid predictions over the
whole evaluation category.

We structured our results according to distinct
categories to assess performance across different
linguistic phenomena:

Function vs. non-function words: Function
words (e.g., conjunctions, prepositions) typically
have high-frequency, well-attested forms, while
non-function words (e.g., nouns, verbs) exhibit
more variation and complexity.

In-vocabulary (in-vocab) vs. out-of-vocabulary
(OOV) words: In-vocab words appear in the train-
ing data, while OOV words do not. OOV perfor-
mance is particularly important for evaluating a
model’s generalization ability.

5.1 Flexible Matching

We considered predictions valid within the range
of certain flexibility to prevent false negatives af-
fecting the lemmatization evaluation results.

Firstly, as the eBL dataset contains Roman nu-
merals indicating homonyms, while the Archibab
dataset does not, we removed all numerals from
both datasets and from the predictions for both
tasks to ensure consistency.
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For the evaluation of the lemmatization task,
we aimed to allow variations that arise due to
differences between the datasets, since dialect or
chronolect identification was not part of the task
list, and in reality separate models should be trained
for different domain s for maximum efficiency. To
achieve this, we implemented two steps. First, we
wrote a harmonization function that standardizes
most lemmatization conventions across datasets.
For example, we unified macrons and circumflexes
(e.g., parāsu vs. parâsum; Anunnakū vs. Anun-
nakû), made mimation optional (šarru vs. šarrum)
and considered dictionary forms with and without
initial waw equivalent (alādu vs. walādu). Sec-
ond, we curated a special list of ca. 200 additional
lemmatization variants to ensure that reasonable
spelling differences did not unfairly impact accu-
racy. This list handles variation such as nuhatim-
mum vs. nuhtimmu. Naturally, all insonsistencies
could not be handled, but the implemented rules
covered most of the cases where the evaluation
could have probably given false negatives. This
harmonization was only ran at the evaluation phase
when the predictions and the gold standards were
matched with each other. Therefore, all models had
to deal with the same inconsistencies in the training
phase.

For the evaluation of the token prediction task,
we focused on exact matches. However, we ac-
knowledge that multiple valid completions can ex-
ist. For example, different experts might propose
different reconstructions for the same missing seg-
ment based on contextual interpretation. Future
work should incorporate methods to allow for se-
mantic flexibility in evaluation.

6 Baseline Systems

To compare the shared task results with the existing
publicly available systems, we used two baselines
in lemmatizer evaluation and one baseline for token
prediction evaluation

6.1 Maximum Likelihood Estimator

Our first baseline lemmatizer is an MLE dictionary
look-up that assigns each word form with its most
common lemma found in the training data. This
simulates the simplest possible lemmatizer for a
language and gives an estimate how well the more
sophisticated models can handle ambiguity.

6.2 BabyLemmatizer 2.2
Our second baseline is BabyLemmatizer 2.2, a hy-
brid state-of-the-art annotation pipeline that com-
bines the strengths of neural networks and shal-
low context-aware dictionary look-ups. Previ-
ously it has been used for lemmatizing several lan-
guages, such as Egyptian, Coptic, Demotic (Sahala
and Lincke, 2024), Akkadian, Sumerian, Urartian,
Greek and Latin (Sahala and Lindén, 2023). Evalu-
ations have shown an accuracy ranging from 82%
to 98% depending on the script and language. In
Akkadian lemmatization the reported accuracy is
ca. 95% using in-domain training data.

BabyLemmatizer treats lemmatization as a ma-
chine translation task. Its neural network architec-
ture comprises a two layer BiLSTM encoder for
reading the input sequence, and a unidirectional
LSTM decoder with input feeding attention for
generating the output. The neural network’s output
is then validated, corrected and confidence-scored
with a heuristic dictionary look-up.

For all BabyLemmatizer models, we split the
given training dataset into chunks of ten fragments
each, which of we always take the first eight as our
training data and the remaining two as development
data, yielding 80/20 training/development split.

6.2.1 Lemmatizer Model
Since the dataset used in the shared task does not
contain part-of-speech (POS) labels and BabyLem-
matizer relies on them for lemma disambiguation,
we train two separate models for lemmatization
and disambiguation and use them in tandem.

The initial context-blind model lemmatizes
words without their sentence contexts and estimates
their ambiguity using BabyLemmatizer’s built-in
confidence scoring system. The disambiguation
model then attempts to correct the low-confidence
lemmata by observing their contexts (in transliter-
ation) using a symmetric window of three words.
Both models use the default logo-phonemic tok-
enization that treats logograms and determinatives
as indivisible symbols, and syllabograms and pho-
netic complements as divisible phoneme sequences.
This setting collapses homonymous syllabic signs
such as ša and ša2 together but keeps logograms
such as DU and DU3 separate, since their meanings
and readings are generally unrelated. The lemma-
tizer model works only on the word level and does
not take the fragment metadata into consideration.

The advantage of the dual-model approach is
marginal, providing only ca. 1% increase in lemma-

https://github.com/asahala/BabyLemmatizer
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tization accuracy in comparison to using either of
the sub-models alone.

6.2.2 Token Predictor Model
For the token prediction task we train two mod-
els, the basic model and an augmented one. We
train BabyLemmatizer similarly to the lemma dis-
ambiguation model, but instead of predicting the
lemma we predict transliteration for each masked
word based on its surrounding context with a sym-
metric window of three words. We segment the
input using BabyLemmatizer’s logo-syllabic tok-
enizer using translitered signs as minimal units,
and generate the output sequence similarly. The
token prediction model does not take into account
the language or genre metadata and relies purely
on sign-to-sign relations.

The augmented model is trained in the same
manner, but the training data is concatenated with
itself for 15 times before the train/dev split. The
masked words are then randomized in a way that
15% of the total words are masked. Motivation
for this additional model was to provide a more
comparable baseline with the team 32’s model that
used the same augmentation approach.

7 Results

Three teams competed for the lemmatization task,
and one for the word prediction task. The model
numbers refer to submissions in this volume - sub-
mission 29 is "Lemmatization of Cuneiform Lan-
guages Using the ByT5 Model", submission 33 is
"Beyond Base Predictors: Using LLMs to Resolve
Ambiguities in Akkadian Lemmatization" and sub-
mission 53 is "A Low-Shot Prompting Approach to
Lemmatization in the EvaCun 2025 Shared Task".
for the token prediction task, submission 32 is
"Finetuning LLMs for EvaCun 2025 token predic-
tion shared task".

Subset 29 33 53 MLE BL
all 0.84 0.94 0.31 0.83 0.93
func 0.98 0.98 0.83 0.98 0.98
non func 0.80 0.93 0.15 0.79 0.92
in vocab 0.89 0.97 0.34 0.92 0.96
oov 0.48 0.72 0.07 0.00 0.65

Table 4: Accuracy results for lemmatization. Results for
teams 29, 33, 53, along with MLE baseline (pick most
common lemma for each token), and BabyLemmatizer
baseline.

Subset 32 BL BL+AUG
all 0.21 0.14 0.21
func 0.36 0.36 0.46
non func 0.19 0.12 0.19
in vocab 0.22 0.16 0.23
oov 0.03 <0.01 <0.01

Table 5: Accuracy results for Token Prediction. Results
for Team 32, along with Babylemmatizer baseline, and
Babylemmatizer baseline with augmented data.

7.1 Lemmatization

The performance of the submitted lemmatization
models varied significantly based on the complex-
ity of the word forms and their frequency in the
training data. Table 4 presents the overall accuracy
results for lemmatization across all systems. One
key observation was that function words were sig-
nificantly easier to lemmatize than non-function
words, as seen in the high accuracy scores across
all models. This is expected, given their lower mor-
phological variation and higher frequency in the
training data. OOV words, by contrast, posed a
greater challenge, highlighting the difficulty in han-
dling previously unseen forms. In fact, OOV items
represented the only notable bottleneck in lemmati-
zation performance, as in-vocabulary words were
almost perfectly lemmatized by BabyLemmatizer
and team 33. This suggests that both systems ex-
hibit strong context-awareness, allowing them to
accurately determine the relevant lemma based on
contextual cues.

7.2 Token Prediction

The results in table 5 show that 32 and BL+AUG
outperform BL overall (0.21 vs. 0.14), with aug-
mentation significantly improving function-word
(0.46) and in-vocabulary (0.23) accuracy. However,
OOV handling remains poor across all models, with
32 performing very slightly better (0.03).

8 Discussion

The results highlight both progress and remaining
challenges in lemmatization and token prediction
in ancient Akkadian. For lemmatization, the high
accuracy of BabyLemmatizer and team 33’s model
shows that hybrid models combining neural net-
works and rule-based approaches are effective for
Akkadian’s complex morphology. However, the
performance gap between in-vocabulary and out-
of-vocabulary words suggests that generalizing to
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unseen forms remains a significant challenge.
Token prediction proved more difficult, re-

flecting the uncertainty in reconstructing missing
text from fragmentary sources. Function words
were easier to predict accurately than content in-
vocabulary words, which exhibit greater variability.
Out-of-vocabulary words were almost impossible
to predict.

This shared task reinforces a pattern of success-
ful collaborations between cuneiform specialists
and computer scientists, or individuals with exper-
tise in both domains. The complexity of ancient lan-
guages like Akkadian and Sumerian, with their rich
morphological structures and varied orthographic
conventions, demands both computational innova-
tion and philological expertise. The challenges of
this field may be noted by the fact that out of six-
teen teams that initially expressed interest in the
shared task, only four submitted final systems, with
three completing the lemmatization task and only
one the token prediction task.

The new corpora was made available through the
years-long work of cuneiform specialists working
on the eBL and Archibab digital projects. Their spe-
cialized knowledge ensured high-quality data that
enhanced model performance. The original data
files were furthermore preprocessed for consistency
and machine readability by experts with experience
in both computer models and cuneiform texts and
their digital representations. Building thus on the
works of others, the task force has resulted in robust
models for new periods and genres of Akkadian
texts that were previously underrepresented in com-
putational studies. These new models enable more
comprehensive analyses of Akkadian’s diachronic
development and genre-specific characteristics, ul-
timately enriching our understanding of this pivotal
language in ancient Near Eastern history.

The task force has demonstrated that the collab-
oration between domain experts and computational
scientists does not need to be direct–their com-
plementary contributions across different stages
of the ancient language processing pipeline create
an environment conducive to breakthrough results
that benefit the entire field. The promising per-
formance on the lemmatization task, particularly
by hybrid approaches combining neural networks
with rule-based systems, demonstrates that these
methodologies can be successfully applied to other
under-resourced ancient languages. This could po-
tentially transform our ability to analyze and under-
stand historical texts at scale, opening new avenues

for research across multiple disciplines within the
humanities.
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