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Message from the Workshop Chair

The  workshop  on  Automatic  Assessment  of  Atypical  Speech  (AAAS)  explores  the 
assessment of pronunciation and speaking skills of  children, language learners, and 
speakers with speech sound disorders and methods to provide automatic rating and 
feedback  using  automatic  speech  recognition  (ASR)  and  large  language  models 
(LLMs). The workshop takes place in Tallinn, Estonia, on March 5th, 2025, in a physical 
setting, allowing for potential hybrid participation.

Automatic speaking assessment (ASA) is a rapidly growing field that answers to the 
need for AI tools to self-practise second and foreign language skills. This is not limited 
to  pronunciation  assessment,  but  the  AI  systems  can  also  provide  more  complex 
feedback about fluency, vocabulary and grammar of the recorded speech. ASA is also 
very relevant for the detection and quantification of speech disorders and for developing 
speech  exercises  that  can  be  performed  independently  at  home.  The  important 
applications of processing non-standard speech also include interfaces for children and 
elderly speakers as an alternative to using text input and output. The topic is timely, 
because the latest large speech models allow us now to develop ASR and classification 
methods for  low-resourced data,  such as atypical  speech,  where annotated training 
datasets are rarely available, expensive and difficult to transcribe, rate and share. 

The idea to organize this workshop came during the last year of a 4-year long research 
project TEFLON with partners from Finland, Sweden and Norway. The project has been 
funded by NordForsk’s programme for multidisciplinary research collaboration in Nordic 
countries and it focused on gamified pronunciation training and assessment for children 
learning  Nordic languages. The goal of this workshop is to present the latest results in 
the field of ASA and discuss the future work and collaboration between the researchers 
in Nordic and Baltic countries.

In  the  call  for  papers,  we  invited  students,  researchers,  and  other  experts  and 
stakeholders  to  contribute  papers  and/or  join  the  discussion  on  the  following  (and 
related) topics:

 Automatic  speaking  assessment  (ASA)  for  L2  (second  or  foreign  language) 
pronunciation

 ASA for spoken L2 proficiency
 ASA for speech sound disorders (SSD)
 Automatic speech recognition (ASR) for L2 learners



 ASR for children and young L2 learners
 ASA and ASR for Nordic and other low-resource languages and tasks
 Spoken L2 learning and speech therapy using games
 Automatic generation of verbal feedback for spoken L2 learners using LLMs

In  total  7  submissions  were  received  of  which  4  were  archival  submissions.  The 
programme committee (PC) consisted of 27 members (excluding the 3 program chairs), 
who served as reviewers providing at  least  3 reviews for each archival  submission. 
Based on the PC assessments regarding the content, and quality of the submissions, 
the  program  chairs  decided  to  accept  only  2  submissions  for  presentation  and 
publication.  The  non-archival  submissions  were  presentation  abstracts  of  related 
projects  in  Finland and Estonia.  These 3  project  presentation  submissions,  2  peer-
reviewed research papers, 1 invited presentation from the TEFLON project and 2 other 
invited talks together compose our workshop programme consisting of 8 talks and a 
panel discussion.

To complete the programme we invited 3 keynote talks to strengthen the connection of 
the speaking assessment research to its main application fields: in speech therapy by 
Nina  Benway  (University  of  Maryland,  USA)  and  second  language  proficiency 
assessment Ari Huhta (University of Jyväskylä, Finland). For the third keynote talk we 
invited all the partners of the TEFLON project to briefly present their key results.

Thank  you  to  everyone  for  being  part  of  AAAS-2025,  and  I  wish  you  a  wonderful 
workshop!

Mikko Kurimo, Workshop Chair
Espoo
February 2025
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Invited Talk: What is so hard about AI Speech Therapy? Evidence 
from Efficacy Trials
Nina R Benway
University of Maryland, College Park

   
Artificial  intelligence  (AI)  speech  therapy  systems  hold  significant  potential  for 
individuals  seeking  to  acquire  and  generalize  speech  sound  motor  plans  through 
targeted  intervention.  Research  indicates  that  approximately  5,000  speech  therapy 
practice  trials  are  required  to  generalize  a  newly  acquired  speech  motor  plan  to 
continuous speech [1, 2]. However, access to sufficiently intensive intervention remains 
a challenge worldwide [3-6], with the actual dosage of therapy often falling well below 
evidence-based recommendations [7-9]. AI speech therapy systems could help bridge 
this gap by enabling at-home, independent practice and automated feedback that aligns 
with  best-practice  intensity  levels  and  therapeutic  paradigms  [10].  While  recent 
technological advancements have begun to overcome key technical barriers like child 
speech data scarcity  and limited technical  transparency,  important  questions remain 
regarding the therapeutic efficacy of  AI  clinicians.  High-quality clinical  trials are now 
emerging,  offering  critical  insights  into  the  real-world  effectiveness  and  therapeutic 
impact of AI-driven speech therapy tools [11, 12].

It  is  important  to  critically  examine the rigor  of  these clinical  trials  and the broader 
implications they pose for the future of AI speech therapy. Key questions include: What 
clinical  results  do  developers  need  to  report  to  show that  their  systems are  fit-for-
purpose?  How  do  AI-driven  speech  analysis  and  intervention  systems  compare  to 
human  clinician  judgment  in  real-world  settings?  Which  speech  errors  are  most 
appropriate  for  automated  analysis?  What  child  profiles  are  best  suited  for  ethical 
independent  speech practice? What  preferences and difficulties  do users  have with 
regard to AI clinicians? This presentation explores both the promise and limitations of 
AI-driven  speech  therapy  through  the  lens  of  systematic  review  [13-16],  recently 
completed small-n and randomized efficacy trials [11, 12], and our ongoing randomized 
controlled trials.
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Invited Talk:  Automatic assessment of second/foreign language 
speaking:  Review  of  developments  for  examination  and 
teaching/learning purposes
Ari Huhta
University of Jyväskylä

The presentation focuses on describing how automatic assessment of second/foreign 
language (L2) speech has advanced due to innovations in speech processing, machine 
learning,  and  natural  language  processing  (NLP).  Modern  systems  evaluate 
pronunciation,  fluency,  prosody,  and  intelligibility  using  a  combination  of  acoustic, 
linguistic, and prosodic features (e.g.[3, 5]).

Advances  in  artificial  intelligence  (AI)  have  led  to  improvements  in  assessment 
accuracy.  These  advancements  have  been  integrated  into  commercial  applications, 
including TOEFL®, Pearson’s Versant, Duolingo English Test, and AI-driven tutoring 
systems like ELSA Speak. While English is still the most common language assessed 
automatically, significant developments are taking place also for many other languages 
(e.g. [1, 2, 4]).

Despite  progress,  challenges  remain  in  data  scarcity,  accent  robustness,  bias 
mitigation, and adaptive feedback. Current systems still struggle with diverse L2 accents 
and ensuring fairness in automated scoring. Future developments are likely to focus on 
multimodal integration (speech, facial expressions, gestures), explainable AI feedback, 
and personalized adaptive learning models to improve language learning experiences.
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Abstract

Automatic reading diagnosis systems can
substantially improves teachers’ efficiency
in scoring reading exercises and provide
students with easier access to reading
practice and feedback. However, few
studies have focused on developing Au-
tomatic Speech Recognition (ASR)-based
reading diagnosis systems due mainly to
scarcity of data. This study explores
the effectiveness and robustness of further
fine-tuning the Wav2vec2.0 large model
in low-resource settings, for recognizing
children speech and detecting reading mis-
cues using target domain and similar out-
of-domain data. Our results show a word
error rate (WER) of 10.9% and an F1
score of 0.49 for reading miscue detec-
tion achieved by our best fine-tuned model
training with target domain data, while us-
ing similar out-of-domain non-native read
speech can enhance the model perfor-
mance for unseen speakers and noisy set-
tings. The analyses provide insights into
the robustness of further fine-tuning strate-
gies on the Wav2vec2.0 model.

1 Introduction

Recent advances in Automatic Speech Recogni-
tion (ASR) have made many previously com-
plex speech–based computer-assisted applications
more feasible (Ivanko et al., 2023). One such ap-
plication is the integration of ASR into primary
school reading education (Shadiev and Liu, 2023).
However, this initiative has encountered signif-
icant challenges in children speech recognition
(Feng et al., 2024) and miscue detection (Shiv-
akumar and Narayanan, 2022), largely due to the
scarcity of speech data and annotations, especially
for languages other than English.

Meanwhile, growing concerns over declining
reading proficiency levels among low-resource
language users (Swart et al., 2023) highlight the
urgent need for innovative approaches to improve
reading instruction. A common task in reading
education is miscue detection (Limonard et al.,
2020), which involves two steps: first, identify-
ing general reading errors such as word substitu-
tion, insertion, and deletion, and second, classi-
fying specific miscues, including various types of
substitution and insertion errors (Shivakumar and
Narayanan, 2022). This process requires the man-
ual transcription of mispronunciations and the an-
notation of miscue categories, making data collec-
tion both time-consuming and costly.

State-of-the-art (SOTA) large pretrained ASR
models have shown remarkable performance in
adult speech recognition (Pratap et al., 2024) and
offer potential for supporting practice and re-
medial teaching (Molenaar et al., 2023) in low-
resource children’s reading education. Wav2Vec
2.0-CTC and similar models are especially
promising due to their ability to detect spoken er-
rors more accurately (Gao et al., 2024). Research
has also shown Wav2Vec 2.0’s effectiveness in
low-resource transfer learning tasks, improving
children’s speech recognition in English through
fine-tuning pretrained models (Bartelds et al.,
2023; Jain et al., 2023). For Dutch child speech,
data augmentation with cross-lingual speaker di-
versity has proven effective, though it mainly ben-
efits unseen speaker recognition (Zhang et al.,
2024). However, these methods require signif-
icant computational resources and training data.
Given the high cost of child speech data collection
and ASR model training, further fine-tuning (Shen
et al., 2021) trained ASR models offers a low-cost
alternative by leveraging knowledge from adult
speech, making it particularly suitable for low-
resource languages. Moreover, previous research
has shown that speech data from similar domains

1



can be effectively used as augmentation for target
domain speech recognition. In (San et al., 2024),
training ASR with speech data from similar lan-
guages or accents has been found to improve tar-
get language speech recognition in low-resource
settings. Nevertheless, further finetuning and aug-
mentation with similar domain data has not been
extensively explored in the context of Dutch chil-
dren speech recognition and the impact of this
method on downstream reading diagnosis.

In addition, most existing fine-tuning and aug-
mentation studies have employed clean datasets,
often collected in laboratories, while real-world
child reading exercises typically take place in
home and classrooms with diverse background
noise and other environmental factors (Lavechin
et al., 2020). The robustness of these strategies on
ASR for real-world Dutch children’s read speech
remains unclear.

In this work, we make a novel contribution by
filling the gap of investigating the effectiveness
of further fine-tuning Dutch adult speech trained
Wav2vec2.0, using target domain and similar out-
of-domain data, for Dutch native child read speech
recognition and reading miscue detection. Addi-
tionally, we address the research gap of exploring
robustness of further fine-tuning in diverse real-
world reading tasks and context where Dutch pri-
mary pupils read aloud. The research questions we
address in our study are:

RQ1: To what extent can low-resource fur-
ther fine-tuning of the adult-speech trained
Wav2vec2.0 model enhance the performance of
Dutch native children’s read speech recognition?

RQ2: To what extent can similar out-of-domain
(native child dialogue and non-native child read
speech) data used in further fine-tuning improve
target-domain Dutch native children’s read speech
recognition?

RQ3: To what extent can the above mentioned
further fine-tuning strategies enhance Dutch chil-
dren’s reading miscue detection?

RQ4: To what extent are the above-mentioned
further fine-tuning strategies robust to real-world
Dutch native children’s read speech recognition?

We address our research questions through a
two-phase study. In the first phase, we explore
the efficacy of different fine-tuning options on
clean child read speech recognition. In the sec-
ond phase, we select models representing effective
training strategies for experiments on investigating

the robustness of real-world child read speech and
their ability to detect children’s reading miscue.

Table 1: Reading error categories and reading miscue cate-
gories with their abbreviations in brackets

Error Type Reading Miscue Type Other

Substitution

Substitute a word in the prompt
by another existing dutch word
which was semantically identical (SS)

-

Substitute a word in prompt
by another existing dutch word
which was orthographically similar (OS)

-

Replace a word in prompt
by another existing dutch word
which was not orthographically
or semantically similar (O)

-

Insertion Restart
Insertion of an extra word
not in the prompt (Im) -

Deletion a word in the prompt is not read (D) -

2 Methodology

2.1 Dataset and Preprocessing

This paper utilizes clean children speech from the
Jasmin-CGN Corpus (Cucchiarini et al., 2008),
and real-world Dutch child read speech from
DART (Bai et al., 2021) and ST.CART (Wills
et al., 2023). In the Jasmin-CGN Corpus, the tar-
get domain data, the native children read speech
subset, includes recordings of 71 primary school
children (ages 6-13, reading level 1-9) reading
aloud at their mastery reading level, aligned with
manual orthographic transcriptions. Children of
the same reading level share the same reading
prompt. Each prompt consists of three stories.
The recordings of the first prompt story are aligned
with the prompt text, reading miscue, and reading
strategy annotations (data description available in
(Limonard et al., 2020)). The native child dialogue
speech and non-native child reading speech are
used as similar out-of-domain data for augmen-
tation. The native child dialogue speech consists
of recordings of the same 71 speakers. The non-
native child read speech consists of read speech
from 53 non-native primary school children.

To investigate the impact of fine-tuning with
different data on recognizing child speech, we split
the Jasmin dataset, as shown in Table 2, into vali-
dation, training, and testing subsets. We created
two child speech test sets: the full test set and
the non-overlap test set. The full test set includes
speakers overlapping with those in the training
data, while the non-overlap test set consists of in-
dependent speakers. These test sets allow us to
assess the ability of fine-tuning to handle unseen
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Table 2: Data split details for Jasmin-CGN Corpus

Dataset Split Content Duration
Validation Set Read Speech (story 2&3): First five samples from each of 65 native speakers. 31 minutes
Train:clean-FULL Read Speech (story 2&3): Remaining sentences from 65 native speakers after validation samples are excluded. 4.4 hours
Train:clean-aug-nonna Augmented set including native and non-native read speech. 8 hours
Train:clean-aug-dial Augmented set including native read and child-only dialogue speech. 8 hours
Train:clean-SDS Read Speech (story 2&3): Samples from the sentence order 8th to 20th ∼1 hour
Train:clean-SPDS Read Speech (story 2&3): Random selection of sentence samples from 65 speakers emphasizing mispronunciations. ∼1 hour
Test:clean (Full) Read Speech (story no.1): First prompt readings from all 65 speakers (71 recordings). 2.05 hours
Test:clean (Non-overlap) Read Speech (story no.1): First prompt readings from six other speakers, avoiding overlap with the 65 speakers. 14 minutes

speakers.
Real-world speech recordings are more com-

plex than speech recorded in a controlled lab set-
ting, as it includes diverse speaking conditions
and environmental noise. In this paper, we use
the following two datasets to represent real-world
speech. The DART test dataset consists of chil-
dren reading speech recorded at home, primar-
ily featuring environmental noise from different
microphones and parents’ voices. The ST.CART
test dataset consists of children’s reading speech
recorded in a classroom, mainly including back-
ground noise from other children talking and read-
ing. In both real-world datasets, usually the vol-
ume of speech is less well-controlled, and children
are less attentive, leading to greater variation in
speech speed compared to recordings made in a
lab.

For evaluating fine-tuning robustness, we
used three real-world testsets from DART and
ST.CART. The DART test dataset, with 48 min-
utes of Dutch children reading sentences and sto-
ries at home, assesses robustness on real-world
data seen during validation, but not included in
training. The validation set includes 3 minutes
of sentence recordings and 2.5 minutes of story
recordings, while the DART testset includes 15
minutes of sentence recordings and 33 minutes of
story recordings. The ST.CART testset, consist-
ing of 36 minutes of Dutch children reading stories
in classrooms, evaluates robustness on real-world
data that was not seen during any training phase.

2.2 Reading Miscue Detection

In this paper, word-level reading errors include
substitutions, insertions, and deletions. Word-
level reading miscues, which are a subset of these
errors, encompass specific substitution and inser-
tion errors, as detailed in (Limonard et al., 2020)
and shown in Table 1. Insertions in reading mis-
cues are a subset of insertion errors, but correct
readings after restarts or repetitions are not classi-
fied as insertion miscues, in line with Dutch read-

ing test conventions (van Til et al., 2018).

For evaluating fine-tuned models, we focus on
detecting word-level reading miscues, defined as
errors where both the type and location match be-
tween prediction and ground truth. Analysis is
based on detected general errors from manual tran-
scriptions and ASR outputs, with miscue catego-
rization outlined in Table 1. We follow the steps
in section 2.3 of (Gao et al., 2024) to obtain and
evaluate miscue labels.

2.3 ASR Models, Metrics and Tools

We evaluate the effectiveness of further fine-
tuning ASR models in recognizing Dutch native
children speech and detecting word-level reading
miscues. The ASR foundation model Wav2vec2.0
we used in this paper is pretrained and finetuned
with Dutch adult speech. We would like to fur-
ther finetune the ASR model with Dutch child.
ASR models are employed to predict word-level
transcriptions, coupled with the Speech Recogni-
tion Toolkit SCTK (Lütkebohle, 2021). We em-
ploy Word Error Rate (WER) for evaluating chil-
dren speech recognition at each testset and Preci-
sion, Recall, F1 for reading miscue detection eval-
uation, similarly in our previous work(Gao et al.,
2024).

We (further) fine-tune the Wav2vec2.0 large
model on different training dataset sourced from
the Jasmin-CGN Dutch children speech. Our (fur-
ther) fine-tuning experiments use hyperparameters
similar to those reported by (Baevski et al., 2020)
for comparable data sizes. In order to train mod-
els on a single A6000 GPU, following training set-
tings in (Bartelds et al., 2023), We train the models
with a batch size of 4 or 8 and apply gradient ac-
cumulation steps of 8 or 4, respectively, over 10k
steps, using a learning rate of 1e-5 and a single
seed.
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3 Results

3.1 Performance on Different Fine-Tuning
Options

We address RQ1 and RQ2 by evaluating fur-
ther fine-tuning strategies on Wav2vec2.0 for chil-
dren speech recognition performance, measured
by WER, using different training datasets. The re-
sults are shown in Table 3. The baseline model is
the Dutch adult pretrained Wav2vec2.0 fine-tuned
on adult read speech, without further finetuning on
child data.

Table 3: Evaluation of children speech recognition by WER
of the baseline and fine-tuned models with different training
sets.

test-cleanModel full non-overlap
RQ1
pretrain-adult-ft-adult 13.2 13.9
pretrain-adult-ft-adult-clean-FULL 10.9 12.2
pretrain-adult-ft-adult-clean-SPDS 11.1 11.7
pretrain-adult-ft-adult-clean-SDS 11.3 11.7
RQ2
pretrain-adult-ft-adult-clean-aug-dial 11.4 12.1
pretrain-adult-ft-adult-clean-aug-nonna 11.5 11.2

For RQ1, our results highlight that fine-tuning
with a small dataset of Dutch native children’s
read speech (clean-FULL: 4.4 hours) can sub-
stantially enhance the model’s accuracy for this
demographic (WER=10.9%, absolute improve-
ment=2.3%, Table 3). Meanwhile, using a
speaker-prompt train subset SPDS can achieve
competitive performance overall (WER=11.1% vs
10.9%) and improve results for unseen speakers
(WER=11.7% vs 12.2%), underscoring the impor-
tance of data diversity in fine-tuning rather than
sheer volume.

For RQ2, our findings show that further fine-
tuning with non-native read speech augmen-
tation improves recognition for unseen child
speakers (best WER=11.2%, compared to 12.2%
with clean-FULL fine-tuning on test-clean non-
overlap), emphasizing the benefit of increased
speaker diversity through out-of-domain data.
However, on the test-clean full set, where speak-
ers largely overlapped with the training data, nei-
ther fine-tuning with native dialogue augmenta-
tion (WER=11.4%) nor non-native speech data
(WER=11.5%) improved performance over the
clean-FULL model (WER=10.9%), as shown in
the bottom part of Table 3, suggesting a signif-
icant domain transfer gap between dialogue and
read speech for training ASR models, consistent

with (Proença et al., 2018).

3.2 Detection of Reading Miscues

Then, to address RQ3, we compare precision, re-
call, and F1 scores of different models for miscue
detection in Table 4. Our results confirm the effec-
tiveness of low-resource fine-tuning with target-
domain read speech and one out-of-domain (non-
native) data in improving Dutch children’s mis-
cue detection. The best detection performance on
the full testset was achieved by further fine-tuning
with clean-full (F1=0.49), while the non-overlap
testset was best handled by fine-tuning with clean-
aug-nonna (F1=0.57), compared to 0.43 and 0.44
respectively for the baseline model. This trend
mirrors WER improvements, indicating a strong
correlation between speech recognition perfor-
mance and miscue detection.

3.3 Robustness to Real-World Data and
Reading Tasks

To address RQ4, we compare the WER perfor-
mance of models trained with different strate-
gies against a baseline model without further fine-
tuning across three real-world testsets, as shown
in Table 5. Our findings indicate that further fine-
tuning strategies show limited robustness to un-
seen real-world data, as all fine-tuned models per-
formed worse in these cases. In particular, the
fine-tuning strategies, ft-adult-clean-FULL and ft-
adult-clean-aug-dial, substantially improve WER
on datasets similar to the training data (50.4% and
50.7%, respectively). On the unseen DART story
testset, ft-adult-clean-aug-dial achieves the best
performance with a WER of 39.0%. However,
these models face challenges in generalizing to the
ST.CART story test set. All fine-tuned models,
including ft-adult-clean-FULL and ft-adult-clean-
aug-nonna, underperform compared to the base-
line (WER = 39.5%). This highlights a trade-off
between in-domain optimization and broader gen-
eralization, as fine-tuning on small, clean datasets
tends to reduce the model’s ability to generalize
effectively. Despite this, the results suggest that
incorporating a limited amount of real-world data
into the validation set can enhance the effective-
ness of fine-tuning. Specifically, the strategy in-
volving dialogue augmentation demonstrated the
highest robustness among the various fine-tuning
approaches.
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Table 4: ASR model performance in reading miscue detection, evaluated by precision (P), recall (R), and F1 on the full testset
and speaker-independent subset, with F1 for each miscue category in Table 1.

Model All miscues Im D OS SS O
P(full) R(full) F1(full) F1(non-overlap) F1 F1 F1 F1 F1

pretrain-adult-ft-adult 0.29 0.83 0.43 0.44 0.63 0.59 0.17 0.39 0.28
pretrain-adult-ft-adult-clean-FULL 0.35 0.83 0.49 0.54 0.71 0.59 0.22 0.4 0.35
pretrain-adult-ft-adult-clean-SPDS 0.34 0.83 0.48 0.55 0.74 0.57 0.20 0.42 0.33
pretrain-adult-ft-adult-clean-aug-dial 0.33 0.82 0.47 0.51 0.67 0.56 0.21 0.4 0.33
pretrain-adult-ft-adult-clean-aug-nonna 0.33 0.83 0.47 0.57 0.73 0.54 0.21 0.36 0.32

Table 5: ASR model evaluated by WER in three real-world
test dataset

Model DART ST.CART
sentence story story

ft-adult 62.4 53.2 39.5
ft-adult-clean-FULL 50.4 39.8 48.6
ft-adult-clean-SPDS 53.8 43.0 43.7
ft-adult-clean-aug-dial 50.7 39.0 44.5
ft-adult-clean-aug-nonna 55.2 40.1 51.4

4 Conclusion

This study demonstrates the potential of fur-
ther fine-tuning the Wav2vec2.0 large model with
domain-specific data to improve read speech
recognition in Dutch native children. It highlights
the effectiveness of augmenting training data with
similar out-of-domain data, especially for unseen
speakers in clean settings and real-world scenar-
ios if a small amount of real-world audio can be
utilized for validation.
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Abstract

Automatic speech assessment (ASA) sup-
ports learning but often requires extensive
data, which is scarce for languages with
fewer learners. Recent research shows that
Large Language Models (LLMs) can gen-
eralize to new tasks with minimal train-
ing data using in-context learning (ICL).
We find LLMs effective in estimating the
proficiency of individuals learning Finnish
as a second language (L2) when given
a few examples of human expert grad-
ing. The proficiency grades produced by
the model, when evaluating verbatim tran-
scripts from an automatic speech recogni-
tion (ASR) system, agree with human rat-
ings at a level comparable to the agree-
ment between the human raters. Our ex-
periments reveal that adding more grad-
ing demonstrations in ICL improves the
model’s accuracy but, counterintuitively,
increases its uncertainty when selecting an
appropriate proficiency level. We show
that this uncertainty can be leveraged fur-
ther by creating soft labels: instead of as-
signing the most probable level (hard la-
bel), we aggregate the model’s confidence
across all possible levels, resulting in no-
ticeable performance improvements. Fur-
ther analysis reveals that the sources of
model uncertainty differ across ICL set-
tings. In zero-shot, uncertainty stems from
intrinsic response properties, such as pro-
ficiency level. In few-shot, it is driven by
the relationship between the sample and
the demonstrations.

1 Introduction

In this study, we focus on automatically assessing
the proficiency of second-language (L2) speak-

ers producing spontaneous Finnish speech. Au-
tomatic Speech Assessment (ASA) holds signif-
icant potential for supporting language learning.
However, ASA systems typically depend on ma-
chine learning algorithms, which are challenging
to train when the available data is limited or when
certain classes (proficiency levels in ASA case) are
underrepresented. Consequently, the development
of ASA systems may be hindered by the scarcity
and class imbalance of annotated data. These chal-
lenges are particularly pressing for languages with
smaller learner bases, such as Finnish, where data
availability is inherently limited. Ironically, these
resource-limited languages are likely to benefit the
most from automated systems that support lan-
guage learners.

Early ASA approaches for L2 data used mod-
els with hand-crafted features targeting specific
aspects of spoken proficiency, such as delivery
(pronunciation, fluency), language use (vocabu-
lary, grammar), and content (Zechner et al., 2009;
Bernstein et al., 2010; Chen and Zechner, 2011;
Xie et al., 2012). These features were selected
to align with scoring rubrics, ensuring they were
meaningful and interpretable within constructs of
communicative competence. Later, these hand-
crafted features were replaced by representations
extracted by neural networks, leading to improved
model performance (Chen et al., 2018; Qian et al.,
2019; Yoon and Lee, 2019).

However, both hand-crafted features and tradi-
tional neural approaches rely on large amounts of
labeled data, which is often scarce for L2 ASA.
Pre-trained text and audio models have shown
themselves as a successful solution to this is-
sue (Wang et al., 2021; Bannò and Matassoni,
2023). Transformer-based models (Vaswani et al.,
2017), like BERT (Devlin, 2018) and wav2vec
2.0 (Baevski et al., 2020), are trained in a self-
supervised manner on large unlabeled data to learn
meaningful language representations. These mod-
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Figure 1: An illustration of assigning a speech sample into two classes through soft and hard labeling. An
LLM produces a vector of logits for each token in the vocabulary. The logits corresponding to the class
labels (1 and 2) are selected and transformed into a probability distribution using a softmax function.
In hard labeling, the class with the highest probability (class 2 with 0.8) is selected. In soft labeling,
the probabilities are used as weights: 1 is multiplied by 0.2, and 2 is multiplied by 0.8, resulting in an
aggregated score of 1.8. To determine the final level, the aggregated score is mapped to its corresponding
bin (bin one in this case as opposed to bin two in hard labeling).

els can then be fine-tuned on smaller datasets for
specific tasks. Audio-based models have gained
popularity in ASA for bypassing automatic speech
recognition (ASR) by directly capturing content,
language use, and delivery. They are effective not
only for L2 English but also for languages with
smaller learner populations, such as Finnish and
Finland Swedish (Al-Ghezi et al., 2023). How-
ever, these models still face challenges with class
imbalance, even when techniques like oversam-
pling and curriculum learning are applied (Lun
et al., 2024).

Recent research shows that large language mod-
els (LLMs) generalize effectively to tasks with
minimal or no annotated data (Radford et al.,
2019; Brown, 2020) and possess an implicit un-
derstanding of language proficiency (Malik et al.,
2024; Kobayashi et al., 2024), making them a

promising avenue for addressing the challenges
of low-resource Finnish L2 ASA. In this study,
we test whether LLMs can effectively differentiate
proficiency levels in Finnish L2 speech. We exam-
ine how the model’s decisions evolve across dif-
ferent in-context learning (ICL) settings (Brown,
2020): where the model is either prompted with
the instruction of how to evaluate spoken profi-
ciency or with instructions and grading examples.
We observe that while performance improves with
more examples, the model becomes less confident
in its predictions, distributing probabilities more
evenly across levels. To take advantage of this un-
certainty, we explore soft labeling, where proba-
bilities across all levels are aggregated as opposed
to hard labeling, which assigns only the most prob-
able level. Finally, we analyze the characteris-
tics of responses where soft and hard labels differ,
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to better understand what makes the model more
uncertain and how this uncertainty contributes to
grading performance.

2 Data

The data used in this study is a subset of the
DigiTala dataset1, featuring speech samples from
learners of Finnish. These samples include re-
sponses to semi-structured and open-ended tasks
completed by university and upper secondary
school students in Finland. Each response was
rated on multiple dimensions: pronunciation, flu-
ency, accuracy, range, task completion, and holis-
tically. In this study, we focus on holistic scores
as they demonstrated the highest agreement be-
tween human raters. The scores range from 1 to
7, corresponding to levels from below A1 to C2
of the Common European Framework of Refer-
ence for Languages (CEFR) (Council of Europe,
2001). The CEFR framework evaluates spoken
proficiency holistically, encompassing not only
delivery features but also language use and con-
tent. For samples with multiple ratings, the scores
were averaged and mapped to one of seven equal
bins within the 1–7 scale to produce an integer
score.

For this research, a subset of three tasks was se-
lected based on several criteria: relatively strong
human-to-human agreement compared to other
tasks (as measured by quadratically weighted
kappa (QWK)); task prompts designed to elicit
responses of varying lengths; and representation
from different student populations (school vs. uni-
versity). Tasks A and B, performed by school stu-
dents, involved describing their important place
and a library picture, respectively, while Task C,
for university students, asked them to talk about
their day. When combined, the overall inter-rater
agreement across these three tasks, as measured
by QWK, is 0.73. Transcriptions were created by
human transcribers who recorded speech verba-
tim, including mispronunciations and hesitations.
These transcripts were used to train a wav2vec
2.0 ASR model, which was fine-tuned on native
Finnish and then adapted to L2 speech, achieving
word and character error rates (WER and CER) of
21.08% and 6.08%, respectively, on the entire L2
Finnish subset of the DigiTala dataset. No exter-
nal language models or vocabulary were used, al-

1https://www.kielipankki.fi/corpora/
digitala/

lowing the transcripts serve as proxies for certain
delivery features, such as mispronunciations.

A B C
Number of responses 173 63 106
Average duration (s) 43.32 36.00 57.27
QWK 0.50 0.61 0.41
Average score 5.16 4.17 2.80
WER (%) 18 22 35

Table 1: Task Statistics

Table 1 summarizes the statistics for each task.
Notably, the QWK values indicate low agree-
ment among human raters, as this metric accounts
for the magnitude of disagreements by penalizing
larger differences more heavily. Figure 2 shows
the imbalanced level distributions, further high-
lighting the challenge of proficiency scoring for
data-driven algorithms.

3 Methods

3.1 Prompting and In-context Learning

LLMs solve tasks through next-token prediction,
guided by an input text or “prompt” that speci-
fies the task or instructions. In zero-shot prompt-
ing, the model receives only instructions on how to
perform a task, without examples. In contrast, in-
context learning (ICL) includes demonstrations:
one-shot provides a single example, and few-shot
offers multiple. For ASA proficiency scoring with
LLMs used in this work, an example consists of
a response ASR transcript and its corresponding
score from human raters.

Chat-tuned models (Touvron et al., 2023) uti-
lize prompts designed to simulate conversational
roles, marked by special tokens for system, user,
and assistant turns. In this format, the system mes-
sage contains grading instructions, the user mes-
sage provides the response transcript, and the as-
sistant message delivers the score. In zero-shot
prompts, only system and user messages are in-
cluded, whereas in ICL, user-assistant message
pairs with human grading examples are also in-
jected. The example of one-shot prompt with a
chat-tuned model is given in Figure 3.

3.2 Hard vs Soft Labeling

Instead of relying on the model to generate an out-
put score directly or selecting the most probable
level token (hard labeling), we use a soft labeling
approach by aggregating the model’s confidence
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Figure 2: The distribution of responses with different proficiency levels among the tasks.

across all possible proficiency levels. We first col-
lect logits for each level, then apply the softmax
function to convert them into a probability dis-
tribution. This distribution is used to compute a
weighted average label. For example, if the model
assigns 80% confidence to level 2 and 20% to level
1, the weighted average is 1.8. This score is then
mapped to the bins used for converting average hu-
man ratings to integers. Figure 1 illustrates the soft
labeling process.

3.3 Entropy as Model’s Uncertainty Measure
Entropy measures the uncertainty in a probabil-
ity distribution. When probability mass is concen-
trated on one class, entropy is low; when all labels
are equally likely, entropy is high. We compute
entropy for the proficiency label space (1-7) using
logits from the model’s next-token prediction:

Entropy = −
n∑

i=1

P (xi) logP (xi)

where n is the number of labels (7), and P (xi) is
the probability of label i after applying softmax.
This reflects the uncertainty of the model when
determining which proficiency level to assign to
a student response.

3.4 Response Characteristics
Here, we describe the response properties ex-
plored in relation to their influence on model un-
certainty.

Perplexity: Perplexity (ppl) measures how
“surprised” a language model is by a sequence of
tokens, with lower values indicating that the model
can predict the next token more accurately. We
calculate it as the exponentiated average negative

log-likelihood of the tokens in the user message,
conditioned on the previous prompt:

Perplexity = exp

(
−1

t

t∑

i=1

logP (xi | context)

)

where t is the number of tokens in the test sample,
xi are the tokens, and P (xi | context) is the con-
ditional probability given the prompt. The context
differs by prompt setting: zero-shot uses only sys-
tem instructions, while ICL also includes demon-
stration examples before the sample transcript.

Human Variance: Most recordings received
multiple ratings, with raters often disagreeing, as
shown by the QWK values in Table 1. We mea-
sure this uncertainty using the variance of human
scores for each response.

Demonstration Proximity: Prior research sug-
gests that good demonstrations are often semanti-
cally close to the graded sample (Liu et al., 2021).
We measure this proximity using cosine distance
between embeddings generated by the LLM. In
the few-shot setting, we calculate the average dis-
tance to all the demonstrations. Demonstrations
are embedded with human transcripts, while test
samples use ASR transcripts. Specifically, we
compute embeddings for each token in the tran-
script using the LLM’s encoder and then average
these token-level embeddings to create a fixed-
length representation for the entire transcript.

CEFR Level: We also use the average unbinned
CEFR score to examine whether the model’s un-
certainty in grading is influenced by the profi-
ciency level of the response.
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Figure 3: Example of a one-shot prompt in a chat-tuned LLM. Text in orange shows the tokens used by
the model to differentiate between system, user, and assistant roles.

4 Experiments

4.1 Model and Prompts

Model: The LLM used in this work is Llama
3.1, an 8-billion parameter model tuned for chat.2

Prompts: All prompts start with a system mes-
sage containing instructions to grade proficiency,
the grading criteria used by raters, and the task
instructions given to students. For the picture
task, the picture description was included since the
model is text-only. For ICL demonstrations, we
selected a response from each score bin with full
rater agreement or, if none were available, with
minimal disagreement (≤ 1-point). Demonstra-
tions were fixed and not used as test samples. In
one-shot, a random demonstration from the same
task was used, while in few-shot, all demonstra-
tions were included in a consistent random order.

2https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct

Each prompt ended with the assistant message for-
matted as “Level: ” to ensure the next token pre-
dicted was the proficiency level. The example of
a one-shot prompt used in this study is shown in
Figure 3. 3

4.2 Response Characteristics Analysis

To understand what makes the model uncertain,
we test whether the characteristics of samples with
matching hard and soft labels differ significantly
from those with different labels, using Mann-
Whitney U tests across zero-, one-, and few-shot
settings.

3The code and prompt variables are available at
https://github.com/katildakat/LLM_ASA_
SOFT_LABELS.
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5 Results

5.1 Proficiency Scoring and Model
Uncertainty

Table 2 presents proficiency scoring results mea-
sured by accuracy (Acc), macro F1, QWK, and
macro mean absolute error (MAE). Macro indi-
cates that the metric was computed for responses
in each level and then averaged to boost the influ-
ence of the underrepresented classes for the final
score. The table also includes how often soft labels
are closer to the true label than hard labels (de-
noted as “S wins”) shown as fractions (e.g., 10/30
means soft labels were closer in 10 out of 30 cases
where soft and hard labels differ). It also includes
the average model uncertainty, quantified by the
entropy H of the probability distribution over level
tokens.

The results show that ICL approaches consis-
tently outperform zero-shot, with performance im-
proving as the number of examples increases.
Few-shot learning achieves the best results across
all metrics. Notably, model uncertainty increases
with the number of demonstrations (the entropy
rises from 0.75 in zero-shot to 1.19 in few-shot).
This growing uncertainty aligns with an increasing
benefit of soft labeling: in zero-shot, hard labels
outperform soft labels most of the time (12/49),
but soft labeling shows a slight advantage in one-
shot (23/40) and a substantial improvement in few-
shot (74/117). These trends are reflected in other
performance metrics, highlighting the value of soft
labeling when paired with few-shot ICL.

Acc↑ F1↑ QWK↑ MAE↓ S wins H
z H .26 .15 .21 1.63
z S .24 .14 .23 1.68 12/49 0.75
o H .24 .18 .39 1.34
o S .26 .18 .43 1.29 23/40 0.86
f H .31 .24 .61 1.05
f S .36 .30 .67 0.93 74/117 1.19

Table 2: Proficiency scoring results with hard (H)
and soft (S) labeling. Metrics include accuracy
(Acc), macro F1, QWK (↑ better), and macro
MAE (↓ better). “S wins” shows how often soft la-
bels outperform hard labels, and H denotes model
uncertainty (entropy). z H/S, o H/S, and f H/S
represent zero-, one-, and few-shot learning, re-
spectively.

Figure 4 shows the average probability distri-
butions of proficiency label tokens across zero-,

one-, and few-shot settings, illustrating how model
uncertainty evolves with increasing contextual in-
formation. Each line represents the model’s pre-
dicted probabilities for a true proficiency level. In
zero-shot, the distribution is narrow, with most
responses concentrated around level 3, reflect-
ing lower uncertainty and more conservative de-
cisions. As more examples are provided, the dis-
tributions spread out, with few-shot showing the
widest divergence and highest entropy. This in-
creased uncertainty in few-shot settings enables
more nuanced and less deterministic decision-
making, which is also why soft labeling differs
most significantly from hard labeling in this set-
ting.

5.2 Response Characteristics Analysis

Table 3 compares the characteristics of responses
where hard and soft labels match to those where
they differ. This analysis aims to identify the prop-
erties of a sample that make the model less confi-
dent in predicting a single level during evaluation.
The arrow direction in the table indicates whether
the characteristic value increases (↑) or decreases
(↓) for samples where soft labeling diverges from
hard labeling.

Entropy is included as a sanity check to en-
sure that the model exhibits higher uncertainty for
samples where soft labels differ from hard labels,
and indeed, the results show that entropy is con-
sistently higher (↑) across all ICL settings. This
aligns with expectations, as higher uncertainty al-
lows non-dominant classes to shift the probability
away from the dominant label. The factors driving
this uncertainty vary across settings: in zero-shot,
both perplexity (↑) and CEFR score (↓) signifi-
cantly influence entropy. In one-shot, none of the
other tested characteristics show significant differ-
ences. In few-shot, cosine distance (↓) emerges as
a key factor, indicating that responses closer to the
demonstrations tend to have higher uncertainty

6 Discussion

Our results confirm previous findings (Brown,
2020) that ICL outperforms zero-shot, with per-
formance improving as more demonstrations are
added. The best setup (few-shot with soft label-
ing) achieves human-level agreement, reaching a
QWK of 0.67 compared to 0.73 for human raters.
A macro MAE of just 1 point indicates reliable
differentiation between proficiency levels. While
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Figure 4: Average probability distributions for zero-, one-, and few-shot settings.

zero one few
entropy ✓↑ ✓↑ ✓↑
ppl ✓↑ ✗ ✗
human variance ✗ ✗ ✗
cosine distance – ✗ ✓↓
CEFR level ✓↓ ✗ ✗

Table 3: Comparison of response characteristics
for samples where hard and soft labels match
versus those where they differ. Rows represent
characteristics and columns represent ICL settings
(zero-, one-, few-shot). Arrows indicate whether
the characteristic increases (↑) or decreases (↓) for
samples with differing soft and hard labels.

accuracy and macro F1 remain modest, this re-
flects the data’s challenging nature, even for hu-
man raters.

In ICL, entropy increases with more demonstra-
tions, yet this added uncertainty enhances perfor-
mance, particularly with soft labeling. We suspect
that higher entropy indicates the model’s learning
of proficiency level cues. Interestingly, in few-
shot settings, entropy is higher when demonstra-
tions are closer to the test sample, even though
closer examples do improve predictions (Liu et al.,
2021), one would expect this to occur with less un-
certainty, not more.

Consistent with (Sánchez et al., 2024), we find a
negative correlation between perplexity and CEFR
levels (-0.59 Spearman r) and a positive correla-
tion between perplexity and WER (0.75 Spearman
r), suggesting that beginner learners tend to pro-
duce speech that deviates more from what LLMs
and ASR models consider well-formed. However,
high perplexity (and thus WER) only affects pre-

dictions in zero-shot, where the model becomes
uncertain and acts as a severe rater according to its
bias. In ICL, perplexity does not influence uncer-
tainty, as the model relies on the relationship be-
tween the sample and the demonstrations to base
its decisions on.

Surprisingly, human disagreement did not affect
the LLM’s decisions. This could be due to the
study’s limitations: the models only had access to
ASR transcripts, which serve as proxies for pro-
nunciation and fluency. Delivery features that may
contribute to human score variance were not avail-
able.

7 Conclusion

This study shows that LLMs can effectively grade
Finnish L2 speech in a few-shot setting, achiev-
ing QWK scores comparable to human raters, with
soft labeling being especially beneficial. More
demonstrations in ICL increase entropy, enhanc-
ing performance in few-shot prompting. In ICL,
perplexity does not influence scoring decisions;
rather, the model’s uncertainty is shaped by the
relationship between the sample and demonstra-
tions, suggesting that closer proximity in the em-
bedding space helps the model identify nuanced
cues. We think that soft labeling can be valuable
not only for language proficiency scoring but also
for other ordinal classification tasks. Future work
will focus on fine-tuning the model to include Fin-
land Swedish and incorporating delivery features
directly to LLMs to improve grading accuracy.
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