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Abstract

We present a multi-strategy Named Entity
Recognition (NER) system for ancient Chi-
nese texts in EvaHan2025. Addressing dataset
heterogeneity, we use a Conditional Random
Field (CRF) for Tasks A and C to handle
six entity types’ complex dependencies, and
a lightweight Softmax classifier for Task B’s
simpler three-entity tagset. Ablation studies on
training data confirm CRF’s superiority in cap-
turing sequence dependencies and Softmax’s
computational advantage for simpler tasks. On
blind tests, our system achieves F1-scores of
83.94%, 88.31%, and 82.15% for Test A, B,
and C—outperforming baselines by 2.46%,
0.81%, and 9.75%. With an overall F1 im-
provement of 4.30%, it excels across histor-
ical and medical domains. This adaptability
enhances knowledge extraction from ancient
texts, offering a scalable NER framework for
low-resource, complex languages.

1 Introduction

Named Entity Recognition (NER), a fundamental
task in information extraction, identifies key enti-
ties such as person names, locations, and organiza-
tions within text. It is essential for applications like
information retrieval (Fetahu et al., 2021; Wang
et al., 2022; Mokhtari et al., 2019). In ancient liter-
ature, NER supports the analysis of ancient Chinese
texts and the extraction of humanistic knowledge.
However, this task faces challenges due to limited
public datasets and the unique features of classi-
cal texts, including polysemy, continuous structure,
and unpunctuated traditional Chinese characters,
all of which complicate entity boundary detection.

The EvaHan2025 competition1 tackles these
challenges with a 500,000-character dataset of his-
torical and medical classical texts, expertly curated
through automated annotation and manual review.

** Corresponding author.
1https://github.com/GoThereGit/EvaHan

Spanning subsets from Shiji, Twenty-Four Histo-
ries, and Traditional Chinese Medicine Classics,
it encompasses diverse entity types and linguistic
styles. To tackle this complexity, we propose a
multi-strategy NER framework for EvaHan2025.
Our system integrates a Conditional Random Field
(CRF) model to capture intricate sequence depen-
dencies in Tasks A and C, paired with a lightweight
Softmax classifier for Task B to optimize efficiency
for its simpler tagset. This hybrid approach outper-
forms official baselines, demonstrating robustness
across heterogeneous datasets and advancing NER
for ancient Chinese texts.

2 Related Work

2.1 Named Entity Recognition

Deep learning has shifted NER from rule-based
methods to neural networks, which automatically
extract features from text, improving efficiency
over manual rule design. Huang et al. (Huang
et al., 2015) proposed BiLSTM-CRF, combin-
ing BiLSTM’s long-distance dependency capture
with CRF’s sequence optimization, excelling on
the CoNLL-2003 dataset (Tjong Kim Sang and
De Meulder, 2003). (Ma and Hovy, 2016) ad-
vanced this with BiLSTM-CNN-CRF, using CNNs
for word-level features and CRF for refinement,
boosting English NER performance (Wang et al.,
2022). Transformer-based models later enhanced
results with contextual embeddings (Mokhtari et al.,
2019), leading to paradigms like sequence labeling
(Lample et al., 2016; Devlin et al., 2019), span-
based recognition (Fu et al., 2021), and text gener-
ation (Zhang et al., 2022).

While these methods excel in modern languages
like English and Chinese (Mokhtari et al., 2019),
ancient Chinese NER remains underexplored. The
EvaHan2025 competition addresses this by provid-
ing an ancient Chinese dataset, advancing domain-
specific NER research.

https://github.com/GoThereGit/EvaHan
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Figure 1: Architecture of the Multi-Strategy NER System. The system employs GujiRoBERTa_jian_fan as the
PLM, paired with CRF for Tasks A and C (six entity types) and Softmax for Task B (three entity types).

2.2 Pre-trained Language Models

Pre-trained Language Models (PLMs) have revo-
lutionized NLP tasks, including NER, by provid-
ing rich contextual representations. BERT (Devlin
et al., 2019) pioneered this approach, with variants
like RoBERTa (Liu et al., 2019) and ELECTRA
(Clark et al., 2020) enhancing efficiency. For an-
cient Chinese, specialized models like Siku-BERT
(Wang et al., 2021) have been developed to address
unique linguistic features, significantly improving
performance in downstream tasks such as NER.

3 Method

3.1 Pre-processing

To avoid redundant code, we use the seqeval library
for validation—even though it does not support
BMES annotations. Thus, we convert BMES pre-
fixes to BIOES during preprocessing, reducing the
need for custom evaluation functions. We term this
a simplified preprocessing algorithm. Secondly, in
the data preprocessing stage, we process it through
the custom "NERDataset" class. This class inherits
from Dataset, can read text file paths and label file
paths, filter out overly long sentences, and form
tuples of samples and labels to meet the training re-
quirements of the model. The EvaHan2025 dataset
exhibits heterogeneity across Tasks A, B, and C,
with varying entity types (six in Tasks A and C vs.
three in Task B) and domain styles (Shiji, Twenty-
Four Histories, and TCM Classics), necessitating a
tailored strategy for each task.

3.2 Model

The architecture of our model is shown in Fig-
ure 1. To address the heterogeneity of the Eva-
Han2025 dataset, we propose a multi-strategy NER

framework. We adopt GujiRoBERTa_jian_fan2,
a competition-mandated pre-trained model on an-
cient Chinese texts, to generate contextual rep-
resentations H from an input sequence x =
{x1, x2, . . . , xn}. The model yields representa-
tions H = {h1,h2, . . . ,hn}:

H = GujiRoBERTa_jian_fan(x). (1)

For Tasks A and C, which involve six complex
entity types (Table 4), we employ a CRF layer to
capture intricate label dependencies, computing the
optimal sequence:

Y = argmax
y

P (y | H), (2)

where P (y | H) integrates transition and emission
scores (Lafferty et al., 2001).

Conversely, for Task B’s simpler three-entity
tagset (Table 4), we use a Softmax layer to pre-
dict tags efficiently:

P (yi = c | hi) =
exp((Whi + b)c)∑
c′ exp((Whi + b)c′)

, (3)

This choice leverages Task B’s reduced label tran-
sition complexity (three entities vs. six in Tasks A
and C), where CRF’s sequence modeling is less crit-
ical, as validated by ablation studies (Table 3), pri-
oritizing Softmax’s computational efficiency with-
out sacrificing accuracy.

This hybrid approach leverages annotated data
to bypass boundary ambiguity, with CRF ensuring
accuracy for complex tasks and Softmax enhancing
efficiency for simpler ones.

2https://huggingface.co/hsc748NLP/GujiRoBERTa_
jian_fan

https://huggingface.co/hsc748NLP/GujiRoBERTa_jian_fan
https://huggingface.co/hsc748NLP/GujiRoBERTa_jian_fan
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Subset Task (Domain) Labeled Characters Purpose

Training A, B, C Yes 320,000 Model Training
Validation A, B, C Yes 80,000 Model Selection
Blind Test A, B, C No 100,000 Final Evaluation

Table 1: Dataset statistics for EvaHan2025. Tasks correspond to domains: A (Shiji), B (Twenty-Four Histories), C
(Traditional Chinese Medicine Classics). Total characters: 500,000.

Method Test A Test B Test C Overall

P R F1 P R F1 P R F1 P R F1

Baseline 85.90 77.50 81.48 87.09 87.92 87.50 71.84 72.95 72.40 81.41 79.82 80.61
Ours 89.13 79.32 83.94 89.34 87.30 88.31 78.37 86.32 82.15 85.16 84.66 84.91

Table 2: Performance Comparison (Precision, Recall, F1, as Percentages) Between Our System and the Baseline
Across Test A, B, and C in EvaHan2025 Blind Tests (Close Modality).

4 Experiments

4.1 Dataset
We used the EvaHan2025 dataset, comprising
500,000 characters across three domains: Task A
(Shiji), Task B (Twenty-Four Histories), and Task
C (Traditional Chinese Medicine Classics). Statis-
tics are detailed in Table 1, with entity tagsets in
Table 4. The labeled data was split into training
(80%, 320,000 characters) and validation (20%,
80,000 characters) sets for model training and val-
idation, respectively. The unlabeled blind test set
( 100,000 characters) was used solely for final eval-
uation by the organizers, with predictions submit-
ted post-training. This separation ensures robust
and fair results.

4.2 Implementation Details
We built all models atop GujiRoBERTa_jian_fan,
a pre-trained model from the Transformers library.
For Tasks A and C, we added a CRF task head using
the CRF library and applied a layered learning rate
strategy. For Task B, we appended a Softmax layer.
Models were optimized with AdamW (Loshchilov
and Hutter, 2019), and performance was assessed
using the seqeval library. Experiments ran on the
environment in Table 5, with key hyperparameters
listed in Table 10. Full details and code are avail-
able on GitHub.3

4.3 Metrics
In accordance with the conventions of Named En-
tity Recognition, we use Precision (P), Recall (R),
and F1 score (F1) as evaluation metrics across all

3https://github.com/wxndong/MSNER4AC

experiments. All results are reported in percent-
age form to ensure consistency and facilitate com-
parison across different models and experimental
settings.

4.4 Baseline

To better evaluate our model’s effectiveness, we use
the official SikuRoBERTa-BiLSTM-CRF, trained
on the training set without additional resources,
as the baseline. Comparing our model with this
baseline offers a clearer understanding of its per-
formance and advantages.

4.5 Results

Results are presented in Table 2. Our system sur-
passes the baseline across all metrics for Tasks A,
B, and C, achieving average F1 gains of 4.30%.
This superiority stems from our multi-strategy ap-
proach: CRF effectively captures complex entity
dependencies in Tasks A and C, while Softmax en-
hances efficiency for Task B’s simpler tagset, show-
ing strong adaptability to ancient Chinese datasets.
Notably, Task C’s F1 improves most (9.75%), likely
due to CRF leveraging the structured patterns of
TCM Classics, unlike Task A’s diverse Shiji or Task
B’s simpler tagset (Table 4).

4.6 Ablation Study

We evaluated our multi-strategy design on Eva-
Han2025 using GujiRoBERTa_jian_fan as the
PLM, reserving 20% of the training data as the
validation set for strategy selection. Validation F1
scores are reported in Table 3 as percentages.

https://github.com/wxndong/MSNER4AC
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Configuration Task A Task B Task C Mean

Single-Strategy
PLM + CRF (All Tasks) – – – 85.02
PLM + Softmax (All Tasks) – – – 84.91

Multi-Strategy
PLM + CRF (Per Task) 91.53 86.79 80.23 86.18
PLM + Softmax (Per Task) 90.90 86.87 78.63 85.47

Ours (A/C: CRF, B: Softmax) 91.53 86.87 80.23 86.21

Table 3: Validation F1 scores (%). Single-strategy combines all task data; multi-strategy trains per task. ‘–’ indicates
unavailable task-specific scores for single-strategy models, as Task B’s tagset (NR, NS, T) is a subset of Task A’s
(Table 4), causing interference that prevents isolated per-task evaluation.

4.6.1 Multi-Strategy vs. Single-Strategy
EvaHan2025 ranks submissions by mean F1 across
Tasks A (Shiji), B (Twenty-Four Histories), and C
(Traditional Chinese Medicine Classics). Single-
strategy models (PLM + CRF and PLM + Soft-
max), trained on all tasks combined, yield mean
F1s of 85.02% and 84.91%. Multi-strategy mod-
els (trained per task) reach 86.18% and 85.47%,
gaining 1.16–1.27 points. This boost comes from
isolating tasks: Task B’s tagset (NR, NS, T) is a
subset of Task A’s (Table 4), causing single-strategy
models to overgeneralize. Our approach avoids this
interference, improving task-specific performance.

4.6.2 Task-Specific Strategy Selection
Comparing PLM + CRF (Exp. 3) and PLM + Soft-
max (Exp. 4) (Table 3, Appendix B), CRF excels
on Tasks A (91.53% vs. 90.90%, +0.63) and C
(80.23% vs. 78.63%, +1.60), handling six-entity
dependencies well. Yet, in low-support labels (e.g.,
NB in Task A, ZZ in Task C), their differences are
minor (Appendix B). For Task B, CRF (86.79%)
and Softmax (86.87%) perform similarly, but Soft-
max cuts inference time by 63% (14.28s vs. 38.24s;
Appendix 6). Our hybrid design—CRF for A and
C, Softmax for B—achieves a mean F1 of 86.21%,
balancing accuracy and efficiency.

4.6.3 Lightweight Analysis
For Task B, Softmax’s O(nk) decoding complex-
ity (k=3) outperforms CRF’s O(nk2), cutting blind
test inference time by 63% (Please refer to Ap-
pendix 6) and reducing training/validation time
from 202s to 86s, with F1 (86.87 vs. 86.79, +0.08).
Here, n is sequence length, and k is label set size.
This lightweight efficiency design optimizes effi-
ciency for simpler tagsets without compromising
accuracy.

5 Conclusion

In this paper, we propose a Multi-Strategy Named
Entity Recognition (NER) system tailored for the
EvaHan2025 competition. Our system demon-
strates superior performance across three distinct
datasets by leveraging task-specific strategies, in-
cluding the use of CRF for complex sequence de-
pendencies in Tasks A and C, and a computation-
ally efficient Softmax classifier in Task B. Our sys-
tem offers a scalable NER framework for simi-
lar low-resource, heterogeneous ancient language
datasets, leveraging its multi-strategy adaptability,
with potential applications in digital humanities.
Future work could explore adaptive hyperparame-
ter tuning and tagset refinement to further enhance
generalization.

Limitations

Our multi-strategy NER system excels in Eva-
Han2025 but has limitations: inconsistent gener-
alization and challenges with rare entities. Gen-
eralization varies across tasks. Task A’s F1 drops
from 91.53% to 83.94% (-7.59), likely due to over-
fitting to Shiji’s diverse data (Appendix C, Fig-
ure 2), while Task C’s rises from 80.23% to 82.15%
(+1.92), possibly due to a structured medical do-
main (Figure 3). Task B remains stable (86.87%
vs. 88.31%) with a simpler tagset (Table 4). Rare
entities (e.g., NB in Task A, ZZ in Task C) with
low support (Appendix B) perform inconsistently.
Future work could use cross-domain validation to
improve generalization and data augmentation to
enhance rare entity recognition.

References
Kevin Clark, Minh-Thang Luong, Quoc V. Le, and

Christopher D. Manning. 2020. Electra: Pre-training

https://arxiv.org/abs/2003.10555


155

text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Besnik Fetahu, Anjie Fang, Oleg Rokhlenko, and
Shervin Malmasi. 2021. Gazetteer enhanced named
entity recognition for code-mixed web queries. In
Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1677–1681.

Jinlan Fu, Xuanjing Huang, and Pengfei Liu. 2021.
SpanNER: Named entity re-/recognition as span pre-
diction. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 7183–7195, Online. Association for Computa-
tional Linguistics.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data. In Proceedings of the 18th International Con-
ference on Machine Learning, pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074, Berlin, Germany.
Association for Computational Linguistics.

Shekoofeh Mokhtari, Ahmad Mahmoody, Dragomir
Yankov, and Ning Xie. 2019. Tagging address
queries in maps search. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(1):9547–
9551.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Dongbo Wang, Chang Liu, Zihe Zhu, Jiang, Feng, Hao-
tian Hu, Si Shen, and Bin Li. 2021. Construction and
application of pre-training model of “siku quanshu”
oriented to digital humanities.

Xiao Wang, Shihan Dou, Limao Xiong, Yicheng Zou,
Qi Zhang, Tao Gui, Liang Qiao, Zhanzhan Cheng,
and Xuanjing Huang. 2022. Miner: Improving
out-of-vocabulary named entity recognition from an
information theoretic perspective. arXiv preprint
arXiv:2204.04391.

Xinghua Zhang, Bowen Yu, Yubin Wang, Tingwen Liu,
Taoyu Su, and Hongbo Xu. 2022. Exploring modu-
lar task decomposition in cross-domain named entity
recognition. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 301–311.

A Supporting Tables in References

Tag Meaning

Task A (Shiji)
NR Person name
NS Geographical location
NB Book title
NO Official title
NG Country name
T Time expression

Task B (Twenty-Four Histories)
NR Person name
NS Geographical location
T Time expression

Task C (TCM Classics)
ZD TCM disease
ZZ Syndrome
ZF Medicinal formula
ZP Decoction pieces
ZS Symptom
ZA Acupoint

Table 4: Entity tagsets for EvaHan2025 tasks.

Environment Specification

CUDA Version 12.0
GPU NVIDIA RTX 4090
Memory 24 GB

Table 5: Experimental environment.
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B Additional Tables

This appendix provides tables supporting the exper-
iments and ablation studies in Sections 4 and 4.6.
Table 6 compares Task B runtime for PLM + Soft-
max and PLM + CRF, showing Softmax’s effi-
ciency (Section 4.6.2). Tables 7–9 detail per-
category F1 scores for Tasks A, B, and C on the
validation set, complementing Table 3 and guiding
our multi-strategy NER design. Due to seqeval, F1
scores are rounded to two decimals and shown as
percentages without decimals (e.g., 0.33 to 33%),
not affecting comparisons.

Model Training + Val. (s) Blind Test (s)

PLM + Softmax 86 14.28
PLM + CRF 202 38.24

Table 6: Task B runtime comparison (seconds).

Category (Support) F1 (CRF) F1 (Softmax)

NB (5) 33.00 33.00
NG (731) 94.00 94.00
NO (286) 77.00 74.00
NR (2042) 95.00 95.00
NS (500) 87.00 87.00
T (193) 79.00 77.00

Table 7: Task A validation F1 scores (%).

Category (Support) F1 (CRF) F1 (Softmax)

NR (794) 91.00 89.00
NS (685) 84.00 83.00
T (509) 85.00 89.00

Table 8: Task B validation F1 scores (%).

Category (Support) F1 (CRF) F1 (Softmax)

ZA (294) 84.00 83.00
ZD (166) 73.00 73.00
ZF (197) 83.00 84.00
ZP (1083) 86.00 87.00
ZS (257) 65.00 57.00
ZZ (97) 47.00 33.00

Table 9: Task C validation F1 scores (%).

C Hyperparameters and Transition
Matrix
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Hyperparameter Task A (PLM + CRF) Task B (PLM + Softmax) Task C (PLM + CRF)

Batch Size 32 32 32
Epochs 35 30 35
Learning Rate (PLM) 5× 10−5 5× 10−5 5× 10−5

Learning Rate (Head) 5× 10−3 5× 10−5 5× 10−3

Warmup Ratio 0.1 0.1 0.1
LR Scheduler Cosine Linear Cosine
Max Gradient Norm 1.0 1.0 1.0

Table 10: Key hyperparameter settings.

Figure 2: Task A CRF transition matrix (Exp. 3). Rows: current state; columns: next state. Color depth shows
transition probability (-0.5 to 0.5).
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Figure 3: Task C CRF transition matrix (Exp. 3). Rows: current state; columns: next state. Color depth shows
transition probability (-0.5 to 0.5).
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