Variable Extraction for Model Recovery in Scientific Literature

Chunwei Liu', Enrique Noriega?,
Adarsh Pyarelal?, Clayton T. Morrison?, Michael Cafarella!

IMIT CSAIL

2The University of Arizona

{chunwei, michjc} @csail.mit.edu
{enoriega, adarsh, claytonm} @arizona.edu

Abstract

Due to the increasing productivity in the sci-
entific community, it is difficult to keep up
with the literature without the assistance of Al
methods. This paper evaluates various meth-
ods for extracting mathematical model vari-
ables from epidemiological studies, such as
“infection rate («),” “recovery rate (y),” and
“mortality rate (). Variable extraction ap-
pears to be a basic task, but plays a pivotal
role in recovering models from scientific litera-
ture. Once extracted, we can use these variables
for automatic mathematical modeling, simula-
tion, and replication of published results. We
also introduce a benchmark dataset comprising
manually-annotated variable descriptions and
variable values extracted from scientific papers.
Our analysis shows that LLM-based solutions
perform the best. Despite the incremental bene-
fits of combining rule-based extraction outputs
with LLMs, the leap in performance attributed
to the transfer-learning and instruction-tuning
capabilities of LLMs themselves is far more
significant. This investigation demonstrates
the potential of LLMs to enhance automatic
comprehension of scientific artifacts and for
automatic model recovery and simulation.

1 Introduction

The surge in scientific publications, now exceeding
five million articles annually !, represents a chal-
lenge for any individual or group seeking to com-
prehensively review the state of the art of any given
discipline. The sheer size of the information war-
rants the use of automated information extraction
technologies to sort through and navigate vast sci-
entific corpora. In this work, we study the scientific
literature that concerns mathematical modeling, in
order to aid model recovery (Pyarelal et al., 2020;
Sharp et al., 2019; Schaffhauser et al., 2023): the

1https://wordsrated.com/
number-of-academic-papers-published-per-year/

1

1+aR can be thought of as S+I+R+aR. Given that S+1+R=1,
this is equivalent to the term 1+4aR. Figure 1 illustrates shield
immunity impacts on a SIR epidemic with B (R, is the
basic reproduction number). In this SIR 1) shield immu-
nity reduces the epidemic peak and shortens the duration of epi-
demic spread. Shielding in this context acts as a negative feedback
loop, given that the effective reproduction number is given by
Reit(t)/Ro = S(t)/(1 + aR(t)). As a result, interaction substitu-
tion increases as recovered individuals increase in number and are
identified. For example, in the case of ., the epidemic con-

v

Text Span Variable Extraction
Start | End | Name Description Value
185 | 193 RO - 2.5
195 | 232 RO Basic reproduction number -
634 | 640 o - 20

Figure 1: Example of variable extraction from a scien-
tific paper text, illustrating the process of identifying
and extracting elements such as the variable name, de-
scription, and initial value into a structured format. The
figure highlights different types of extraction: variable
description pairs in light orange and variable value pairs
in light purple.

creation of symbolic representations of mathemati-
cal models through information extraction methods
applied to the scientific literature?.

We introduce the task of variable extraction: the
identification and organization elements such as
variable names, descriptions, and initial values into
a structured format, as illustrated in Figure 1. Vari-
able extraction is a crucial step toward model re-
covery as it unlocks the basic units of models pre-
sented in scientific papers. By doing so, it not only
deepens the understanding of the research but also
facilitates the further rebuilding and enhancement
of these models.

The complexity of variable extraction arises
from the diverse forms and locations in which vari-
ables can appear within a document. Variables
may be embedded in text, figures, tables, or even
scattered throughout the paper as single charac-
ters, multiple words, single values, or ranges. This
variability, coupled with their interdependencies,

Zhttps://www.darpa.mil/research/programs/automating-
scientific-knowledge-extraction-modeling

Proceedings of the 1st Workshop on Al and Scientific Discovery: Directions and Opportunities, pages 1-12
May 3, 2025 ©2025 Association for Computational Linguistics

https://wordsrated.com/number-of-academic-papers-published-per-year/
https://wordsrated.com/number-of-academic-papers-published-per-year/

underscores the importance and challenge of this
task. Effective variable extraction is essential for
identifying errors in models and converting them
into executable code, which improves the accuracy
and practicality of scientific research.

Until recently, the extraction of model variables
from texts commonly employed conventional ma-
chine learning methods such as named-entity recog-
nition (Tjong Kim Sang and De Meulder, 2003) and
relation extraction (Zhang et al., 2017). However,
the emergence of Large Language Models (LLMs)
(Touvron et al., 2023; Jiang et al., 2023; OpenAl,
2024) has marked a significant change. With their
enhanced natural language processing (NLP) ca-
pabilities, LL.Ms provide new options to enhance
the efficiency and effectiveness of scientific text
analysis, particularly in the extraction of variables
and the broader process of model recovery.

To investigate the potential of these methods, we
annotated 22 scientific papers, creating a public in-
formation extraction benchmark. This benchmark
is designed to facilitate the evaluation of various
variable extraction techniques. Subsequently, We
then conduct a comprehensive evaluation of sev-
eral LLMs designed for the variable extraction task,
alongside a rule-based method and an optimized
Al pipeline framework to provide additional per-
spective.

Our evaluation indicated that although no ex-
isting solution excels in the variable extraction
task, certain configurations could significantly im-
prove the extraction quality. The best-performing
baseline model achieved an F1 score of only 0.49
or 0.60, depending on the evaluation metric used.
However, by integrating rule-based approaches
with LLMs, we enhanced performance, achieving
F1 scores of up to 0.53 and 0.64, respectively. This
integration highlights the complementary strengths
of different methodologies: rule-based approaches
provide additional variable extraction options from
a different perspective, thus improving the per-
formance of LLM. Overall, LLM-based solutions
outperformed conventional rule-based solutions,
demonstrating their capability to enhance the auto-
matic comprehension of scientific artifacts and es-
tablish a robust foundation for automatic model re-
covery and simulation. These insights contribute to
the ongoing discourse on improving the understand-
ing and utilization of scientific literature, paving
the way for more efficient and accurate scientific
research in the era of information overload.

2 Related Work

In this work we focus on the intake of scientific
literature to identify and recover the elements of
mathematical models: variable descriptions and
variable values, as described in text and we rely on
NLP methods to recover them.

The field of Information Extraction (IE) is one
of the main applications of NLP. It consists on iden-
tifying and extracting structured information from
human-written text. These structure data, consists
of named-entity recognition (Tjong Kim Sang and
De Meulder, 2003) and relation extraction (Zhang
et al., 2017). The structured data is then lever-
aged by downstream applications such as build-
ing knowledge bases (Shimorina et al., 2022), slot-
filling (Chen et al., 2019), visualization for inter-
actions (Noriega-Atala et al., 2023), or performing
downstream inference (Lao et al., 2011).

Large language models (Touvron et al., 2023;
Jiang et al., 2023; OpenAl, 2024), with their in-
creasing versatility have become a useful tool for
information extraction (Xu et al., 2024). Building
on traditional models and LLMs, numerous sys-
tems have been proposed to automatically optimize
Al-powered analytics and information extraction
according to user preferences (Zheng et al., 2023;
Chen et al., 2023; Liu et al., 2024; Patel et al., 2024;
Lin et al., 2024; Liu et al., 2025). This work takes
inspiration from these methods to identify and ex-
tract variable information.

Due to its sheer size, scientific literature is fre-
quently the subject of IE research. Some disci-
plines, such as health sciences and biomedical re-
search, have received a lot of attention due to their
high potential for impact. Because of this, there
exists a solid record of research activity around
that has produced multiple high-quality datasets
(Mohan and Li, 2019; Kim et al., 2013; Ohta et al.,
2013; Saier et al., 2024) and systems (Valenzuela-
Escércega et al., 2018; Neumann et al., 2019; Wang
et al., 2018) focused on clinical and medical appli-
cations.

Prior work at extracting mathematical elements
has used various classical NLP methods. A CRF
model to align mathematical expressions with their
definitions (Yoko et al., 2012); a pattern-based data
mining method to build mathematical ontologies
from I&TEXsources (Jeschke et al., 2007); a NER
system for abstract mathematical concepts (Col-
lard et al., 2022) extracting mathematical elements
from scientific text. Our work builds upon the ideas

from prior research and introduces a high-quality,
manually curated dataset featuring annotations of
variable descriptions and values extracted from a
corpus of scientific literature about COVID-19 and
earth sciences. Utilizing this annotated dataset, we
have comprehensively evaluated the most popular
LLMs, machine learning models, and their combi-
nations, assessing their effectiveness in identifying
and extracting this critical information.

3 Variable Extractions Dataset

The benchmark comprises excerpts extracted from
22 papers that focus on pandemic research, specifi-
cally available at the benchmark repository® These
papers typically introduce at least one epidemio-
logical model, providing detailed descriptions and
evaluations of the models and their variables. Col-
lectively, the research papers address the challenge
of modeling and forecasting the spread of COVID-
19 under various scenarios and interventions. They
explore a range of modeling approaches, including
standard models like SIR and SEIR, as well as more
complex frameworks such as COVID-ABS and Co-
vasim. These models are used to analyze the effects
of government interventions and to predict the tra-
jectory of the pandemic in different regions. In
addition, studies emphasize the extraction and an-
notation of relevant variables and parameters from
the literature, with the aim of enhancing the pre-
cision and applicability of these epidemiological
models in real-world scenarios.

3.1 Human Annotation

In our study, we meticulously annotated a set of
documents to facilitate the extraction and analysis
of scientific variables and their contextual data. The
annotation process was designed to capture three
primary types of information: (1) variable names
and their descriptions, (2) variable names paired
with their corresponding values, and (3) additional
metadata, including model card attributes and sce-
nario card attributes. Detailed guidelines for these
annotation task are described in Appendix A.

3.1.1 Annotation Process

Annotation requires expertise in mathematical mod-
eling of epidemics, making our current annotations
challenging to obtain. Human annotators were
tasked with identifying and labeling specific el-
ements in the text according to the following cate-
gories:

Shttps://github.com/mitdbg/scivar

Variables with Values: Annotators highlighted
instances where a variable was directly associated
with a numerical value or a range of values. This
includes cases where the variable might be implied
rather than explicitly stated. For example, annota-
tors would mark the phrase "the estimated repro-
duction rate in the United States was around 2.5"
to capture the variable (reproduction rate) and its
value (2.5).

Variable Descriptions: This task involved iden-
tifying and highlighting descriptions of variables
that explain or define the variable within the context
of the document. For instance, the phrase "lambda
represents the infection coefficient" would be an-
notated to link the variable lambda with its descrip-
tion.

3.1.2 Annotation Standards and Tools

The annotation was performed using Adobe Ac-
robat, which allowed annotators to use different
colors to distinguish between the types of annota-
tions, as specified in the guidelines. The standards
for annotation emphasized precision, instructing
annotators to prioritize accuracy in identifying and
marking text elements. Generous alignment stan-
dards were applied during the evaluation of the
annotations, focusing on the relevance and com-
pleteness of the information captured rather than
strict adherence to text boundaries.

3.1.3 Quality Control

To ensure the quality and consistency of the annota-
tions, each document underwent a review process.
Annotations that were missed or incorrectly marked
in the initial round were identified and corrected.
This iterative process helped refine the annotations
and improve the overall accuracy of the data set.

3.1.4 Post-Processing with Structured Format

After the annotation and quality review process,
each paper will have a unified color code map-
ping for different annotation categories. We utilize
pdfannots* tool to extract the PDF annotations into
JSON format, categorizing the entries and their
text spans from the original text. Pdfannots is a
program that extracts annotations (highlights, com-
ments, etc.).

For each annotation, we obtain the highlighted
text and its surrounding context into a text pas-
sage. We aggregated passages shared by multiple
annotations to remove redundancy, for example, a

*https://github.com/@xabu/pdfannots

https://github.com/mitdbg/scivar
https://github.com/0xabu/pdfannots

L {
2 "all_text”: "1 + «aR can be thought of as S + I + R + aR. Given
that S+ I + R = 1, this is equivalent to the usual form 1 +
«R. Figure 1 illustrates shield immunity impacts on a SIR
epidemic with (R@ = 2.5) (RO is the basic reproduction
number). In this SIR model, shield immunity reduces the
epidemic peak and shortens the duration of epidemic spread
Shielding in this context acts as a negative feedback loop
given that the effective reproduction number is given by
Reff(t) / RO = S(t) / (1 + aR(t)). As a result, interaction
substitution increases as recovered individuals increase in
number and are identified. For example, in the case of («a =
20), the epidemic concludes with less than 20% infected in
contrast to the final size of ~90% in the baseline scenario
without shielding (Fig. 2).",
"page": 2,
"annotations”: [

[185, 193, "R@ = 2.5", "var val"l,

[195, 232, "(R@ is the basic reproduction number)"”, "var desc"],

[634, 640, "o = 20", "var val"]

A A A

]

"file": "epidemic_model_analysis”

SOV UL AW

3

Figure 2: Example of SciVar JSON output extracted and
formatted from an annotated PDF text block in Figure
1.

paragraph containing several variable descriptions
will appear only once in the dataset with all its asso-
ciated annotations attached. From the 22 scientific
papers, we have collected 556 text chunks con-
taining 2083 variable-related annotations (1236 for
variable descriptions and 847 for variable values).
Each text block is configured with a set of annota-
tions, which include character index and span, text
extraction, and annotation type. An example of the
structured JSON output can be seen in Figure 2.

This post-processing step ensures that the an-
notations are not only accurately and automated
captured but also structured in a way that facilitates
further analysis and application in information ex-
traction systems and other research tools.

4 Variable Extraction Approaches

In our evaluation, we utilized diverse approaches,
including traditional rule-based extraction models,
popular LLLMs with varying degrees of enhance-
ment, and an optimized Al pipeline framework.

4.1 Rule-based Information Extraction

We developed a rule-based information extrac-
tion system’ using the Odin language (Valenzuela-
Escércega et al., 2016) to identify and extract vari-
ables mentioned in text alongside their associated
definitions or descriptions and values associated
with them. The rule-based system operates by
matching patterns over the syntax of a sentence
or phrase. Figure 3 depicts an example rule. With
the help of a linguist, we designed a set of rules to

5https ://github.com/ml4ai/skema/tree/main/
skema/text_reading/scala

match different ways in which a concept or symbol
(the variable) is defined (the description) in scien-
tific papers. Similarly, another subset of rules to
match numerical values and quantities associated
to variables. Rule-based information extraction
tools serve as complement to LLM and other deep-
learning based approaches. They trade generaliza-
tion and recall capabilities for higher precision and
interpretability.

1 - name: description_interpreted
2 label: Description

3 priority: ${priority}

4 type: dependency

5 example: "Beta can be interpreted
< as the effective contact rate.”

6 pattern: |

7 trigger = [lemma="interpret"]

8 description:Phrase = nmod_as

9 variable:Identifier = nsubjpass

Figure 3: Example of a pattern-matching rule system
designed to detect variable descriptions. The word
interpreted will anchor the pattern (line 8). Out-
going syntactic dependencies of types nmod_as and
nsubjpass to entities of types Phrase and Identifier
link the rule’s trigger to its description and variable
arguments, respectively.

4.2 Vanilla LLM Extraction

LLMs have demonstrated exceptional performance
on a variety of semantic information extraction
tasks. In our study, we established LLM baselines
using a vanilla pipeline, in which each LLM was
provided with only snippets of text on paper and
tasked with extracting variable names, descriptions,
and values. To optimize the effectiveness of our
approach, we conducted extensive prompt engi-
neering, iterating through more than ten rounds of
refinement. These prompts were developed by a
team of four PhD or postdoctoral researchers in
computer science major, and the most effective
prompt was selected for use in our evaluations. Fig-
ure 4 illustrates the prompt template that was used
in all LLM baselines. In this template, [] serves
as a placeholder for the paper text, and the prompt
specifies a structured format for the output, with
default values provided for optional fields. Ad-
ditionally, we incorporate a few-shot prompting
setup that provides language models with several
examples within the prompt to enhance their per-
formance.

https://github.com/ml4ai/skema/tree/main/skema/text_reading/scala
https://github.com/ml4ai/skema/tree/main/skema/text_reading/scala

4.3 Tool Enhanced LLM Extraction

LLM:s often share similar technical frameworks and
have substantial overlap in their training datasets.
This commonality can lead them to either overem-
phasize or overlook certain cases. To mitigate these
biases and enhance extraction accuracy, it is benefi-
cial to introduce additional perspectives. Therefore,
beyond the standard evaluation using only the pa-
per text, we have also incorporated outputs from a
traditional model into our LLM evaluations. This
approach is conceptually similar to the tool inte-
gration methods used in LangChain (Topsakal and
Akinci, 2023); however, our objective is to generate
a broader range of candidate options rather than to
rely on the presumed high-quality outputs of these
tools. As illustrated in Figure 4, these outputs are
highlighted in blue font. The [TOOL EXTRACTION]
provided by the traditional model offers supplemen-
tary variable options for consideration. However,
in cases of discrepancy, the original text is always
prioritized to ensure the fidelity of the information
extracted.

Prompt: Please extract variable names and descrip-
tions from the following paper text. You may refer to
the provided tool extractions for your reference. Here
is some paper text:

[TEXT]

This text may contain model related variables or pa-
rameters, their initial values and what they mean. If it
does, list each of the variables on a separate line with
the following attributes separated by "I":

name | description | numerical value.

If the variable’s value uses other variables or there
is no value for the variable, output “None” for that
variable value; do not hallucinate a variable value or
variable description that does not exist in the text.
[OPTIONAL_EXAMPLES]

Meanwhile, we get some variable extractions from an-
other tool for your reference. These extractions may
contain false positive or duplication cases. Please pay
more attention to the true positive variables:
[TOOL_EXTRACTION]

Please try to extract variables on the original paper
text first, then refer to the results from the tool extrac-
tions and see if you miss any variables. If you are not
sure, please always check the original paper text.

Figure 4: Prompt templates for variable extraction using
various setups. The black font indicates the prompt
template for a standard LLM. The combination of black
and brown fonts represents the template for few-shot
prompting. The integration of black and blue fonts
denotes the template enhanced by external tools.

DA W =

10

12

13
14
15
16

import palimpzest as pz
class Variable(pz.Schema):
""" Represents a variable of a model in a scientific paper”""
excerptid = pz.Field(desc="The unique identifier for the excerpt”,
<> required=True)
name = pz.Field(desc="The label used for the scientific variable,
< like alpha or beta”, required=True)
description = pz.Field(desc="A description of the variable”,
< required=False)
value = pz.Field(desc="The value of the variable”, required=False)
define logical plan
excerpts = pz.Dataset("snippets”, schema=pz.TextFile)
output = excerpts.convert(Variable, desc="A variable used or
< introduced in the paper snippet”, cardinality="oneToMany")
user specified policy and execute plan
policy = pz.MinimizeCostAtFixedQuality(min_quality=0.45)
results = pz.Execute(excerpts, policy=policy)

Figure 5: Palimpzest Code for Variable Extraction from
Scientific Paper Snippets.

4.4 Optimized AI Pipeline Framework

We also incorporate a system featuring a simple
and declarative user interface. Palimpzest is a sys-
tem designed to streamline Al-powered analytics
through declarative query processing (Liu et al.,
2024). This system allows users to effortlessly
specify analytical queries over unstructured data
using a straightforward, Python-embedded declara-
tive language. Users can define their desired data
schema and attributes in natural language, enabling
Palimpzest to automate complex optimization pro-
cesses. This automation includes navigating vari-
ous Al models, employing prompting techniques,
and optimizing foundational models, thereby elimi-
nating the need for the laborious tasks of manual
pipeline tuning, model selection, and prompt en-
gineering previously required when working with
LLMs. By efficiently managing trade-offs between
runtime, cost, and data quality, Palimpzest sim-
plifies user interaction and significantly enhances
the efficiency and cost-effectiveness of process-
ing large-scale data. These capabilities position
Palimpzest as a robust benchmark for evaluating
the performance of Al-driven data processing sys-
tems in scientific and analytical contexts, ensuring
substantial improvements in execution times and
costs while maintaining or enhancing data quality.

The Palimpzest code snippet shown in Figure 5
demonstrates a declarative approach to extracting
variables from scientific paper excerpts. It defines
the ‘Variable’ class, which details a scientific vari-
able found within the paper excerpt. This class
includes fields for the variable’s name, description,
and value, with only the variable name being re-
quired. This setup efficiently captures the essential
details needed for variable extraction, streamlining

the process of transforming unstructured text into
structured data suitable for further analysis.

The code then creates a dataset named "snippets"
with the Palimpzest native ‘TextFile’ schema and
processes it to convert each snippet into instances
of the ‘Variable’ class, identifying variables men-
tioned in the text. This conversion cardinality ‘one-
ToMany’ allows for multiple variables per snippet,
reflecting the typical structure of scientific excerpts.

Finally, a user-specified policy (‘Minimize-
CostAtFixedQuality’) is set to optimize the extrac-
tion process by minimizing operational costs while
maintaining the quality of the extracted data above
a predetermined threshold. The ‘Execute’ function
applies this policy to the dataset, demonstrating
how Palimpzest simplifies complex data extraction
tasks through its declarative programming model.

5 Evaluation

5.1 Experimental Setup

We evaluate a variety of models to assess their
performance on the variable extraction dataset.
The traditional rule-based model is denoted as
rules, and an optimized AI pipeline frame-
work is referred to as Palimpzest. Addi-
tionally, we examine several advanced models
from OpenAl, including GPT3.5 Turbo, GPT4
Turbo, GPT4o0, and GPT40-mini. We also test
two locally served LLLMs, L1ama-3-8B-Instruct
and Mistral-7B-Instruct-v@. 2, which are inte-
grated via vLLM model serving APIs. Each LLM
is evaluated using a standard API call, indicated
by the prefix pure_, and an enhanced version that
incorporates outputs from the traditional model, in-
dicated by the prefix tool_. The LLM temperature
parameter is set to zero to ensure reproducibility.

We executed all baseline models using the
prompts or configurations outlined in the previ-
ous section. The results are then aligned with the
human-annotated ground truth, as illustrated in Fig-
ure 2. This alignment is based on the input text
chunk ID. Furthermore, we construct all possible
candidate pairs by applying the Cartesian product
to the sets of predicted extractions and ground truth,
grouped by annotation type. This process resulted
in a total of 330, 558 candidate pairs for evaluation.
For each candidate pair, we employed a set of eval-
uation metrics to determine whether it qualified as
a match.

To evaluate the F1 score in our study, we metic-
ulously track the ground truth and prediction sets

for each text chunk. During the evaluation process,
when an evaluator confirms a match (though the
criteria for a match may vary across different met-
rics), the index of the matched candidate pair is
recorded in both the ground truth and prediction
entries for that specific pair. After evaluating all
candidate pairs associated with a given text chunk,
we calculate the recall as the ratio of entries with at
least one match in the ground truth set. Similarly,
precision is calculated as the ratio of entries with
at least one match in the prediction set. The F1
score is then computed using the harmonic mean
of precision and recall, providing a balanced mea-
sure of the model’s accuracy in variable extraction
tasks. In cases where the evaluation focuses on spe-
cific tasks, such as variable descriptions or variable
values extraction only, we count only the corre-
sponding entries and disregard the others.

5.2 GPT-4 as a Similarity Evaluator

We employed the GPT-4 turbo model to perform
similarity evaluations, comparing its outputs with
a ground-truth dataset to assess precision and accu-
racy across different tasks. Depending on whether
the candidate pair being evaluated corresponds to
"var_desc" or "var_val" (examples provided in Fig-
ure 2), we use specific prompts as illustrated in
Figure 6. To ensure conciseness, we limit the out-
put token length to one.

You are a human evaluator. The following pair of text
describes a variable and its description/value.
[VAR_DESC A]/[VAR VAL _A]

[VAR_DESC _B]J/[VAR_VAL_B]

Please check if they mean the same. Answer y or n.

Figure 6: GPT4 Turbo prompt templates for evaluating
the consistency of variable descriptions and values.

According to Table 1, no existing solution per-
forms exceptionally well on the variable extrac-
tion task. However, the integration of rule-based
approaches with LLMs has shown significant im-
provements. The best-performing baseline model
achieved an F1 score of only 0.491, while the inte-
gration with LLMs, particularly the GPT-4 variants,
enhanced performance, achieving F1 scores as high
as 0.525. This represents a 20% improvement over
the setups using only LLMs, except for GPT3.5T
where the integration did not yield a performance
boost. Such integration highlights the complemen-

Table 1: Average performance with GPT4 similarity evolution with ground-truth (bold font indicates the best over

each setup).

Model Overall Performance Variable Descriptions Variable Values
Recall Precision F1 Recall Precision F1 Recall Precision F1

pure_GPT3.5T 0.576 0.337 0.393 | 0.677 0.361 0.431 | 0.404 0.305 0.323
tool_GPT3.5T 0.568 0.307 0.369 | | 0.647 0.318 0.396 | 0.429 0.281 0.306
3shot_GPT3.5T 0.543 0.412 04371 | 0.558 0.433 0.457 | 0.521 0.378 0.400
pure_GPT4T 0.655 0.443 0.491 | 0.708 0.428 0.495 | 0.527 0.460 0.456
tool_GPT4T 0.662 0.451 0.500 1 | 0.711 0.440 0.506 | 0.559 0.478 0.476
3shot_GPT4T 0.645 0.502 0.5351 | 0.650 0.471 0.514 | 0.629 0.557 0.553
pure_GPT4o0 0.647 0.424 0.480 | 0.708 0.438 0.504 | 0.513 0.382 0.408
tool_GPT4o 0.689 0.460 0.520 1 | 0.727 0.453 0.526 | 0.589 0.468 0.483
3shot_GPT40 0.499 0.360 0.389) | 0.486 0.376 0.395 | 0.525 0.369 0.397
pure_GPT40-mini 0.619 0.376 0.437 | 0.693 0.410 0.479 | 0.499 0.325 0.360
tool_GPT40-mini 0.694 0.465 0.5251 | 0.729 0.446 0.520 | 0.619 0.481 0.504
3shot_GPT4o0-mini 0.545 0.322 0.378 L | 0.578 0.370 0.426 | 0475 0.231 0.282
pure_llama 0.600 0.402 0.446 | 0.671 0.422 0.483 | 0.456 0.373 0.372
tool_llama 0.629 0.396 0.4511 | 0.706 0411 0.482 | 0.479 0.354 0.369
3shot_llama 0.488 0.181 0.244 | | 0.550 0.204 0.279 | 0.402 0.139 0.180
pure_mistral 0.572 0.234 0.301 | 0.661 0.220 0.302 | 0.404 0.285 0.310
tool_mistral 0.564 0.277 0.3351 | 0.650 0.265 0.343 | 0412 0.307 0.317
3shot_mistral 0.493 0.190 0.248 | | 0.588 0.191 0.262 | 0.352 0.194 0.217
rules 0.392 0.317 0.320 ‘ 0.447 0.352 0.358 | 0.299 0.244 0.245
Palimpzest 0.574 0.451 0.473 | 0.566 0.435 0.460 | 0.555 0.453 0.465
structured_GPT4o0 0.64 0.443 0.492 | 0.682 0.435 0.498 | 0.535 0.446 0.449
structured_GPT4o0-mini | 0.658 0.424 0.484 | 0.689 0.406 0.476 | 0.593 0.442 0.473

tary strengths of diverse methodologies: rule-based
approaches provide additional variable extraction
options from different perspectives, thereby en-
hancing the performance of LLMs.

Among the models tested, the tool-enhanced ver-
sions generally outperformed their pure counter-
parts, with tool_GPT40-mini achieving the high-
est F1 score of 0.525. This indicates that the ad-
ditional suggestions provided by tool extractions
can effectively guide LLMs to achieve better per-
formance. In contrast, the rule-based approach
alone (rules) demonstrated lower effectiveness,
with an F1 score of 0.320, emphasizing the over-
all superior capability of LLM-based solutions in
managing complex extraction tasks.

However, few-shot prompting does not consis-
tently yield improved extraction results, as indi-
cated by Table 1. Only GPT3.5T and GPT4T mod-
els showed improvement with the few-shot setting,
while others experienced diminished performance.
This variability could be attributed to the inherent
complexity of the variable extraction task, where
the diverse scenarios may not benefit significantly
from a few additional examples. Moreover, the in-
clusion of more tokens in the prompt might dilute
the attention mechanism, thereby worsening the
results.

The Palimpzest system, utilizing GPT-4o0 as its
conversion model, yielded results comparable to
pure_GPT4o, achieving an F1 score of 0.473. By

enforcing a strict format constraint, Palimpzest
trades some recall for higher precision, offering
a more reliable output without the need for exten-
sive model selection and prompt engineering. This
approach not only simplifies the extraction process
but also enhances the usability and applicability
of the system in practical scenarios, establishing
a robust foundation for automatic model recovery
and simulation.

Additionally, we conducted a distinct quality as-
sessment for both variable descriptions and variable
values, with detailed results presented in Table 1.
The observations mentioned above remain consis-
tent across these evaluations. However, almost all
baselines demonstrated better F1 scores on the vari-
able descriptions task compared to their overall per-
formance, with the exception of Palimpzest, which
excelled in both cases in general but performed
slightly better in the variable value extraction task.

5.3 Token-based Evaluation

In addition to the GPT-based evaluation, we exam-
ined the token-level precision, recall and F1 scores
used for QA and other span prediction NLP tasks
(Rajpurkar et al., 2016). Token-level scores ac-
count for the correct number of tokens predicted
by each method, giving credit based on the propor-
tion of tokens predicted correctly and penalizing
for tokens predicted incorrectly. Table 2 shows
the token level performance on the variable extrac-

Table 2: Average token-level scores for variable descriptions and variable values.

Model Overall Performance Variable Descriptions Variable Values
Recall Precision F1 ‘ Recall Precision F1 ‘ Recall Precision F1

pure_GPT3.5T 0622 0578 0552 | 0.730 0.663 0.645 | 0458 0449 0410
tool_GPT3.5T 0551 0527 0505) | 0636 0625 0599 | 0421 0379 0.362
3shot_GPT3.5T 0514 0492 0467 | 0560 0486 0483 | 0444 0499 0443
pure_GPT4T 0661 0587 0571 | 0770 0670 0.666 | 0496 0460 0.428
tool_GPT4T 0.667 0638 06101 | 0771 0712 0.695 | 0.508 0527 0482
3shot_GPTAT 0638 0585 0562 | 0733 0623 0623 | 0493 0527 0471
pure_GPT40 0664 0621 0595 | 0759 0688 0673 | 0521 0520 0477
tool_GPT4o 0667 0620 05991 | 0768 0.686 0.681 | 0513 0521 0475
3shot_GPT4o 0541 0512 0487)| 0557 0488 0482 | 0517 0548 0495
pure_GPT4o-mini | 0.645 ~ 0.641 0.600 | 0.766 0.701 0.686 | 0.463 0549 0470
tool_GPT4o-mini | 0.659 0.691 0.6401 | 0.771 0773 0.738 | 0489 0567 0.490
3shot_GPT4o-mini | 0.644 0589 0564 | 0.703 0579 0586 | 0556 0.604 0.532
pure_llama 0614 0599 0557 | 0712 0718 0672 | 0465 0417 0383
tool_llama 0.621 0630 05851 | 0723 0780 0.716 | 0466 0401 0385
3shot_llama 0554 0553 0511)| 0614 0607 0573 | 0461 0470 0417
pure_mistral 0609 0486 0488 | 0718 0583 0591 | 0444 0340 0.332
tool_mistral 0508 0450 0435)| 0606 0551 0532 | 0359 0295 0288
3shot_mistral 0.564 0489 0482]| 0.693 0592 0592 | 0369 0332 0316
rules | 0429 0498 0437 | 0494 0583 0505|0329 0369 0335
Palimpzest | 0569 0513 0488 | 0.648 0527 0526 | 0448 0490 0431

tion dataset. The results don’t diverge significantly
from the GPT-based evaluation and consistently
highlight the strength of LLM-based methods. Cru-
cially, token-level scores rely solely on manual
annotations, therefore any conclusions drawn from
them are based only on the ground truth and not
subject to any potential inaccuracies from a model-
based evaluation.

5.4 Full Paper Context Extraction Evaluation

We conducted variable extraction evaluations us-
ing the full text of each of the 22 articles. This
approach limits the number of language models
that can be used due to the token limits imposed by
many LLMs. We present the results of a rule-based
model, GPT-3.5T (with chunking the long text into
chunks within the model limit) , and GPT-4T. The
overall performance is shown in Table 3.

When dealing with the extensive context of a
scientific paper, LLMs can struggle to maintain
focus, often resulting in lower recall. In contrast,
the rules and pure_GPT3.5T_C with chunking op-
tions manage to maintain relatively high recall.
Overall, even in the context of lengthy texts, in-
tegrating tool outputs helps LLMs concentrate on
the extraction task, leading to improved results.

6 Conclusion

We have introduced a dataset for extracting vari-
able descriptions and values from scientific liter-
ature, a crucial building block for the automated

Table 3: Overall Performance with Full Paper Text on
Selected Models

Model Recall Precision F1

rules 0.701 0.101 0.172
pure_GPT3.5T_C 0.750 0.250 0.340
pure_GPT4T 0.564 0.488 0.490
tool_GPT4T 0.678 0.467 0.506

recovery of mathematical models from the litera-
ture. We conducted a battery of evaluations using
different commercial and open-source LLMs, a
rule-based information extraction system, and a
declarative Al pipeline framework. In our exper-
iments, we found that LLM-based methods tend
to be the most effective methods to identify and
extract variable descriptions and values; however,
testing ensembles of rule-based and LLM-based
information extractions working in tandem, boost
the performance yield the best results most of the
time. Considering that all the methods tested in
this work did not use any form of supervised learn-
ing, there is ample room for improvement. In fu-
ture work, multiple interesting avenues for research
can be explored: Using semi-supervised and data-
augmentation methods to augment the size of the
dataset, and the use of supervised fine-tuning of
encoder-based language models for generation and
token prediction can improve the accuracy of the
results.

7 Acknowledgments

We would like to express our gratitude for the
support provided by the DARPA ASKEM Award
HRO00112220042. Additionally, we extend our ap-
preciation to Patty Gahan and Robyn Kozierok
from MITRE for their diligent annotation efforts.

8 Limitations

We recognize that our work has certain limitations.
As is common in research involving human anno-
tations, budget and labor constraints have resulted
in a relatively small dataset compared to those con-
structed using automatic or semi-automatic meth-
ods. Moreover, the occurrence of mathematical
variable descriptions and values within natural lan-
guage text is inherently sparse due to the nature of
the articles we analyzed. Additionally, our study
focuses exclusively on English literature, which
may limit its generalizability to other languages.

Despite the small size of our dataset, it was cu-
rated by multiple domain experts following a well-
defined annotation protocol, ensuring high quality.
We hope that by releasing this dataset, we can in-
spire future efforts to curate larger datasets and
foster new research in this area.

9 Ethical Considerations

All of the articles annotated in our dataset are pub-
lished with an open access license. We identify the
papers in Appendix B.

References

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. ArXiv,
abs/1902.10909.

Zui Chen, Lei Cao, Sam Madden, Tim Kraska, Zeyuan
Shang, Ju Fan, Nan Tang, Zihui Gu, Chunwei Liu,
and Michael Cafarella. 2023. Seed: Domain-specific
data curation with large language models. arXiv e-
prints, pages arXiv—2310.

Jacob Collard, Valeria de Paiva, Brendan Fong, and
Eswaran Subrahmanian. 2022. Extracting mathe-
matical concepts from text. In Proceedings of the
Eighth Workshop on Noisy User-generated Text (W-
NUT 2022), pages 15-23, Gyeongju, Republic of
Korea. Association for Computational Linguistics.

Sabina Jeschke, Marc Wilke, Marie Blanke, Nicole M.
Natho, and Olivier F. Pfeiffer. 2007. Information ex-
traction from mathematical texts by means of natural
language processing techniques. In Proceedings of

the International Workshop on Educational Multi-
media and Multimedia Education, Emme 07, page
109-114, New York, NY, USA. Association for Com-
puting Machinery.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Jin-Dong Kim, Yue Wang, and Yamamoto Yasunori.
2013. The Genia event extraction shared task, 2013
edition - overview. In Proceedings of the BioNLP
Shared Task 2013 Workshop, pages 8—15, Sofia, Bul-
garia. Association for Computational Linguistics.

Ni Lao, Tom Mitchell, and William W. Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 529-539, Edinburgh, Scotland, UK.
Association for Computational Linguistics.

Yiming Lin, Madelon Hulsebos, Ruiying Ma, Shreya
Shankar, Sepanta Zeigham, Aditya G Parameswaran,
and Eugene Wu. 2024. Towards accurate and effi-
cient document analytics with large language models.
arXiv preprint arXiv:2405.04674.

Chunwei Liu, Matthew Russo, Michael Cafarella, Lei
Cao, Peter Baile Chen, Zui Chen, Michael Franklin,
Tim Kraska, Samuel Madden, Rana Shahout, et al.
2025. Palimpzest: Optimizing ai-powered analytics
with declarative query processing. In CIDR 2025.

Chunwei Liu, Matthew Russo, Michael Cafarella,
Lei Cao, Peter Baille Chen, Zui Chen, Michael
Franklin, Tim Kraska, Samuel Madden, and Gerardo
Vitagliano. 2024. A declarative system for optimiz-
ing ai workloads. Preprint, arXiv:2405.14696.

Sunil Mohan and Donghui Li. 2019. Medmentions:
A large biomedical corpus annotated with UMLS
concepts. CoRR, abs/1902.09476.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and Robust Models
for Biomedical Natural Language Processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319-327, Florence, Italy. Association for
Computational Linguistics.

Enrique Noriega-Atala, Md. Rahat-Uz-Zaman, Ruchika
Bhat, Mladen Jergovic, Stephen G. Kobourov, and
Janko Nikolich-Zugich. 2023. Visualizing interac-
tion networks and evidence in biomedical corpora.
In 2023 IEEE 16th Pacific Visualization Symposium
(PacificVis), pages 41-50.

Tomoko Ohta, Sampo Pyysalo, Rafal Rak, Andrew
Rowley, Hong-Woo Chun, Sung-Jae Jung, Sung-
Pil Choi, Sophia Ananiadou, and Jun’ichi Tsujii.

https://api.semanticscholar.org/CorpusID:67855472
https://api.semanticscholar.org/CorpusID:67855472
https://aclanthology.org/2022.wnut-1.2
https://aclanthology.org/2022.wnut-1.2
https://doi.org/10.1145/1290144.1290162
https://doi.org/10.1145/1290144.1290162
https://doi.org/10.1145/1290144.1290162
https://arxiv.org/abs/2310.06825
https://aclanthology.org/W13-2002
https://aclanthology.org/W13-2002
https://aclanthology.org/D11-1049
https://aclanthology.org/D11-1049
https://arxiv.org/abs/2405.14696
https://arxiv.org/abs/2405.14696
https://arxiv.org/abs/1902.09476
https://arxiv.org/abs/1902.09476
https://arxiv.org/abs/1902.09476
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.1109/PacificVis56936.2023.00012
https://doi.org/10.1109/PacificVis56936.2023.00012

2013. Overview of the pathway curation (PC) task
of BioNLP shared task 2013. In Proceedings of the
BioNLP Shared Task 2013 Workshop, pages 67-75,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

OpenAl. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Liana Patel, Siddharth Jha, Carlos Guestrin, and Matei
Zaharia. 2024. Lotus: Enabling semantic queries
with Ilms over tables of unstructured and structured
data. arXiv preprint arXiv:2407.11418.

Adarsh Pyarelal, Marco Antonio Valenzuela-Escércega,
Rebecca Sharp, Paul Douglas Hein, Jon Stephens,
Pratik Bhandari, HeuiChan Lim, Saumya Debray,
and Clayton T. Morrison. 2020. Automates: Au-
tomated model assembly from text, equations, and
software. CoRR, abs/2001.07295.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Tarek Saier, Mayumi Ohta, Takuto Asakura, and
Michael Firber. 2024. Hyperpie: Hyperparameter
information extraction from scientific publications.
In European Conference on Information Retrieval,
pages 254-269. Springer.

Timo Schaffhauser, Daniel Garijo, Maximiliano Oso-
rio, Daniel Bittner, Suzanne Pierce, Herndn Vargas,
Markus Disse, and Yolanda Gil. 2023. A framework
for the broad dissemination of hydrological models
for non-expert users. Environmental Modelling &
Software, 164:105695.

Rebecca Sharp, Adarsh Pyarelal, Benjamin Gyori,
Keith Alcock, Egoitz Laparra, Marco A. Valenzuela-
Escércega, Ajay Nagesh, Vikas Yadav, John Bach-
man, Zheng Tang, Heather Lent, Fan Luo, Mithun
Paul, Steven Bethard, Kobus Barnard, Clayton Mor-
rison, and Mihai Surdeanu. 2019. Eidos, INDRA, &
delphi: From free text to executable causal models.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (Demonstrations), pages 42-47,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Anastasia Shimorina, Johannes Heinecke, and Frédéric
Herledan. 2022. Knowledge extraction from texts
based on Wikidata. In Proceedings of the 2022 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Industry Track, pages 297-304,
Hybrid: Seattle, Washington + Online. Association
for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In

10

Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142—
147.

Oguzhan Topsakal and Tahir Cetin Akinci. 2023. Cre-
ating large language model applications utilizing
langchain: A primer on developing llm apps fast.
In International Conference on Applied Engineering
and Natural Sciences, volume 1, pages 1050-1056.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Marco A Valenzuela-Escarcega, Ozgiin Babur, Gus
Hahn-Powell, Dane Bell, Thomas Hicks, Enrique
Noriega-Atala, Xia Wang, Mihai Surdeanu, Emek
Demir, and Clayton T Morrison. 2018. Large-scale
automated machine reading discovers new cancer-
driving mechanisms. Database, 2018:bay098.

Marco A. Valenzuela-Escédrcega, Gus Hahn-Powell, and
Mihai Surdeanu. 2016. Odin’s runes: A rule lan-
guage for information extraction. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 322-329,
Portoroz, Slovenia. European Language Resources
Association (ELRA).

Yanshan Wang, Liwei Wang, Majid Rastegar-Mojarad,
Sungrim Moon, Feichen Shen, Naveed Afzal, Sijia
Liu, Yuqun Zeng, Saeed Mehrabi, Sunghwan Sohn,
and Hongfang Liu. 2018. Clinical information ex-
traction applications: A literature review. Journal of
Biomedical Informatics, 77:34-49.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, Yang
Wang, and Enhong Chen. 2024. Large language mod-
els for generative information extraction: A survey.
Preprint, arXiv:2312.17617.

Kristianto Giovanni Yoko, Minh-Quoc Nghiem, Yuichi-
roh Matsubayashi, and Akiko AIZAWA. 2012. Ex-
tracting definitions of mathematical expressions in
scientific papers. The 26th Annual Conference
of the Japanese Society for Artificial Intelligence,
JSAI2012:3P110S2a3-3P110S2a3.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2017), pages 35-45.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff
Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao, Chris-
tos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al.
2023. Efficiently programming large language mod-
els using sglang. arXiv preprint arXiv:2312.07104.

https://aclanthology.org/W13-2009
https://aclanthology.org/W13-2009
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2001.07295
https://arxiv.org/abs/2001.07295
https://arxiv.org/abs/2001.07295
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1016/j.envsoft.2023.105695
https://doi.org/10.1016/j.envsoft.2023.105695
https://doi.org/10.1016/j.envsoft.2023.105695
https://doi.org/10.18653/v1/N19-4008
https://doi.org/10.18653/v1/N19-4008
https://doi.org/10.18653/v1/2022.naacl-industry.33
https://doi.org/10.18653/v1/2022.naacl-industry.33
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://aclanthology.org/L16-1050
https://aclanthology.org/L16-1050
https://doi.org/10.1016/j.jbi.2017.11.011
https://doi.org/10.1016/j.jbi.2017.11.011
https://arxiv.org/abs/2312.17617
https://arxiv.org/abs/2312.17617
https://doi.org/10.11517/pjsai.JSAI2012.0_3P1IOS2a3
https://doi.org/10.11517/pjsai.JSAI2012.0_3P1IOS2a3
https://doi.org/10.11517/pjsai.JSAI2012.0_3P1IOS2a3
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf

A Annotation Guidelines

A.1 General Conventions

Annotators should prioritize precision over recall
in their first round of annotation on each docu-
ment. Annotations that are missed (i.e., elements
that should be annotated but haven’t been) can be
corrected upon document review. The task is to
identify all instances of such expressions in each
text, including in the title, abstract, and figure and
table captions. Figures, tables, keywords, float-
ing equations, acknowledgment sections, and refer-
ences, however, are not annotated.

A.2 Nested Annotations

“Nested annotations” can happen when annotators
tag nested elements that occur within the bound-
aries of a longer annotation. This task prioritizes
tagging the longest extent of an expression in cases
of overlapping annotation. For example, in the
“variable with value” expression below, “United
States” is not tagged even though it is a “location
context.”

e the [estimated reproduction rate in
the United States as a whole stood at
around 2.5].

A.3 Events

The evaluation will use generous alignment stan-
dards that do not require exactly matching extents
but it is preferable, though not mandatory, to ex-
clude white space and punctuation when annotat-
ing.

A.4 Annotation Types

Annotators are asked to use assigned colors to high-
light five different types of annotations: Variables
with Values, Variable Descriptions, Locations and
Temporal Contexts, and Model Card annotations.
The guidelines below provide further instructions
for each annotation type.

Variables with Values

This entity type captures variables with their nu-
meric values. Values expressed as ranges should
be annotated. To qualify as a Variable with Value,
the expression must contain a number assigned to
a simple expression.

This entity type is marked in blue. Some exam-
ples include:

 growth rate of 0.01

11

*r0=1.2

* Reproduction numbers of COVID-19 vary in
different studies and regions of the world (in
addition over time) but have generally been
found to be between 1.5 and 6.

* the estimated reproduction rate in the United
States as a whole stood at around 2.5.

* The number of unquarantined infected cases
was 1200.

* Beta represents a value 1-3

Do annotate a value expression as a Variable
with Value even when the variable is implied, and
not explicit. Annotate and then add a pop-up note
to indicate the implied variable. For example, “334”
would be annotated as a Variable with Value and
then noted as “Implied variable: unquarantined
infected cases.”

* The number of unquarantined infected cases
was 1200. The number® had been 334.

Do not include confidence intervals in the extent
of the variable with value expression:

* the mean control reproductive number is 6.47
(95% CI5.71-1.3)

Do not tag equations as variables with values.
o I(t) = Io*

Variable Descriptions

This entity type captures descriptions of variables.
In the case of complex phrases, highlight the whole
span of text that contains the complete information.
This entity type is highlighted in . Some
examples include:

®The number refers to the unquarantined infected cases.
As such, this is a way to handle coreference with implied
variables.

L]

=1In2/a

* Susceptible, Exposed, Infectious versus

i]

Do not tag vacuous expressions as variable de-
scriptions, such as:

* parameter v

B Dataset Articles

Table 4 contains the list of DOIs of the articles
annotated to create the variable descriptions and
values dataset.

DOI

10.1073/pnas.2112532119
10.1287/opre.2022.2306
10.1101/2020.04.09.20047498
10.1016/j.chaos.2020.110088
10.1371/journal.pcbi.1009149
10.1038/s41591-020-0883-7
10.1073/pnas.2006520117
10.1016/j.idm.2020.03.001
10.1016/j.chaos.2020.109846
10.1371/journal.pone.0236386
10.3390/ijerph18179027
10.1038/541467-020-20544-y
10.1038/s41598-022-06159-x
10.1016/j.physa.2020.125498
10.1007/s40484-020-0199-0
10.1038/s41591-020-0895-3
10.1186/s13104-020-05192-1
10.1016/j.healthplace.2020.102404
10.3390/jcm9020462
10.1016/j.idm.2020.02.001
10.1175/JPO-D-20-0286.1
10.1002/jmv.25827

Table 4: Digital Object Identifiers (DOI) of the articles
used to build the annotations of the dataset.

12

