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Abstract

Automatic speech assessment (ASA) sup-
ports learning but often requires extensive
data, which is scarce for languages with
fewer learners. Recent research shows that
Large Language Models (LLMs) can gen-
eralize to new tasks with minimal train-
ing data using in-context learning (ICL).
We find LLMs effective in estimating the
proficiency of individuals learning Finnish
as a second language (L2) when given
a few examples of human expert grad-
ing. The proficiency grades produced by
the model, when evaluating verbatim tran-
scripts from an automatic speech recogni-
tion (ASR) system, agree with human rat-
ings at a level comparable to the agree-
ment between the human raters. Our ex-
periments reveal that adding more grad-
ing demonstrations in ICL improves the
model’s accuracy but, counterintuitively,
increases its uncertainty when selecting an
appropriate proficiency level. We show
that this uncertainty can be leveraged fur-
ther by creating soft labels: instead of as-
signing the most probable level (hard la-
bel), we aggregate the model’s confidence
across all possible levels, resulting in no-
ticeable performance improvements. Fur-
ther analysis reveals that the sources of
model uncertainty differ across ICL set-
tings. In zero-shot, uncertainty stems from
intrinsic response properties, such as pro-
ficiency level. In few-shot, it is driven by
the relationship between the sample and
the demonstrations.

1 Introduction

In this study, we focus on automatically assessing
the proficiency of second-language (L2) speak-

ers producing spontaneous Finnish speech. Au-
tomatic Speech Assessment (ASA) holds signif-
icant potential for supporting language learning.
However, ASA systems typically depend on ma-
chine learning algorithms, which are challenging
to train when the available data is limited or when
certain classes (proficiency levels in ASA case) are
underrepresented. Consequently, the development
of ASA systems may be hindered by the scarcity
and class imbalance of annotated data. These chal-
lenges are particularly pressing for languages with
smaller learner bases, such as Finnish, where data
availability is inherently limited. Ironically, these
resource-limited languages are likely to benefit the
most from automated systems that support lan-
guage learners.

Early ASA approaches for L2 data used mod-
els with hand-crafted features targeting specific
aspects of spoken proficiency, such as delivery
(pronunciation, fluency), language use (vocabu-
lary, grammar), and content (Zechner et al., 2009;
Bernstein et al., 2010; Chen and Zechner, 2011;
Xie et al., 2012). These features were selected
to align with scoring rubrics, ensuring they were
meaningful and interpretable within constructs of
communicative competence. Later, these hand-
crafted features were replaced by representations
extracted by neural networks, leading to improved
model performance (Chen et al., 2018; Qian et al.,
2019; Yoon and Lee, 2019).

However, both hand-crafted features and tradi-
tional neural approaches rely on large amounts of
labeled data, which is often scarce for L2 ASA.
Pre-trained text and audio models have shown
themselves as a successful solution to this is-
sue (Wang et al., 2021; Bannò and Matassoni,
2023). Transformer-based models (Vaswani et al.,
2017), like BERT (Devlin, 2018) and wav2vec
2.0 (Baevski et al., 2020), are trained in a self-
supervised manner on large unlabeled data to learn
meaningful language representations. These mod-
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Figure 1: An illustration of assigning a speech sample into two classes through soft and hard labeling. An
LLM produces a vector of logits for each token in the vocabulary. The logits corresponding to the class
labels (1 and 2) are selected and transformed into a probability distribution using a softmax function.
In hard labeling, the class with the highest probability (class 2 with 0.8) is selected. In soft labeling,
the probabilities are used as weights: 1 is multiplied by 0.2, and 2 is multiplied by 0.8, resulting in an
aggregated score of 1.8. To determine the final level, the aggregated score is mapped to its corresponding
bin (bin one in this case as opposed to bin two in hard labeling).

els can then be fine-tuned on smaller datasets for
specific tasks. Audio-based models have gained
popularity in ASA for bypassing automatic speech
recognition (ASR) by directly capturing content,
language use, and delivery. They are effective not
only for L2 English but also for languages with
smaller learner populations, such as Finnish and
Finland Swedish (Al-Ghezi et al., 2023). How-
ever, these models still face challenges with class
imbalance, even when techniques like oversam-
pling and curriculum learning are applied (Lun
et al., 2024).

Recent research shows that large language mod-
els (LLMs) generalize effectively to tasks with
minimal or no annotated data (Radford et al.,
2019; Brown, 2020) and possess an implicit un-
derstanding of language proficiency (Malik et al.,
2024; Kobayashi et al., 2024), making them a

promising avenue for addressing the challenges
of low-resource Finnish L2 ASA. In this study,
we test whether LLMs can effectively differentiate
proficiency levels in Finnish L2 speech. We exam-
ine how the model’s decisions evolve across dif-
ferent in-context learning (ICL) settings (Brown,
2020): where the model is either prompted with
the instruction of how to evaluate spoken profi-
ciency or with instructions and grading examples.
We observe that while performance improves with
more examples, the model becomes less confident
in its predictions, distributing probabilities more
evenly across levels. To take advantage of this un-
certainty, we explore soft labeling, where proba-
bilities across all levels are aggregated as opposed
to hard labeling, which assigns only the most prob-
able level. Finally, we analyze the characteris-
tics of responses where soft and hard labels differ,
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to better understand what makes the model more
uncertain and how this uncertainty contributes to
grading performance.

2 Data

The data used in this study is a subset of the
DigiTala dataset1, featuring speech samples from
learners of Finnish. These samples include re-
sponses to semi-structured and open-ended tasks
completed by university and upper secondary
school students in Finland. Each response was
rated on multiple dimensions: pronunciation, flu-
ency, accuracy, range, task completion, and holis-
tically. In this study, we focus on holistic scores
as they demonstrated the highest agreement be-
tween human raters. The scores range from 1 to
7, corresponding to levels from below A1 to C2
of the Common European Framework of Refer-
ence for Languages (CEFR) (Council of Europe,
2001). The CEFR framework evaluates spoken
proficiency holistically, encompassing not only
delivery features but also language use and con-
tent. For samples with multiple ratings, the scores
were averaged and mapped to one of seven equal
bins within the 1–7 scale to produce an integer
score.

For this research, a subset of three tasks was se-
lected based on several criteria: relatively strong
human-to-human agreement compared to other
tasks (as measured by quadratically weighted
kappa (QWK)); task prompts designed to elicit
responses of varying lengths; and representation
from different student populations (school vs. uni-
versity). Tasks A and B, performed by school stu-
dents, involved describing their important place
and a library picture, respectively, while Task C,
for university students, asked them to talk about
their day. When combined, the overall inter-rater
agreement across these three tasks, as measured
by QWK, is 0.73. Transcriptions were created by
human transcribers who recorded speech verba-
tim, including mispronunciations and hesitations.
These transcripts were used to train a wav2vec
2.0 ASR model, which was fine-tuned on native
Finnish and then adapted to L2 speech, achieving
word and character error rates (WER and CER) of
21.08% and 6.08%, respectively, on the entire L2
Finnish subset of the DigiTala dataset. No exter-
nal language models or vocabulary were used, al-

1https://www.kielipankki.fi/corpora/
digitala/

lowing the transcripts serve as proxies for certain
delivery features, such as mispronunciations.

A B C
Number of responses 173 63 106
Average duration (s) 43.32 36.00 57.27
QWK 0.50 0.61 0.41
Average score 5.16 4.17 2.80
WER (%) 18 22 35

Table 1: Task Statistics

Table 1 summarizes the statistics for each task.
Notably, the QWK values indicate low agree-
ment among human raters, as this metric accounts
for the magnitude of disagreements by penalizing
larger differences more heavily. Figure 2 shows
the imbalanced level distributions, further high-
lighting the challenge of proficiency scoring for
data-driven algorithms.

3 Methods

3.1 Prompting and In-context Learning

LLMs solve tasks through next-token prediction,
guided by an input text or “prompt” that speci-
fies the task or instructions. In zero-shot prompt-
ing, the model receives only instructions on how to
perform a task, without examples. In contrast, in-
context learning (ICL) includes demonstrations:
one-shot provides a single example, and few-shot
offers multiple. For ASA proficiency scoring with
LLMs used in this work, an example consists of
a response ASR transcript and its corresponding
score from human raters.

Chat-tuned models (Touvron et al., 2023) uti-
lize prompts designed to simulate conversational
roles, marked by special tokens for system, user,
and assistant turns. In this format, the system mes-
sage contains grading instructions, the user mes-
sage provides the response transcript, and the as-
sistant message delivers the score. In zero-shot
prompts, only system and user messages are in-
cluded, whereas in ICL, user-assistant message
pairs with human grading examples are also in-
jected. The example of one-shot prompt with a
chat-tuned model is given in Figure 3.

3.2 Hard vs Soft Labeling

Instead of relying on the model to generate an out-
put score directly or selecting the most probable
level token (hard labeling), we use a soft labeling
approach by aggregating the model’s confidence
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Figure 2: The distribution of responses with different proficiency levels among the tasks.

across all possible proficiency levels. We first col-
lect logits for each level, then apply the softmax
function to convert them into a probability dis-
tribution. This distribution is used to compute a
weighted average label. For example, if the model
assigns 80% confidence to level 2 and 20% to level
1, the weighted average is 1.8. This score is then
mapped to the bins used for converting average hu-
man ratings to integers. Figure 1 illustrates the soft
labeling process.

3.3 Entropy as Model’s Uncertainty Measure
Entropy measures the uncertainty in a probabil-
ity distribution. When probability mass is concen-
trated on one class, entropy is low; when all labels
are equally likely, entropy is high. We compute
entropy for the proficiency label space (1-7) using
logits from the model’s next-token prediction:

Entropy = −
n∑

i=1

P (xi) logP (xi)

where n is the number of labels (7), and P (xi) is
the probability of label i after applying softmax.
This reflects the uncertainty of the model when
determining which proficiency level to assign to
a student response.

3.4 Response Characteristics
Here, we describe the response properties ex-
plored in relation to their influence on model un-
certainty.

Perplexity: Perplexity (ppl) measures how
“surprised” a language model is by a sequence of
tokens, with lower values indicating that the model
can predict the next token more accurately. We
calculate it as the exponentiated average negative

log-likelihood of the tokens in the user message,
conditioned on the previous prompt:

Perplexity = exp

(
−1

t

t∑

i=1

logP (xi | context)

)

where t is the number of tokens in the test sample,
xi are the tokens, and P (xi | context) is the con-
ditional probability given the prompt. The context
differs by prompt setting: zero-shot uses only sys-
tem instructions, while ICL also includes demon-
stration examples before the sample transcript.

Human Variance: Most recordings received
multiple ratings, with raters often disagreeing, as
shown by the QWK values in Table 1. We mea-
sure this uncertainty using the variance of human
scores for each response.

Demonstration Proximity: Prior research sug-
gests that good demonstrations are often semanti-
cally close to the graded sample (Liu et al., 2021).
We measure this proximity using cosine distance
between embeddings generated by the LLM. In
the few-shot setting, we calculate the average dis-
tance to all the demonstrations. Demonstrations
are embedded with human transcripts, while test
samples use ASR transcripts. Specifically, we
compute embeddings for each token in the tran-
script using the LLM’s encoder and then average
these token-level embeddings to create a fixed-
length representation for the entire transcript.

CEFR Level: We also use the average unbinned
CEFR score to examine whether the model’s un-
certainty in grading is influenced by the profi-
ciency level of the response.
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Figure 3: Example of a one-shot prompt in a chat-tuned LLM. Text in orange shows the tokens used by
the model to differentiate between system, user, and assistant roles.

4 Experiments

4.1 Model and Prompts

Model: The LLM used in this work is Llama
3.1, an 8-billion parameter model tuned for chat.2

Prompts: All prompts start with a system mes-
sage containing instructions to grade proficiency,
the grading criteria used by raters, and the task
instructions given to students. For the picture
task, the picture description was included since the
model is text-only. For ICL demonstrations, we
selected a response from each score bin with full
rater agreement or, if none were available, with
minimal disagreement (≤ 1-point). Demonstra-
tions were fixed and not used as test samples. In
one-shot, a random demonstration from the same
task was used, while in few-shot, all demonstra-
tions were included in a consistent random order.

2https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct

Each prompt ended with the assistant message for-
matted as “Level: ” to ensure the next token pre-
dicted was the proficiency level. The example of
a one-shot prompt used in this study is shown in
Figure 3. 3

4.2 Response Characteristics Analysis

To understand what makes the model uncertain,
we test whether the characteristics of samples with
matching hard and soft labels differ significantly
from those with different labels, using Mann-
Whitney U tests across zero-, one-, and few-shot
settings.

3The code and prompt variables are available at
https://github.com/katildakat/LLM_ASA_
SOFT_LABELS.
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5 Results

5.1 Proficiency Scoring and Model
Uncertainty

Table 2 presents proficiency scoring results mea-
sured by accuracy (Acc), macro F1, QWK, and
macro mean absolute error (MAE). Macro indi-
cates that the metric was computed for responses
in each level and then averaged to boost the influ-
ence of the underrepresented classes for the final
score. The table also includes how often soft labels
are closer to the true label than hard labels (de-
noted as “S wins”) shown as fractions (e.g., 10/30
means soft labels were closer in 10 out of 30 cases
where soft and hard labels differ). It also includes
the average model uncertainty, quantified by the
entropy H of the probability distribution over level
tokens.

The results show that ICL approaches consis-
tently outperform zero-shot, with performance im-
proving as the number of examples increases.
Few-shot learning achieves the best results across
all metrics. Notably, model uncertainty increases
with the number of demonstrations (the entropy
rises from 0.75 in zero-shot to 1.19 in few-shot).
This growing uncertainty aligns with an increasing
benefit of soft labeling: in zero-shot, hard labels
outperform soft labels most of the time (12/49),
but soft labeling shows a slight advantage in one-
shot (23/40) and a substantial improvement in few-
shot (74/117). These trends are reflected in other
performance metrics, highlighting the value of soft
labeling when paired with few-shot ICL.

Acc↑ F1↑ QWK↑ MAE↓ S wins H
z H .26 .15 .21 1.63
z S .24 .14 .23 1.68 12/49 0.75
o H .24 .18 .39 1.34
o S .26 .18 .43 1.29 23/40 0.86
f H .31 .24 .61 1.05
f S .36 .30 .67 0.93 74/117 1.19

Table 2: Proficiency scoring results with hard (H)
and soft (S) labeling. Metrics include accuracy
(Acc), macro F1, QWK (↑ better), and macro
MAE (↓ better). “S wins” shows how often soft la-
bels outperform hard labels, and H denotes model
uncertainty (entropy). z H/S, o H/S, and f H/S
represent zero-, one-, and few-shot learning, re-
spectively.

Figure 4 shows the average probability distri-
butions of proficiency label tokens across zero-,

one-, and few-shot settings, illustrating how model
uncertainty evolves with increasing contextual in-
formation. Each line represents the model’s pre-
dicted probabilities for a true proficiency level. In
zero-shot, the distribution is narrow, with most
responses concentrated around level 3, reflect-
ing lower uncertainty and more conservative de-
cisions. As more examples are provided, the dis-
tributions spread out, with few-shot showing the
widest divergence and highest entropy. This in-
creased uncertainty in few-shot settings enables
more nuanced and less deterministic decision-
making, which is also why soft labeling differs
most significantly from hard labeling in this set-
ting.

5.2 Response Characteristics Analysis

Table 3 compares the characteristics of responses
where hard and soft labels match to those where
they differ. This analysis aims to identify the prop-
erties of a sample that make the model less confi-
dent in predicting a single level during evaluation.
The arrow direction in the table indicates whether
the characteristic value increases (↑) or decreases
(↓) for samples where soft labeling diverges from
hard labeling.

Entropy is included as a sanity check to en-
sure that the model exhibits higher uncertainty for
samples where soft labels differ from hard labels,
and indeed, the results show that entropy is con-
sistently higher (↑) across all ICL settings. This
aligns with expectations, as higher uncertainty al-
lows non-dominant classes to shift the probability
away from the dominant label. The factors driving
this uncertainty vary across settings: in zero-shot,
both perplexity (↑) and CEFR score (↓) signifi-
cantly influence entropy. In one-shot, none of the
other tested characteristics show significant differ-
ences. In few-shot, cosine distance (↓) emerges as
a key factor, indicating that responses closer to the
demonstrations tend to have higher uncertainty

6 Discussion

Our results confirm previous findings (Brown,
2020) that ICL outperforms zero-shot, with per-
formance improving as more demonstrations are
added. The best setup (few-shot with soft label-
ing) achieves human-level agreement, reaching a
QWK of 0.67 compared to 0.73 for human raters.
A macro MAE of just 1 point indicates reliable
differentiation between proficiency levels. While
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Figure 4: Average probability distributions for zero-, one-, and few-shot settings.

zero one few
entropy ✓↑ ✓↑ ✓↑
ppl ✓↑ ✗ ✗
human variance ✗ ✗ ✗
cosine distance – ✗ ✓↓
CEFR level ✓↓ ✗ ✗

Table 3: Comparison of response characteristics
for samples where hard and soft labels match
versus those where they differ. Rows represent
characteristics and columns represent ICL settings
(zero-, one-, few-shot). Arrows indicate whether
the characteristic increases (↑) or decreases (↓) for
samples with differing soft and hard labels.

accuracy and macro F1 remain modest, this re-
flects the data’s challenging nature, even for hu-
man raters.

In ICL, entropy increases with more demonstra-
tions, yet this added uncertainty enhances perfor-
mance, particularly with soft labeling. We suspect
that higher entropy indicates the model’s learning
of proficiency level cues. Interestingly, in few-
shot settings, entropy is higher when demonstra-
tions are closer to the test sample, even though
closer examples do improve predictions (Liu et al.,
2021), one would expect this to occur with less un-
certainty, not more.

Consistent with (Sánchez et al., 2024), we find a
negative correlation between perplexity and CEFR
levels (-0.59 Spearman r) and a positive correla-
tion between perplexity and WER (0.75 Spearman
r), suggesting that beginner learners tend to pro-
duce speech that deviates more from what LLMs
and ASR models consider well-formed. However,
high perplexity (and thus WER) only affects pre-

dictions in zero-shot, where the model becomes
uncertain and acts as a severe rater according to its
bias. In ICL, perplexity does not influence uncer-
tainty, as the model relies on the relationship be-
tween the sample and the demonstrations to base
its decisions on.

Surprisingly, human disagreement did not affect
the LLM’s decisions. This could be due to the
study’s limitations: the models only had access to
ASR transcripts, which serve as proxies for pro-
nunciation and fluency. Delivery features that may
contribute to human score variance were not avail-
able.

7 Conclusion

This study shows that LLMs can effectively grade
Finnish L2 speech in a few-shot setting, achiev-
ing QWK scores comparable to human raters, with
soft labeling being especially beneficial. More
demonstrations in ICL increase entropy, enhanc-
ing performance in few-shot prompting. In ICL,
perplexity does not influence scoring decisions;
rather, the model’s uncertainty is shaped by the
relationship between the sample and demonstra-
tions, suggesting that closer proximity in the em-
bedding space helps the model identify nuanced
cues. We think that soft labeling can be valuable
not only for language proficiency scoring but also
for other ordinal classification tasks. Future work
will focus on fine-tuning the model to include Fin-
land Swedish and incorporating delivery features
directly to LLMs to improve grading accuracy.
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