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Abstract

We investigate the use of machine learning
for classifying proto-cuneiform economic texts
(3,500-3,000 BCE), leveraging Multi-Class
Support Vector Machines (MSVM) to assign
text type based on content. Proto-cuneiform
presents unique challenges, as it does not en-
code spoken language, yet is transcribed into
linear formats that obscure original structural
elements. We address this by reformatting tran-
scriptions, experimenting with different tok-
enization strategies, and optimizing feature ex-
traction. Our workflow achieves high label-
ing reliability and enables significant metadata
enrichment. In addition to improving digital
corpus organization, our approach opens the
chance to identify economic institutions in an-
cient Mesopotamian archives, providing a new
tool for Assyriological research.

1 Introduction

Proto-cuneiform is a writing system which
emerged in southern Mesopotamia at the end of
the 4th millennium BCE.1 It consisted of over 800
signs representing numbers, goods, and adminis-
trative procedures, which were impressed on small
clay tablets using a reed stylus. The entire corpus
consists of almost 7,000 texts, about 5,500 of which
are economic accounts, used alongside other tools,
such as small clay "tokens", bullae, and cylinder
seals, to control the operations of early cities (Fig.
1).

The majority (ca. 80%) of proto-cuneiform ar-
tifacts originate from the large Eanna area in the
city Uruk (modern-day Warka, Iraq). Excavations
at the site since the 1920s by the Deutsche Orient-
Gesselschaft (DOG), unearthed more than 5,000

1The debate whether proto-cuneiform is genuine "writing"
or just a mnemotechnical tool similar to other used at the time
in the Ancient Near East is open. It is rooted in an exclusive
definition of writing, which only allows glottographic systems
(like later cuneiform), and not semasiographic ones (like proto-
cuneiform).

Figure 1: MS 4631. A clay envelope with a seal im-
pression (right) and an array of tokens kept inside it.
Artifacts of this kind were the predecessors of writing,
and continued to be used by the accountants after writ-
ing was invented as well.

texts. The focus of the Eanna excavators was, how-
ever, architecture, which determined the choice of
a less-than-optimal approach towards other finds
(Nissen, 2024).

Today, our understanding of those accounts’ orig-
inal use context is limited. On the one hand, this
is due to the excavation documentation, where in-
formation is constrained to a square coordinate in
a 20x20 m excavation grid, and occasional com-
ments. On the other hand, it does not help that
the tablets were already discarded in antiquity, and
used as construction material within Eanna, so their
deposition location is not the one in which they
were written or stored. As one may expect in such
a situation, they are often severely damaged.

Nevertheless, already Englund suggested that
the distribution of tablets across the site echoes the
original institutions from where they were taken
(Englund, 1998). He observed that despite the sec-
ondary character of their deposition, accounts doc-
umenting the operations of the same sector of the
archaic economy tend to be found together. In
recent years, scholarly efforts into learning more
about this site and the origins of writing, allowed us
to gain a better understanding of the archaeological
record of Uruk (Nissen, 2024; Naccaro, 2025).

In this article, we offer a machine learning
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approach to automatic labeling of those archaic
tablets according to the economic sectors they deal
with — the account type. Once a trustworthy
method of doing this is established, we can mea-
sure the accounts’ similarity to each other and try
to cluster them on that ground to determine local
environments — or even offices — they were origi-
nally written in. In the future, we may as well try
to artificially complete, or at least expand, the dam-
aged artifacts using a model of similar accounts as
a template. Those tasks are not innovative on their
own — in fact, they are what cuneiform experts tra-
ditionally do — however, considering the amount
of material to work with, we think that developing
an automatic solution is the best approach for mea-
surable results at scale that are also reproducible.

Most importantly, however, automatically gen-
erated account labels are an additional metadata
point which, together with a method of identifying
similar texts in terms of content, allows other re-
searchers to navigate the archaic corpus in a more
informed way. As of now, information about ac-
count types is dispersed across different publica-
tions, which makes exploring the otherwise com-
pletely digitized corpus difficult. Account type
metadata, either with original citations or an "au-
tomated" tag, is available through 4ky (Zadworny,
2023), an open-source web application.

2 Data

To achieve the goal of trustworthy automatic ac-
count type classification, we used an existing edi-
tion of a comparable (even if much smaller) col-
lection of archaic tablets by Monaco (2007, 2014,
2016) as the main part of the training dataset. Im-
portantly, the texts edited by Monaco come from
the antiquities market, and their archaeological ori-
gin is unknown. It is accepted as unlikely that they
originate from the Eanna area of Uruk (Lecompte,
2023). This set of accounts was extended with
some tablets from Uruk and other smaller collec-
tions which were discussed by Englund (1998), and
few additional texts which we classified ourselves.2

The transcriptions of all the accounts used in
this study were sourced from the Cuneiform Digital
Library Initiative (contributors, 2025). The account
type tags assigned by the aforementioned authors
to the training dataset were extracted and assigned
to the transcriptions manually.

Total number of transcriptions used for training

2The accounts labeled by us have a "manual" tag in 4ky.

was 596. They were divided into seven account
types: animal husbandry, cereal, and dairy texts,
accounts of fields, fish, and humans, as well as
documents concerning textiles. Given that some
accounts contain a mix of items from multiple eco-
nomic sectors, we occasionally assigned more than
one tag to one text. This influenced the algorithm
design, as explained later.

The composition of the training dataset reflects
the archaic corpus as a whole. Most of the accounts
are cereal texts (323 in the training set), followed
by animal husbandry texts (125). Together, these
two types dominate the corpus, making the devel-
opment of automatic labeling for these accounts
particularly useful.

Automatic labeling of dairy texts (23), as well
as fish (22) and textile accounts (24) is an interest-
ing task: although they are easily identifiable for
human scholars thanks to well-understood seman-
tic sets of signs, they are relatively rare, making
training data scarce.

Field texts (42) are not as common either, and
some of them are entirely mathematical in nature,
only identifiable as such if we closely follow the
accountant’s calculations.

Human accounts (58) are challenging for an-
other reason: they usually contain lists of entries
understood as individual names and composed of
semantically unrelated signs, which may confuse
the model. Texts usually assigned to other types,
such as grain distributions (a cereal text) or assign-
ments of animal herds (an animal husbandry text)
exhibit the same characteristics, adding to the diffi-
culty.

As an additional limitation, we excluded ac-
counts with fewer than 6 signs from the training
set, as our experiments showed this led to an im-
provement of our model’s accuracy.

3 Method

The main requirements for the model were its trust-
worthiness and the ability to assign multiple labels
to a single text. Additionally, since we intend for
scholars to use our tools online, we aimed for a
lightweight implementation.

3.1 Model architecture

Due to the small and unbalanced training dataset,
using a neural network was not the optimal solution.
Instead, we decided to use support vector machines
(SVMs), which are known to perform better in such
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situations.
To allow for assigning multiple labels to each

account, we chose a specific type of SVM: a multi-
class support vector machine (Wang and Xue, 2014;
Zhang et al., 2021). A standard SVM seeks to op-
timally divide the dataset into exclusive groups,
assigning only one account type per text. In con-
trast, a multi-class SVM treats each account type
as a separate ’true or false’ question. This allows
one account to appear in the ’true’ section of mul-
tiple account types, and therefore to have multiple
labels assigned to it. This approach also allows
the accounts to remain unlabeled when they do not
meet the criteria of any of the account types. To-
gether with the ability to assess the certainty of
each assignment, this improves the quality of the
model.

3.2 Approaches to feature extraction

When working with proto-cuneiform accounts, sev-
eral additional challenges arise that are unique
to this writing system. First, the language of
those documents is unknown. As the accounts
were mainly accounting tools, the writing does
not reflect speech. Instead, meaning is en-
coded through non-linear arrangements of sign
sets within cases—meaningful subdivisions of the
writing surface, similar to text fields in modern
forms—making traditional language-oriented meth-
ods not applicable.

The second challenge is the non-linearity of the
script itself. In Assyriological transcriptions, each
proto-cuneiform sign is represented by its sign
name in Latin script, typically derived from its
meaning in later Sumerian cuneiform. The text is
also linearized according to the transcriber’s intu-
ition, resulting in the loss of information about the
original arrangement of the signs (Fig. 2).

As solving the issue of transcriptions’ linear-
ity is beyond the scope of this paper, we chose to
ignore the arrangements of signs within cases al-
together. Instead, we alphabetized the order of the
signs within each case to ensure that cases contain-
ing the same sets of signs are always represented
in the same way.

Aware of those challenges, to feed the account
transcriptions into our SVMs, we had to choose
a way of tokenizing the texts. To our knowledge,
no studies have yet determined the optimal way
of doing this in the case of archaic Mesopotamian
accounts. Thus, we decided to experiment using a

TF-IDF tokenizer3 with two approaches and com-
pare their accuracy: case-by-case, treating the en-
tire group of signs within one case of the document
as one unit, and sign-by-sign, treating each sign
separately.

3.3 Adjustments for accuracy

In the course of the study we experimented with
other aspects of the dataset as well: we tried to
assess the importance of number signs and sign
variants.

The number signs were the key that allowed the
scholars from the Berlin-based Archaische Texte
aus Uruk (ATU) project to decipher the archaic ac-
counts in the first place. Through computer-aided
statistical analysis, they could show that number
signs come in distinct sets depending on what is
accounted for, even if some signs are shared across
different sets (Green and Nissen, 1987). This ob-
servation allowed them to connect the accounts to
specific economic sectors, as well as describe sets
of semantically similar item signs each sector used.

We were curious if other (non-number) signs
alone are enough to make such distinctions. To test
this, we prepared for each account an alternative
transcription without any numbers, which we then
used to train another set of models, and we included
the results in the comparison.

Otherwise, when including numbers, we only
used the type of the sign, and not its value. For
example, the expressions 2N1 and 6N1 repeat the
same sign type — N1 — to express different val-
ues, so we treat them both as just N1. Our early
tests showed preserving the values decreased the
accuracy in the preliminary testing phase. This
may have to do with the model giving weight to
rare tokens. For instance the rare value 5N14 may
appear unique—and thus significant—to some ac-
count types, when in fact this is entirely coinciden-
tal, and the sign N14 is otherwise common.

The sign variants are a palaeographic feature
of CDLI transcriptions. They are represented us-
ing lowercase letters after the tilde sign (Fig. 2).
Although in most cases the variants seem not to
indicate semantic differences, there is at least one
important example to the contrary: the sign DUGa
usually represents beer, whereas DUGb and DUGc
stand for dairy fats — each a distinctive entry in
different types of accounts. Experiments with ex-
cluding them invariably led to dips in model qual-

3Part of Scikit-learn TfidfVectorizer.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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Figure 2: Reverse of MSVO 3, 64 — metadata section of a cereal account. Here, all signs are inscribed within a
single case, delineated with a horizontal line.

Transcription in CDLI:
3(N34) 1(N45) 2(N14) 1(N01), SZE∼a KU∼b2 SZIM∼a SI4∼f BA NI∼a SA∼c

ity.
Although it did not make much sense from a

methodological point of view to allow the tokenizer
to use n-grams (sequences of n-number of signs),
since the signs in the transcriptions were reordered
in an arbitrary way, we tested this aspect as well.
Surprisingly, allowing for n-grams improved the
model’s accuracy, which made us choose to keep
this feature. However, it did not matter whether we
set the limit of n to 2 or more, so again we opted
for the lowest value (2) to reduce its complexity.

3.4 Method summary

To summarize, we transformed the original dataset
in two ways: through alphabetizing the order of
signs within each case, and creating alternative
versions of transcriptions without number signs.

Then, we trained four MSVMs to determine
which is the most accurate. The variants of tok-
enization and transcription used were: 1) line-by-
line with numbers; 2) line-by-line without numbers;
3) sign-by-sign with numbers; and 4) sign-by-sign
without numbers.

70% of the dataset was used for training, and
30% for testing the model. The split was ran-

dom and done once per each model. The models
were trained for 10 iterations to see if the outcome
changes, and in all cases the results were similar. In
the next section, we present the final set of results.

4 Results

For convenience, the results of testing the models
will be discussed separately for each account type.

4.1 Animals

with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.87 1.00 0.93 0.81 1.00 0.94 148
yes 1.00 0.26 0.41 1.00 0.35 0.52 31
accuracy 0.87 0.89 179

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.93 1.00 0.96 0.93 1.00 0.96 148
yes 1.00 0.61 0.76 1.00 0.61 0.76 31
accuracy 0.93 0.93 179

Table 1: Animal accounts classification

All the values are in the range of 0 to 1, so 0.90
is equal to 90%. The precision value shows how
many times the model was correct in assigning the
label type. So, in the first example, 87% of the
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negative answers (“the account is not an account
of animals”) were correct. The recall value shows
how many matching examples were found—so, to-
gether with 87% precision, the 100% value means
that although the model assigned the ’not animal’
label to too many texts, it caught 100% of the true
non-animal texts. The support value (last column)
is the real number of non-animal and animal ac-
counts in the test set, and it is used as a weight
to calculate the F1 score — the realistic accuracy
measure of the model.

Knowing that, we can see that line-by-line to-
kenization did not work very well in the case of
animal accounts: the positive recall scores of 26%
(with numbers) and 35% (without numbers) show
that the models failed to catch many animal texts in
the testing dataset. The performance of the sign-by-
sign models was slightly better (61% in both). Im-
portantly, neither produced any false positives (the
precision score of yes is 100%), which is a good
sign from the point of view of reliability. Also, it is
interesting to see that in this case it did not matter if
the numbers were included or not, as the outcome
scores were the same.

An additional method of examining the mod-
els’ performance at this stage is studying feature
importance. Our models, as they were trained, as-
signed coefficients (positive and negative) to each
token they encountered, to determine how likely
each token is to appear in a specific account type.
After training, we extracted those coefficients to see
what signs or sign combinations models considered
as particularly telling for each account type.

In terms of animal accounts, for the sign-by-sign,
with numbers model, the most positively important
tokens were KIŠ (an equid sign), UD5a ("ram"),
U8 ("ewe"), and N2 — a numerical sign used to
account for dead animals (Englund, 1998).

Among the negatively important tokens we find
signs like N19 (a quantity sign for emmer, ca.
150 liters), KISIMb ("sheep’s milk butter"), or
SAL.KURa (metadata sign used for totals of work-
ers). Those findings suggest that the model cor-
rectly identifies which signs belong to the semantic
set of animal signs, and used them to label the
accounts.

4.2 Cereals
The performance of the model on cereal accounts
was significantly better, and we assume it is due to
the dominance of those texts in the training dataset.
Here, unlike in the animal texts, line-by-line mod-

with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.88 0.72 0.79 0.71 0.79 0.75 78
yes 0.81 0.92 0.86 0.83 0.75 0.79 101
accuracy 0.83 0.77 179

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.89 0.97 0.93 0.81 0.92 0.86 94
yes 0.98 0.91 0.94 0.93 0.83 0.88 85
accuracy 0.94 0.91 179

Table 2: Cereals classification

els achieved more success, although they were still
worse than those using the sign-by-sign approach.
With those, we see scores similar to the ones above,
with the model with numbers performing slightly
better than the one without. Unfortunately, every
model produced false positives, with the sign-by-
sign, with numbers model making the fewest mis-
takes.

Feature importance analysis shows the signif-
icance of number signs in this account type: al-
though the top-scoring signs are ŠEa ("barley"; also
metadata sign for totals of grain) and DUGa (most
often "beer"), among the top ten positively impor-
tant signs we have N39a (a quantity of ca. 5 liters
of barley), N19 (ca. 150 liters of emmer), N4 (ca.
25 liters of emmer) or N24 (ca. 2.5 liters of barley
or malt). Included are also bigrams N1 ŠEa (ca. 25
liters of barley) and N45 N4 (even larger volumes
of emmer).

The significance of number signs stands out
among the negative features as well: among the
top signs are N1 and N34 (polyvalent number signs;
used in different accounting systems to represent
different quantities) as well as N50 and N22 (used
in field measurements).

Overall, this is not surprising, as the account-
ing systems for cereals were the most varied and
contained the most unique numerical signs. Like
in the case of animal texts, we see that the model
could recognize that and use this feature of proto-
cuneiform.

4.3 Dairy

The dairy texts are among the most underrepre-
sented in the training set, and this is clearly visible
in test scores. In this case, it is difficult to decide
which model performed best: the highest score of
22% (sign-by-sign, without numbers) is equal to 2
catches, and two other models caught 1 text each.
While no model produced false positives, the out-
come seems hardly useful. It is also important to
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with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.95 1.00 0.97 0.96 1.00 0.98 170
yes 0.00 0.00 0.00 1.00 0.11 0.20 9
accuracy 0.96 0.96 179

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.96 1.00 0.98 0.96 1.00 0.98 170
yes 1.00 0.11 0.20 1.00 0.22 0.36 9
accuracy 0.96 0.96 179

Table 3: Dairy classification

acknowledge that the very high compound accu-
racy scores (96%) are inflated by the overwhelming
proportion of true negatives, a phenomenon which
repeats for other less common account types, and
thus is not a meaningful measure of success.

Despite that, the feature importance analysis
shows that the model was still able to learn the signs
which are characteristic for dairy accounts. Among
positively important signs we have DUGc ("dairy
fat"), KISIMa (butter from sheep’s milk), as well as
bigrams N1 KISIMa ("one vessel of the butter from
sheep’s milk") or N1 KU3a (a compound number
sign representing the quantity of ca. 4 liters of dairy
fats).

Interestingly, the negatively important features
seem to focus on animal signs, which sometimes
do appear in dairy accounts. We find in the report
such bigrams as N1 AB2 ("one cow") or AMAR
U4×1N57 ("one-year-old youngling"), which re-
quire further study. However, this "prejudice"
against animal signs may cause the low score of
the model.

4.4 Fields

with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.91 1.00 0.95 0.93 1.00 0.96 163
yes 0.00 0.00 0.00 1.00 0.25 0.40 16
accuracy 0.91 0.93 169

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.95 1.00 0.98 0.93 1.00 0.96 163
yes 1.00 0.50 0.67 1.00 0.25 0.40 16
accuracy 0.96 0.93 169

Table 4: Field texts classification

The outcome here is similar to the one presented
in the previous section. Again, we see overall low
scores, with the sign-by-sign, with numbers model
scoring the highest, with 50% of correctly labeled
accounts. Again, we have no false positives.

Among the positively significant features, we
see GAN2 ("field"), as well as several number signs

from the appropriate accounting system: N50 (an
area of ca. 65ha) and N22 (ca. 2,16ha), along-
side bigrams formed of various combinations of
number signs. This reflects the often mathematical
character of field texts, many of which are area
calculations.

Other than one puzzling bigram, GAN2 APINb
("land for ploughing?" or "ploughed field?"), the
list of negatively important signs consists of seem-
ingly random entries.

4.5 Fish

with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.97 1.00 0.98 0.97 1.00 0.99 173
yes 0.00 0.00 0.00 1.00 0.17 0.29 6
accuracy 0.97 0.97 179

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.98 1.00 0.99 0.98 1.00 0.99 173
yes 1.00 0.50 0.67 1.00 0.33 0.50 6
accuracy 0.98 0.98 179

Table 5: Fish accounts classification

The fish accounts had the lowest support value
out of all the account types, which makes the accu-
racy scores accidental.

Similarly to other rare account types, we see that
the sign-by-sign, with numbers model scored the
highest, though too by a margin of a single account.
The small difference, together with the low support
value makes it difficult to judge the quality of the
models.

Nonetheless, like in the case of dairy tablets, the
model was able to learn some fish-specific signs.
Among the positively important signs we find en-
tries like SUHUR ("dried fish"), ZATU759×KU6a
(a container with fish?), or GA2×KU6a ("basket
with fish"), all typical for this semantic set.

The list of negatively important features consists
mostly of numerals belonging to the cereal system,
however, the highest scoring entry is N8 SUHUR:
a seemingly valid fish qualification.

4.6 Humans

The accounts of humans is an account type where
all models failed entirely and did not catch any
texts.

Despite this — and in line with what we have
seen in the cases of other underrepresented account
types — feature analysis shows that the model
did identify some signs that are indicative of hu-
man accounts. We see the bigram N1 SAL.KURa
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with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.92 1.00 0.96 0.92 1.00 0.96 164
yes 0.00 0.00 0.00 0.00 0.00 0.00 15
accuracy 0.92 0.92 179

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.92 1.00 0.96 0.92 1.00 0.96 164
yes 0.00 0.00 0.00 0.00 0.00 0.00 15
accuracy 0.92 0.92 179

Table 6: Human accounts classification

as well as just SAL.KURa (metadata sign for to-
tal of male and female workers), accompanied by
SAL ("adult female") and N1 AL, a qualification
describing groups of laborers.

The list of negatively significant entries is co-
incidental, though it is interesting to see BA (an
administrative qualification) there, as it often fea-
tures in assignment texts, and is used in personnel
lists (Johnson, 2014).

4.7 Textiles

with numbers, line by line without numbers, line by line

Precision Recall F1-score Precision Recall F1-score Support

no 0.95 1.00 0.97 0.96 1.00 0.98 170
yes 0.00 0.00 0.00 1.00 0.22 0.36 9
accuracy 0.95 0.96 179

with numbers, sign by sign without numbers, sign by sign

Precision Recall F1-score Precision Recall F1-score Support

no 0.97 1.00 0.99 0.97 1.00 0.98 170
yes 1.00 0.44 0.62 1.00 0.33 0.50 9
accuracy 0.97 0.97 179

Table 7: Textile accounts classification

The results for textiles, as expected, resemble
those for dairy, fish, and human texts. The sign-
by-sign, with numbers model scored the highest,
though with a narrow margin. The models pro-
duced no false positives.

In the same manner as above, the model captured
the signs specific to textiles fairly well: among the
positively significant signs we see TUG2a ("gar-
ment?"), BARA2a (a type of garment), and SIG2b
("wool?"), as well as combinations of those with
number signs.

The negatively important features, again, appear
coincidental.

5 Corpus-wide experiment and discussion

It seems that the only feasible approach to tokeniz-
ing proto-cuneiform is sign-by-sign, with numbers,
as other approaches consistently scored lower or
failed to produce useful results entirely. We see
also that the model is conservative, which is good

for overall reliability: the precision values for yes
are almost always 100%, making false positives ex-
tremely rare. This meets our basic requirements for
experimentally labeling accounts across the entire
corpus.

Additionally, feature analysis showed that the
model managed to learn semantic sets of signs in-
dicative of all the economic domains, including the
underrepresented ones. Despite low scores in the
testing phase, we saw this as an optimistic starting
point.

To try labeling the entire corpus, we used the
sign-by-sign, with numbers MSVM to assign labels
to the entire corpus of archaic accounts. An advan-
tage of the MSVM architecture is the ability to set
a certainty threshold for the model, which allowed
us to set the required threshold to a conservative
90%. We also opted to exclude texts containing
fewer than 6 signs from labeling entirely, similar to
what we did in the training phase. The outcome of
this stage of experiment is presented in Table 8.

animals cereals dairy fields fish humans textiles

training 125 323 23 42 22 58 24
assigned 151 498 68 13 48 31 49
increase (%) +121% +154% +296% +30% +218% +53% +204%

Table 8: Outcome of applying the model to the entire
archaic corpus.

In terms of quantity, the results represent a com-
pound increase of 143% over the training dataset,
and together they correspond to 39% of all texts
longer than 6 signs (1,454 out of 3,737 texts). It is
yet to be determined whether we can decrease the
lower limit of account length without sacrificing
quality.

Moreover, the results show a large disparity in
efficiency: for example, the model found very few
new accounts of fields or humans. We can tenta-
tively explain this through the overall scarcity of
those texts.

On the other hand, we have large amounts of
new dairy, fish, and textile tablets that the model
identified, especially interesting due to its low ef-
ficiency when dealing with such accounts in the
testing phase. To understand the reasons for those
disparities, we performed an error analysis of the
corpus labels.

5.1 Sample error analysis
Analyzing the errors in all automatically labeled
tablets was not feasible, so we opted for a sample-
based analysis instead.
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For each assigned label, we chose 10 random
tablets for evaluation and judged the model’s work
on a three-level scale: yes (the assigned label is
correct), unsure (we were not able to classify the
tablet ourselves), and no (the tablet was classified
incorrectly). The outcome is presented in Table 9.4

animals cereals dairy fields fish humans textiles

yes 9 5 10 5 9 6 9
unsure - 1 - 4 1 4 1
no 1 4 - 1 - - -

Table 9: Evaluation of assigned labels.

This demonstrates the merit of the conservative
approach. Like in the testing phase, we see only
few false positives — which again meets our ex-
pectations. Also, they are almost entirely limited
to one specific type of texts: cereal accounts.

A closer look at the successfully classified texts
shows a distinct limitation of our model. Almost all
of the texts the it managed to find were inventories,
usually containing few signs other than the seman-
tic sets it learned. The few assignments (accounts
of distributions of goods to individuals; see the dis-
cussion of human accounts in the Data section) the
model caught, tellingly, also contained unusually
many signs from those semantic sets.

The model’s focus on limited sets of important
signs is also what helps us understand its failure
when dealing with cereal tablets: this account type
is particularly diverse: in addition to inventories, it
includes assignments of rations, harvest texts, seed
texts, etc., each with new sets of tokens to learn.
It is likely that those different subtypes of cereal
accounts made them less statistically discernible.
Although some degree of diversity exists within
other types of texts as well, we think the "confus-
ing" accounts in those cases were not numerous
enough to have the same effect.

A reflection of the same issue is illustrated by the
misclassified "field" account: the model learned too
often that the sign GAN2 is indicative of field texts
that it classified an entirely different account, quali-
fied with a known, yet undeciphered administrative
term MAŠ GAN2, as a field account too.

6 Conclusions

The original goal of this study was to make the ex-
ploration of the archaic corpus easier by enriching
its metadata and allowing for more detailed statisti-
cal studies of the transcriptions. Using the resulting

4Detailed scores are available in our GitHub repository.

MSVM models trained, we succeeded in more than
doubling the number of labeled accounts, although
the error analysis suggests that some of the labels
assigned (animals, dairy, fish, textiles) are more
reliable than others (cereals).

An open question remains: can we label more
accounts in a more detailed way? When we refine
our typology of tablets and agree on the expected
labels for cereal account subtypes, we may have
enough data to process those as efficiently as oth-
ers. The experiment above showed that the model
managed well even with little input, as long as it
looked at inventories with fixed semantic sets of
signs.

The error check hints at the existence of a more
fundamental split of account types than according
to economic sectors: one according to their admin-
istrative use, dividing the texts into assignments
and inventories. Assignments, usually consisting
of lists of individuals or institutions, are usually
more similar to each other across sectors than to in-
ventories of their own sector, leading to the models’
trouble with identifying them. In those texts, we
can often only understand the account type through
studying the sets of numerals used, or through meta-
data written at the end of the text. A viable method
of approaching assignments in an automated way
is yet to be discovered.

As described in the introduction, understanding
the typology of accounts in greater detail may help
us understand their original institutional environ-
ments better — in the Eanna district of Uruk, as
well as in other sites. The distinction between in-
ventories and assignments is one that we need to
further explore, and having recognized it will help
us refine our tools and methods, both digital and
traditional.

Additionally, we should see expanding the meta-
data as an important aspect of developing the digital
infrastructure. In an effort to make the archaic cor-
pus more accessible, we used the outcomes of this
study to develop a tool which allows scholars to
find similar tablets based on their content using the
sign-by-sign, with numbers tokenizer. This simi-
larity measurement tool is one of the features of
4ky (Zadworny, 2023), and it is freely available for
other researchers interested in using or adapting it
to their needs.

All datasets, code, and models created during
this study are accessible on GitHub.

https://github.com/yhynoo/alp
https://fourky.onrender.com/
https://fourky.onrender.com/
https://github.com/yhynoo/alp
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