Tomoya Higuchi

1 Research interests

My research interests lie on the development of advanced
user support systems, emphasizing the enhancement of
user engagement and system effectiveness. The field of
user support systems aims to help users accomplish com-
plex tasks efficiently while ensuring a pleasant and in-
tuitive interaction experience. I explore how to incor-
porate engaging and context-appropriate assistance into
these systems to make the task completion process more
effective and enjoyable for users.

A key area of my research is user support system per-
sonalization, which includes methods for adapting sys-
tem behavior, interface elements, and assistance strate-
gies based on user profiles, skill levels, and interac-
tion histories. I am specifically interested in approaches
that can achieve personalization without extensive man-
ual configuration, allowing the support system to dynam-
ically adjust to each user’s evolving needs and prefer-
ences. To achieve this in a news commentary dialog sys-
tem, I propose multiple question candidates with varying
levels of difficulty to the user and, based on the selected
questions, estimate and adapt the user’s level of under-
standing of the news article.

1.1 Building a conversational question answering
system

Conversational question generation involves producing
multiturn questions related to a document, aiming to ful-
fill the user’s information needs through conversation.
Methods include generating questions based on dialog
history, consisting of question—response pairs, and sup-
porting sentences. Pan et al. (2019) developed a con-
sistent question generation process using reinforcement
learning. Do et al. (2023) proposed a two-stage frame-
work for conversational question generation, determining
what to ask and how to ask based on a semantic graph.
These methods use datasets for conversational question
answering, such as DoQA (Campos et al., 2020), QuAC
(Choi et al., 2018), and CANARD (Elgohary et al., 2019),
generating simple one-word-answer questions.

Qin et al. (2023) and Chernyavskiy et al. (2023) used
large language models (LLMs) to generate fluent re-
sponses based on preselected knowledge. Following
these methods, this study uses LLMs to generate ques-
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tions that elicit explanatory answers in a free-form man-
ner.

1.2 News chatbot

The media uses dialog content related to news articles for
their clarity, but they are manually created by journalists.
Manual creation is inefficient because it requires signifi-
cant cost and time. To address this, Laban et al. (2020)
proposed a method to automatically construct chatbots
from news articles. This method presents question can-
didates to the user, but individual user characteristics are
not considered in the creation of these candidates. There-
fore, this study aims to provide desired question candi-
dates by generating them based on the user’s understand-

ing.

1.3 Question generation considering user
characteristics

If the user’s social group characteristics differ, the ques-
tions are also expected to vary. Stewart and Mihalcea
(2022) developed a method to generate questions reflect-
ing user characteristics. This method trains a text gen-
eration model using social media data, considering so-
cial groups such as domain expertise. Additionally, An
etal. (2021) designed a prototype conversation agent that
generates speech based on what the user knows and does
not know, verifying the effectiveness of incorporating
the user’s knowledge. Inspired by these methods, this
research uses LLM to generate questions that consider
the extent to which the user understands news articles.
Specifically, the user is presented with questions with
three levels of difficulty, and their understanding of the
news article is assessed based on the difficulty level of
the question they select.

1.4 Question generation with adjusted difficulty
level

In educational contexts, the generation of questions with
controlled difficulty is gaining momentum. Controlling
the difficulty of questions in a question—answer learn-
ing system allows for learning to be tailored to indi-
vidual users. Cheng et al. (2021) defined the difficulty
of questions based on the number of inference steps re-
quired to answer them and proposed a method that grad-
ually increases the difficulty through step-by-step rewrit-
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ing. However, in this study, the difficulty of questions
stems from factors such as the background knowledge
required for comprehending news articles, rendering this
definition unsuitable. Therefore, we generate questions
with adjusted difficulty using an LLM through few-shot
learning (Brown et al., 2020), following examples manu-
ally created in advance.

2 Spoken dialogue system (SDS) research

The advancement of LLMs has made it possible to build
user support dialogue systems for a wide range of users.
However, challenges remain in adapting these systems to
individual users. Personalization in voice dialogue sys-
tems, which uses emotions and intentions derived from
voice features, is particularly promising. By analyzing
tone, speed, and accent, user profiling becomes more pre-
cise, potentially offering personalized support.

Using voice in user support dialogue systems also im-
proves accessibility. Voice interfaces allow the system
to be accessed by visually impaired users and those in
situations where manual input is difficult, such as while
driving. In my research on news article explanation inter-
faces, I reduced the user’s burden by automatically gen-
erating question candidates. Voice can further alleviate
the user’s burden by eliminating the need to input long
texts manually. Moreover, designing appropriate voice
dialogues and endowing the system with a personality
to strengthen emotional connections with users could en-
hance engagement.

However, several challenges need to be addressed to
realize these benefits, including improving speech recog-
nition accuracy, effectively utilizing audio features, and
reducing hallucinations during task execution.

3 Suggested topics for discussion

I suggest discussing the following topics:

* What are the benefits and challenges of converting
existing text-based user support dialog systems to
voice-based systems?

e Can a multimodal LLM become an assistant spo-
ken dialog system (SDS) that exceeds existing text-
based LLM?

» Can the use of voice features in an SDS help person-
alize the system?
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