
Proceedings of the Second Ancient Language Processing Workshop associated with NAACL 2025, pages 193–197
May 4, 2025. ©2025 Association for Computational Linguistics

193

A Low-Shot Prompting Approach to Lemmatization in the EvaCun 2025
Shared Task

John Sbur Brandi Wilkins Elizabeth Paul and Yudong Liu
Computer Science Department
Western Washington University
Bellingham, Washington 98225

{sburj, wilkinb2, paule5, liuy2}@wwu.edu

Abstract
This study explores the use of low-shot prompt-
ing techniques for the lemmatization of ancient
cuneiform languages using Large Language
Models (LLMs). To structure the input data
and systematically design effective prompt tem-
plates, we employed a hierarchical clustering
approach based on Levenshtein distance The
prompt design followed established engineer-
ing patterns, incorporating instructional and
response-guiding elements to enhance model
comprehension. We employed the In-Context
Learning (ICL) prompting strategy, selecting
example words primarily based on lemma fre-
quency, ensuring a balance between commonly
occurring words and rare cases to improve gen-
eralization. During testing on the develop-
ment set, prompts included structured examples
and explicit formatting rules, with accuracy
assessed by comparing model predictions to
ground truth lemmas. The results showed that
model performance varied significantly across
different configurations, with accuracy reach-
ing approximately 90% in the best case for in-
vocabulary words and around 9% in the best
case for out-of-vocabulary (OOV) words. De-
spite resource constraints and the lack of input
from a language expert, oour findings suggest
that prompt engineering strategies hold promise
for improving LLM performance in cuneiform
language lemmatization.

1 Introduction

In this work, we explore the feasibility of low-shot
prompting as a method to leverage the pre-trained
knowledge of Large Language Models (LLMs) for
cuneiform lemmatization. Low-shot prompting en-
ables the encoding of linguistic patterns and con-
textual dependencies directly into the model’s in-
put format while requiring only a handful of well-
chosen examples for adaptation. This is partic-
ularly valuable for low-resource languages, such
as cuneiform, where large annotated datasets are
scarce.

We investigate how carefully designed prompt
templates and example selection strategies impact
the performance of low-shot lemmatization. Our
structured prompts incorporate clear task instruc-
tions and illustrative example pairs to guide the
model toward accurate lemma predictions. Exam-
ple selection follows a frequency-driven approach,
ensuring a balance between common and rare cases
to enhance generalization. Through this experi-
ment, we evaluate a series of configurations in the
low-shot prompting framework and assess the effec-
tiveness of this method in handling this specialized
task.

In the following sections, we first provide
an overview of the low-shot prompting approach.
Then, we describe the system architecture and the
process of refining it by optimizing configurations
on the development set, followed by a report on the
corresponding results. Finally, we discuss the limi-
tations of our approach and conclude with insights
and directions for future work.

2 Low-Shot Prompting with In-Context
Learning

The goal of this system is to leverage low-shot
prompting through the In-Context Learning (ICL)
strategy. As introduced in [1, 2], ICL enables large-
scale language models to learn a task by incorporat-
ing only a few examples within the prompt, without
requiring addtional fine-tuning.

Our proposed approach consists of two key
components: (1) designing properly formatted and
meaningful prompts and (2) selecting a small but
representative set of examples. Together, these are
used to enhance an LLM’s ability to lemmatize
cuneiform languages.

To optimize prompt effectiveness, we adopted
the template-based prompt engineering approach
described in [3] as a method shown to get better re-
sults when interacting with LLMs, especially Ope-



194

nAI models [4].
The template pattern guides the model by

specifying both the type of information it should
expect and the format in which it should interpret
and generate responses. We implemented this ap-
proach in several prompts, including prompts 3,
4, 10, and 13. Prompt 3 sets up the template and
informs the model what kind of information it can
expect to receive. This includes a word to identify
and relevant background details. Prompt 4 tells it
how to respond, which is with a single word repre-
senting the lemma of the word. Prompt 10 utilizes
the established format by giving the word we need
to identify and declaring its correct lemma.

Other template prompts were tasked with pro-
viding context alongside prompting or during ICL.
For example, Prompt 13 was used to include the
provided example sentences before asking for each
lemma. We observed that dropping the example
sentence led to a decrease in accuracy. In all cases
we aimed to form our prompts to be specific and
concise so that there was no ambiguity to confuse
the model. Appendix A lists the set of prompts that
we created for use in this task.

The second part of the prompting low-shot
model method is selecting meaningful examples to
train the model on. Our implementation focused
mainly on the frequency of the lemmas in the pro-
cess of choosing examples. Selecting a set of fre-
quently occurring lemmas seeks to build context
with common lemma recognition. Selecting a set of
infrequently occurring lemmas seeks to add diverse
examples to the model’s context window, with the
purpose of better understanding latent grammar
rules that make up the outer clusters.

3 System Description

The data provided at the beginning of the task was
used to create a hashmap of lemmas associated with
their clean values. This map of unique lemmas was
split into 80-20 partitions. The training set was the
larger partition and was used to select examples
of lemmas with their clean values to build context
while the smaller partition was used to assess the
lemmatization accuracy of clean values.

During the ICL process, batches were created
by sorting the data by properties such as the to-
tal number of occurrences of the lemma. This
method of selecting examples on which to build
our model’s context window allowed us to focus
on common words while diversifying our exam-

ple set so that the model does not become biased.
Batch sizes ranged from 4 to 30 lemmas, with batch
counts ranging from 2 to 24. Clean values per
lemma ranged from 1 to all per lemma. The dis-
tribution of lemmas within the batches also varied,
including distributions using more infrequently oc-
curring lemmas than frequent ones, where lemmas
from specific languages were selected for or ig-
nored, and where sorting by occurrences pertained
to the frequency of the clean value rather than the
lemma.

During ICL, each clean value in the batch
could be sent as a statement and/or question. State-
ment prompts were sent to the model in the for-
mat “[L] is the lemma of [CV]” where a lemma
and clean value replaced the [L] and [CV] tokens.
Question prompts were in the format “What is the
lemma of [CV]?” which would require an answer
from the model. We collected data on our ICL ac-
curacy by evaluating the accuracy of the responses
given to these question prompts.

This feature was implemented after we no-
ticed a pattern during ICL, in which our accu-
racy when asking the lemma of each clean value
would start low and climb as our model was being
trained. It would peak about three-quarters of the
way through and then begin to decrease. Thinking
that we were likely seeing overfitting, we began to
alternate between sending statement prompts and
question prompts within the ICL section, a pro-
cess shown to reduce overfitting. This resulted in
improvements in our performance.

4 Refining the System Using the Dev Set

To refine the system, we ran our pipeline and per-
formed error analysis on the dev set. The factors we
implemented during this stage included variations
in prompt wording, alternating between prompts
stating rules and prompts asking questions, posi-
tive/negative reinforcement, and using mask tokens
to note spaces in the example sentences that were
missing words.

Positive reinforcement meant sending a
prompt indicating that the model’s prediction was
correct, while negative reinforcement meant send-
ing a prompt indicating that it was incorrect. Tests
with positive reinforcement did not result in in-
creased mean accuracy, but implementing negative
reinforcement was effective in the general form
seen in prompt 14. After some error analysis, we
tried to take it a step further by implementing var-



195

Batch Properties Features Reinforcement Acc.

Size Count Q. Stmt Sentence Lang. Neg. Pos. inv oov

H. L. M. R. Mask No M. G S C

15 1 2 X X X X 89.82 6.26

30 1 2 X X X X 90.78 8.09

10 3 1 2 X X X X X 84.24 6.47

5 7 1 2 2 X X X X X 83.81 6.40

4 8 12 X X X X 53.84 7.56

4 4 6 X X X X 50.46 6.57

4 16 12 X X X X 63.91 9.42

4 16 12 X X X X X X 47.12 4.01

4 16 12 X X X X X X X 43.47 1.91

Table 1: Accuracy represents mean accuracy from 2 tests per test configuration (except for the highlighted test,
which was tested 4 times). “inv" refers to “in vocabulary” and “oov” refers to the accuracy with batches of 30
randomly selected lemmas from the dev set. The highlighted test resulted in the highest scores, and its parameters
were used for final testing. High frequency: total appearances > 100; Medium frequency: 50 <= total appearances
<= 100; Low frequency: total appearances < 50. Mask refers to mask tokens [MASK] used in place of missing
words in example sentences. Abbreviations used: Rand (random lemmas not sorted by frequency), Lang. (language),
G (generic negative reinforcement prompts), S (small correction negative reinforcement prompts), C (common
mistake negative reinforcement prompts), Q (Question), Stmt (Statement), H. (High), L (Low), M (Medium), and R
(Random).

ious degrees of negative reinforcement feedback.
This included ‘small’ corrections, which sent an
additional negative response telling the model its
answer was close in order to address the common
case in which the lemma was mostly accurate but
a few letters off (see prompt 15). Commonly mis-
taken lemmas were addressed by keeping track of
how often an incorrect lemma was guessed within
each section of clean values within a given lemma
and prompting it to avoid making those guesses
(see prompt 16). Both of these options seemed
promising but ultimately caused worse results, so
they were discarded before final testing began.

We used the data from the dev set to test the
accuracy of our model post-learning. Batches were
created using the dev set. Each clean value as-
sociated with a lemma was passed through, with
only Prompt 11 alongside background information
prompts being used. The responses were collected
and evaluated to get our output accuracies.

Table 1 visualizes the various strategies we
used to filter and order the data in the batch-
formation process (’Batch Properties’ section) as
well as some features we implemented through
prompt engineering (’Features’ and ’Reinforce-
ment’) and the resulting accuracies we obtained

in the tests. Each accuracy is computed by averag-
ing accuracies from two tests (with the exception
of the highlighted test). All tests in the table are
ran on OpenAI’s ChatGPT-4 Mini model.

To create our submission, we ran the pipeline
on the test data using the batch parameters that had
the best results when testing on the dev set.

5 Results

Our results take the form of accuracies representing
the portion of words that the model was accurately
able to lemmatize. These values are shown in Ta-
ble 1 as mean accuracies, with each test being run
twice. The exception is the highlighted test. It
was our highest scoring test, and was tested four
times instead to confirm its performance before
final testing.

The table displays two mean accuracies: the
in-vocab word accuracy (inv) and the dev set accu-
racy (oov). The proposed lemmas suggested during
the ICL process were used to calculate the T accu-
racy, which represented the percentage of guesses
that matched the actual lemma of the clean value
the model was to lemmatize. For each lemma in
the first four tests seen in the table during train-
ing, ICL involved providing both a statement and



196

question prompt of each lemma and its clean value
alongside background information; the statements
were all provided first followed by questions. For
lemmas in the later tests, batches alternated be-
tween only questions and only statements. In these
tests, batches where questions were used were re-
peated once with the same question. Repeating
questions allowed us to perform negative reinforce-
ment through small mistake and common mistake
corrections if needed.

This explains why the inv accuracy varied
among tests. The Dev accuracy came from ques-
tion batches only, which were made of clean values
and lemmas from the dev set. Because we parti-
tioned the dataset with no collision of lemmas, this
meant that the dev set was entirely composed of
out-of-vocabulary terms, which the model had not
yet seen. Thus the results we attained in this step
are based on proposed lemmas created using the
clustering algorithm on clean values whose lemmas
have not yet been declared to the model.

The performance of our model varied greatly
between tests, which is an indicator that there is
more work that can be done here. Despite the low
accuracy, our work on this task showed how differ-
ent data analysis and prompt engineering strategies
can improve LLM performance. For example, our
tests demonstrated that performance dropped when
the example sentences were not included, and in-
creased when telling the model its answers were
incorrect or alternating between sending statement
and question prompts.

6 Resource Limitations

In the process of ICL and performing error analysis,
we ran into several limitations. This included time
constraints as well as not having access to a lan-
guage expert to answer language-specific questions.
An expert’s guidance could lead to the realization
of relevant features and context not implemented in
our project. The biggest issue we ran into was pric-
ing of various models. Our configurations display
results from ChatGPT-4 Mini, but we also ran tests
on OpenAI’s ChatGPT-4, Anthropic’s Claude 3.5
Sonnet, and DeepSeek’s DeepSeek Chat. Our best
results came from running tests with the Claude
3.5 Sonnet model, but this also ended up being
the most expensive option. Since our final test-
ing would need to send a large amount of tokens,
Claude required resources beyond those allocated
for this task.

7 Conclusions and Future Work

Our team began this task with the goal of apply-
ing low-shot learning techniques and theories to
the lemmatization of cuneiform languages. The
success in this project comes from the support of
those theories in our results. Positive reinforcement
proved ineffective at increasing accuracy while neg-
ative reinforcement, relevant context, and a balance
of explicit rules and testing the model during ICL
was effective at increasing accuracy. The high-
est accuracy configuration, along with template
prompting, demonstrates these findings. Accuracy
could increase under the same configuration ap-
plied to different AI models such as Claude 3.5
Sonnet or OpenAI’s GPT-4 as well as with relevant
context provided by a language expert to imple-
ment into our prompts and pipeline.

With a better understanding of the lemmatiza-
tion task and obstacles encountered, we would like
to acquire the necessary funding to run more tests
using the Claude 3.5 Sonnet model. Additionally,
we would like to implement other features that we
predict would increase accuracy as well.

Reflection prompts represent a form of chain-
of-thought prompting, which would encourage the
model to state its ‘reasoning’ for the response it
gave. This would demonstrate its ability to ex-
tract lemmatization rules from latent space, hidden
features, that are present but cannot be directly
observed in the data. With this technique, we
could implement another layer of positive and neg-
ative reinforcement that addresses chain-of-thought
prompting [5]. This would likely allow us to im-
prove accuracy by supporting the formation of
outer clusters in the model’s hierarchal clustering
of cuneiform language grammar rules. The model
can then apply these rules to new and untested clean
values in order to more accurately determine their
lemmas.

Another idea we want to implement is soft
prompting where the model is trained on prompts
produced by other LLMs based on clean values and
other features. This application could lead to better
prompts that convey the data to the model without
the possibility of human error. Soft prompting
has not been tested in this context and could lead
to higher accuracy compared to human-produced
prompts [6].



197

A Appendix

A.1 Prompts
Rule ID Prompt
I 1 The following is a conversation be-

tween two Akkadian language ex-
perts. One guesses the lemma of a
provided clean value while the other
indicates whether they are correct or
not. Using your knowledge of lin-
guistic analysis and the information
shared in this conversation, you will
perform the task of identifying the
lemmas of words from Akkadian.

I 2 A lemma is defined as the root form
of a word without conjugation. Also
known as one that would be listed in
a dictionary entry for the word.

I 3 You will be given the word which
you need to identify. Sometimes you
will be given contextual information
such as the language the word is
found in as well as an example of
its use in a sentence.

I 4 Return a single word without expla-
nation nor formatting when asked
for the lemma of a word.

RP 10 The lemma of [P] is [P].
EP 11 What is the lemma of [P]?
RP 12 This word is found in the language

of [P].
RP 13 An example sentence using this

word is [P].
NC 14 Your guess is incorrect. The lemma

of [P] is [P].
NC 15 The correct lemma is slightly differ-

ent.
NC 16 When given words whose lemma is

[P], you commonly guess the lemma
[P] instead.

PC 17 Your guess is correct.

A.2 Prompt Rules
Purpose Symbol Description
Param [P] Establishes a field

that requires input
Instruct I Gives instructions

to the LLM
Training RP Instills rules to the

LLM via ICL
PosConf PC Sends positive rein-

forcement
NegConf NC Sends negative rein-

forcement
Testing EP Asks the LLM to

perform a task

References

[1] Tom Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in Neu-
ral Information Processing Systems (NeurIPS),
33:1877–1901, 2020.

[2] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zheng-
bao Jiang, Hiroaki Hayashi, and Graham Neu-
big. Pre-train prompt predict: A systematic
survey of prompting methods in natural lan-
guage processing. ACM Computing Surveys,
55(9):1–35, 2023.

[3] Jules White, Quchen Fu, Sam Hays, Michael
Sandborn, Carlos Olea, Henry Gilbert, Ashraf
Elnashar, Jesse Spencer-Smith, and Douglas C.
Schmidt. A prompt pattern catalog to enhance
prompt engineering with chatgpt, 2023.

[4] OpenAI. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023. Accessed: March
2025.

[5] Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought
prompting elicits reasoning in large language
models, 2023.

[6] Adrian Bulat and Georgios Tzimiropoulos.
Language-aware soft prompting: Text-to-text
optimization for few-and zero-shot adaptation
of v &l models. International Journal of Com-
puter Vision, 132(4):1108–1125, 2024.


	Introduction
	Low-Shot Prompting with In-Context Learning
	System Description
	Refining the System Using the Dev Set
	Results
	Resource Limitations
	Conclusions and Future Work
	Appendix
	Prompts
	Prompt Rules


