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Abstract
Automatic Speech Recognition (ASR) systems
for morphologically complex languages like
Urdu, Persian, and Arabic face unique chal-
lenges due to the intricacies of Perso-Arabic
scripts. Conventional data processing methods
often fall short in effectively handling these lan-
guages’ phonetic and morphological nuances.
This paper introduces a unified data processing
pipeline tailored specifically for Perso-Arabic
languages, addressing the complexities inher-
ent in these scripts. The proposed pipeline en-
compasses comprehensive steps for data clean-
ing, tokenization, and phonemization, each of
which has been meticulously evaluated and val-
idated by expert linguists. Through expert-
driven refinements, our pipeline presents a
robust foundation for advancing ASR perfor-
mance across Perso-Arabic languages, support-
ing the development of more accurate and lin-
guistically informed multilingual ASR systems
in future.

1 Introduction

Automatic Speech Recognition (ASR) systems
have made significant progress, but effective pre-
processing remains crucial, especially for lan-
guages with complex morphology like Urdu, Per-
sian, and Arabic. Traditional methods often fall
short for these languages due to their complex
scripts and phonetic diversity.

Perso-Arabic languages have orthographic com-
plexities, including script variations and diacritics,
often leading to ambiguity. This paper proposes
a preprocessing pipeline specifically for Perso-
Arabic languages, addressing script handling, pho-
netic representation, and word segmentation to en-
hance ASR performance.

Our preprocessing pipeline focuses on data
cleaning, tokenization, and phonemization. These
steps can significantly improve ASR accuracy for
Perso-Arabic languages, contributing to better mul-
tilingual ASR systems.

2 Related Work

Most ASR work for Urdu, Persian, and Arabic re-
lies on supervised learning needing large labelled
datasets. Chowdhury (Chowdhury et al., 2021) and
Dhouib (Dhouib et al., 2022) have explored su-
pervised methods, while Waheed (Waheed et al.,
2023) have used self-supervised techniques for Ara-
bic ASR. Urdu ASR research has followed a sim-
ilar path (Khan et al., 2021) (Khan et al., 2023),
with recent self-supervised advances (Mohiuddin
et al., 2023) reducing labelled data requirements.
Persian ASR has also used self-supervised learn-
ing, with Kermanshahi (Kermanshahi et al., 2021)
employing transfer learning for low-resource set-
tings. Most research has focused on models rather
than preprocessing, which our work aims to ad-
dress. Studies on graphemic normalization and
script conversion (Doctor et al., 2022) (Lehal and
Saini, 2014) highlight the need for specialized pre-
processing to handle script inconsistencies. Gutkin
(Gutkin et al., 2023) and Iyengar (Iyengar, 2018)
have discussed script variations and consistency
issues. Building on these, our pipeline introduces
cleaning, normalization, and tokenization to ad-
dress challenges across multiple Perso-Arabic lan-
guages, aiming to improve ASR performance.

3 Lexicon

A lexicon contains mappings from words to their re-
spective phonetic representations, playing a pivotal
role in ASR systems, particularly those based on
Kaldi. Even with advancements in end-to-end deep
learning-based ASR systems, Kaldi’s hybrid archi-
tecture still relies heavily on well-constructed lexi-
cons to achieve accurate speech recognition results.
The lexicon is critical in statistical ASR models,
where correct phonetic transcriptions determine the
quality of word recognition. For Perso-Arabic lan-
guages such as Arabic, Persian, and Urdu, lexicon
creation becomes even more challenging due to
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their morphological complexity and phonetic vari-
ability.

This section discusses our two-part lexicon cre-
ation process: Tokenization, which involves seg-
menting text into individual words, and Phonetic
Parsing, which converts these words into their pho-
netic forms.

3.1 Tokenization
In a language like English, we can use whites-
pace to break sentences into words directly. But
word segmentation becomes much more challeng-
ing in the case of Perso-Arabic script, as these
languages pose unique challenges in natural lan-
guage processing due to their intricate morphology,
encompassing both derivational and inflectional
forms. Inflectional morphology involves modifying
words to reflect gender, tense, and other grammati-
cal features, while derivational morphology alters
the meaning of words through prefixes, suffixes,
or infixes.(Habash, 2010). The cursive nature of
the Arabic script further complicates tokenization,
making it challenging to identify clear morpheme
boundaries, particularly in cases where letters are
linked differently depending on their position in a
word.

We explored several tokenization tools, includ-
ing NLTK (Bird et al., 2009), Stanza (Qi et al.,
2020), and various language-specific tokenizers,
with the aim of selecting the most appropriate
approach. Despite the versatility of these tools,
NLTK emerged as the best choice based on ex-
pert consultations. It did present some challenges,
particularly in splitting abbreviations and break-
ing compound words. This was problematic given
the highly specific meanings carried by compound
words in Perso-Arabic languages. However, NLTK
demonstrated superior performance in terms of ac-
curacy and speed compared to other options. Thus,
NLTK was selected as the primary tokenizer for its
efficiency in maintaining accuracy across the three
languages.

3.2 Parser
Here’s the revised version of the paragraph:

For the next stage of lexicon creation, we fo-
cused on phonetic parsing—converting words into
their phonetic transcriptions. Phonemizer (Bernard
and Titeux, 2021) emerged as the preferred parser
for handling Perso-Arabic languages due to its ef-
fectiveness in converting linguistic input into pho-
netic representations. Phonemizer provides flexibil-

ity in phonetic parsing by offering multiple back-
ends, each with different strengths1.

An expert linguist verified that Phonemizer ef-
fectively handles the complexities and accurately
parses Persian, Urdu, and Arabic phonemes. For
other low-resource Abjad or Ajami languages in-
cluded in Phonemizer’s supported languages, such
as Sindhi, the same approach can be applied. How-
ever, for languages like Pashto, which are not sup-
ported by Phonemizer, we have explore other op-
tions in future.

4 Data Pre Processing

In our analysis of the transcripts, we identified
elements that could adversely affect ASR perfor-
mance, such as punctuation, extraneous charac-
ters, numerical data, and foreign language words.
To address these issues, we implemented a modu-
lar pre-processing pipeline. It systematically han-
dles Perso-Arabic scripts by removing non-space
joiners, converting numbers using Num2Words,
transliterating foreign words with Google Translit-
eration, and performing Text Normalization. This
streamlined approach improves data consistency
and ASR accuracy.

4.1 Understanding RTL Languages

Properly handling RTL (Right-to-Left) languages
like Arabic, Persian, and Urdu is essential for ac-
curate ASR preprocessing because these languages
have unique script orientation and text handling
requirements. Historically, RTL language support
was limited before the introduction of Unicode,
with most software assuming LTR (Left-to-Right)
directionality.

The Unicode encoding system solved this issue
by defining directional character types2 for RTL
and LTR languages:

• Strong types: Characters that have an ex-
plicit directionality (irrespective of surround-
ing text), such as RTL for Hebrew or LTR for
English.

• Weak types: Characters like numbers and
punctuation that hat might have a direction,
but it doesn’t affect their surroundings and
may be adjusted based on their surrounding
text.

1https://github.com/bootphon/phonemizer
2https://unicode.org/reports/tr9/

https://github.com/bootphon/phonemizer
https://unicode.org/reports/tr9/


25

• Neutral characters: Characters that can flow in
either direction, like whitespace or newlines,
which inherit the direction from surrounding
text.

This Unicode approach enables the display and
processing of RTL text in its natural reading order
without requiring code modifications. For instance,
when typing a two-letter word, the first letter is en-
tered and pronounced first, followed by the second
letter. This sequence is maintained in the stored text
file, and the first pronounced letter corresponds to
the first byte. This is precisely the same way Left-
to-Right (LTR) languages are stored. Therefore,
any code designed for LTR scripts can process RTL
text seamlessly without additional adjustments.

When displayed, however, RTL text appears
from right to left, with the first pronounced char-
acter positioned at the rightmost end. This is due
to Unicode’s assigned directionality attribute. Text
editors interpret this directionality in Unicode and
adjust the rendering accordingly, beginning display
from the right. Thus, it is the text editor that man-
ages the visual directionality, ensuring accurate
RTL presentation, even though the text is stored on
disk in the same way as LTR languages.

Perso-Arabic 
Script

Remove Non-
Space Joiners

Num2Words
Google 

Transliteration
Text

Noramalisation

Figure 1: Data Pre-Processing pipeline

4.2 Handling Non-Space Joiners

During the preprocessing phase, we encountered
non-space joiners: characters used to connect or
join other characters without adding visible space.
These joiners are particularly relevant for text pro-
cessing in scripts that have complex typographical
rules. They help maintain proper formatting, but
non-space joiners can introduce significant issues
in ASR, particularly for Urdu, Persian, and Arabic
languages. For instance, Pop Directional Format-
ting can alter text direction, leading to inconsisten-
cies that negatively impact how the ASR system
processes and interprets the text. To address these
issues, we systematically identified and removed
several non-space joiners. The exact non-space
joiners removed are detailed in Appendix A (see
Table: Unicode Codes for Non-Space Joiners)

These characters were removed by searching
for their Unicode code points and systematically
replacing them as part of the preprocessing pipeline

4.3 Handling Numerical Data

We also observed that English text and numerical
data in transcripts were often pronounced in the
native language of the audio recordings. This dis-
crepancy was particularly evident in the case of
numbers. To resolve this issue, we translated En-
glish numbers into the respective native language
using the num2words 3 library. This Python tool ef-
fectively converts numerical values into their word
forms, supporting various formats such as cardi-
nal and ordinal numbers and even currency forms.
Num2words was particularly useful for aligning
text with spoken content by generating word-based
representations of numbers. The tool’s extensive
support for different languages and its customiza-
tion options made it well-suited for ensuring that
numerical data was processed accurately, improv-
ing the consistency between audio and text.

4.4 Transliteration of Foreign Words

Another challenge was the presence of foreign
words in transcripts, such as abbreviations or terms
pronounced in a foreign language. For these
cases, transliteration was required to convert for-
eign words into native equivalents based solely
on pronunciation rather than meaning. We evalu-
ated several transliteration tools, including Google
Transliteration4, Akshara Mukha5, and QCRI API6.
Google Transliteration was selected as the most ef-
fective solution after thorough assessment and con-
sultation with linguistic experts. Google Translit-
eration provides robust phonetic input conversion
across various scripts, making it suitable for han-
dling the complexities of Arabic, Persian, and Urdu.
It allows for easy and consistent transliteration of
foreign terms, thereby enhancing the overall quality
and consistency of the text-processing workflow.

4.5 Text Normalisation

The next step in our preprocessing involved remov-
ing punctuation marks from the transcripts. Un-
like other languages, Perso-Arabic scripts use a
distinct set of punctuation symbols, requiring the
identification of unique Unicode ranges. To stan-
dardize the text, we identified and removed specific
Unicode ranges corresponding to characters and

3https://github.com/savoirfairelinux/num2words
4https://www.google.com/inputtools/services/

features/transliteration.html
5https://aksharamukha.appspot.com/
6https://mt.qcri.org/api

https://github.com/savoirfairelinux/num2words
https://www.google.com/inputtools/services/features/transliteration.html
https://www.google.com/inputtools/services/features/transliteration.html
https://aksharamukha.appspot.com/
https://mt.qcri.org/api
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punctuation marks for each language. The Uni-
code ranges for Urdu, Persian, Arabic, and various
punctuation categories were meticulously selected
(see Appendix A for full details). For extension
to other low-resource languages, the preprocess-
ing pipeline would need to identify and include
language-specific Unicode characters by carefully
evaluating the data for any additional unique sym-
bols or punctuation marks. This language-specific
customization and systematic removal of unwanted
characters helped reduce noise and improved the
consistency between the audio and text data, which
improved the overall clarity and usability of the
transcript data for subsequent ASR tasks.

5 Experiment

5.1 Dataset
We began collecting data from various sources, in-
cluding Common Voice, OpenSLR, and other open-
source datasets, with MGB-2 for Arabic as a major
contributor (Ali et al., 2019) (Kolobov et al., 2021)
(Messaoudi et al., 2021). The Common Voice
dataset had fewer verified files than anticipated,
requiring careful filtering to retain only verified
transcripts. The OpenSLR dataset contained audio
paired with transcripts, which we used to segment
the audio and discard discrepancies. Notably, the
MGB-2 Arabic data was not diacritized, and we
used it as-is. After combining datasets, noisy audio
files were removed, and transcripts were cleaned
to eliminate symbols and empty entries. All tran-
scripts were standardized in text format. Audio
files from diverse sources were converted to WAV
format and resampled to a consistent 16kHz rate
See Table 1 for a clear breakdown of the dataset
used for training.

Language Train (hours) Test (hours)
Arabic 1202 52.5
Urdu 65 4
Persian 80 14.5

Table 1: Dataset split for different languages.

5.2 Building Statistical ASR using Kaldi
Framework

We first started building an ASR model in Kaldi
(Povey et al., 2011) for each Urdu, Persian, and
Arabic language. For Arabic, we used Buckwalter
Transcription (Habash et al., 2007) and modelled
the ASR as described in (Ali et al., 2014). We fol-
lowed a similar recipe to model ASR for Urdu and

Persian, using NLTK tokenizer and Phonemizer to
create lexicons. SRILM (Stolcke, 2004) was used
for language modelling. The results are displayed
in Table 2.

Experiment WER (%)
Arabic ASR (Buckwalter) 35.0
Urdu ASR 61.5
Persian ASR 56.0

Table 2: WER for different languages using Kaldi.

5.3 End2End ASR using Wav2Vec2.0
To fine-tune the wav2vec 2.0 model (Baevski et al.,
2020), we started by selecting the CLSRIL-23
pre-trained model. This model had already been
trained on a broad and diverse dataset, providing
a strong baseline for customization to our spe-
cific languages. We used SentencePiece(Kudo and
Richardson, 2018) as the tokenizer for all the lan-
guages and trained the ASR model for each lan-
guage separately. The results are displayed in Ta-
ble 3.

Experiment WER (%)
Arabic ASR 38.0
Persian ASR 32.9
Urdu ASR 29.6

Table 3: WER for different languages using
Wav2vec2.0.

6 Conculsion

In conclusion, we successfully developed ASR sys-
tems for Urdu, Persian, and Arabic using statisti-
cal (Kaldi) and fine-tuned neural models (wav2vec
2.0). A common preprocessing and lexicon cre-
ation pipeline was established across all three lan-
guages, addressing the unique challenges of Perso-
Arabic scripts. While we did not consider diacriti-
zation for Arabic in this work, we intend to address
this in future studies. In this work, we carefully con-
sidered, evaluated, and finalized the best choices
for each step in the unified preprocessing pipeline
for Persian, Arabic, and Urdu. For other languages
like Pashto and Sindhi, this pipeline can be ex-
tended; however, the results would need verifica-
tion by a linguistics expert to ensure accuracy and
linguistic integrity. Building on this foundation, our
next step will be to create a multilingual ASR sys-
tem, which promises to make speech recognition
technology more accessible for under-resourced
languages and enhance multilingual capabilities.
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A Appendices

Unicode Ranges for Urdu, Persian, and Arabic

Language Unicode Ranges
Arabic (ar) \u 0600-\u 06FF, \u 0750-\u 077F, \u 0870-\u 089F, \u 08A0-\u 08FF

Urdu (ur) \u 0621, \u 0622, \u 0624, \u 0626, \u 0627, \u 0628, \u 062A-\u 062F,
\u 0630-\u 0639, \u 063A, \u 0641, \u 0642, \u 0644, \u 0645, \u 0646, \u 0648,
\u 0679, \u 067E, \u 0686, \u 0688, \u 0691, \u 0698, \u 06A9, \u 06AF, \u 06BA,
\u 06BE, \u 06C1, \u 06CC, \u 06D2, \u 0660-\u 0669

Persian (fa) \u 0621-\u 0629, \u 062A-\u 062D, \u 062E-\u 062F, \u 0630-\u 0652, \u 0654,
\u 067E, \u 0686, \u 0698, \u 06A9, \u 06AF, \u 06CC

Unicode Ranges for Punctuation Marks

Category Unicode Ranges
General Punctuation \u 0021, \u 0022, \u 0023, \u 0024, \u 0025, \u 0026, \u 0027, \u 0028,

\u 0029, \u 002A, \u 002B, \u 002C, \u 002D, \u 002E, \u 002F, \u 003A,
\u 003B, \u 003C, \u 003D, \u 003E, \u 003F, \u 0040, \u 005B, \u 005C,
\u 005D, \u 005E, \u 005F, \u 0060, \u 007B, \u 007C, \u 007D, \u 007E,
\u 00A9, \u 00AB-\u 00BB, \u 201D, \u 201C

Hyphens and Symbols \u 2010-\u 2014, \u 2026, \u 2030, \u 20AC, \u 201D

Arabic Punctuation \u 0609, \u 060C, \u 060D, \u 060E, \u 060F, \u 061E, \u 061C, \u 061D,
\u 0615, \u 0617, \u 0616, \u 061F, \u 066D, \u 06D4, \u 066A, \u 066B,
\u 066C, \u 061B

Unicode Codes for Non-Space Joiners

Description Unicode Codes
Non-Space Joiners \u 200B (Zero Width Space), \u 200C (Zero Width Non-Joiner), \u 200D

(Zero Width Joiner), \u 200E (Left-to-Right Mark), \u 200F (Right-to-Left
Mark), \u 202A (Left-to-Right Embedding), \u 202B (Right-to-Left Embed-
ding), \u 202C (Pop Directional Formatting), \u 202D (Left-to-Right Override),
\u 2066 (Left-to-Right Isolate), \u 2067 (Right-to-Left Isolate), \u 2028 (Line
Separator)
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