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Abstract

The automated detection of conspiracy theories
online typically relies on supervised learning.
However, creating respective training data re-
quires expertise, time and mental resilience,
given the often harmful content. Moreover,
available datasets are predominantly in English
and often keyword-based, introducing a token-
level bias into the models. Our work addresses
the task of detecting conspiracy theories in Ger-
man Telegram messages. We compare the per-
formance of supervised fine-tuning approaches
using BERT-like models with prompt-based ap-
proaches using Llama2, GPT-3.5, and GPT-4
which require little or no additional training
data. We use a dataset of ~4, 000 messages col-
lected during the COVID-19 pandemic, without
the use of keyword filters.

Our findings demonstrate that both approaches
can be leveraged effectively: For supervised
fine-tuning, we report an F1 score of ~ (0.8
for the positive class, making our model com-
parable to recent models trained on keyword-
focused English corpora. We demonstrate our
model’s adaptability to intra-domain temporal
shifts, achieving F1 scores of ~0.7. Among
prompting variants, the best model is GPT-4,
achieving an F1 score of ~0.8 for the positive
class in a zero-shot setting and equipped with a
custom conspiracy theory definition.

1 Introduction

Conspiracy theories (CTs) are not a new phe-
nomenon, but digital communication on social
networks and messenger services allows them to
spread at an unprecedented speed and scale. This
becomes particularly acute in times of crisis, such
as the COVID-19 pandemic (Kou et al., 2017; Shah-
savari et al., 2020), when individuals turn to sim-
plistic narratives in an attempt to restore clarity and
alleviate feelings of powerlessness (Sunstein and
Vermeule, 2009; Douglas et al., 2017). The spread
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of CTs can hinder informed decision-making and
erode public trust in institutions. Many conspiracy
theories promote dehumanizing, racist, antisemitic,
or otherwise objectionable worldviews, and have
contributed to an increase in hate speech and hate
crimes both online and offline (Gover et al., 2020;
Vergani et al., 2022).

Although the automated detection of related phe-
nomena such as misinformation or fake news has
made notable strides (Zhou and Zafarani, 2020;
Aimeur et al., 2023; Chen and Shu, 2023), con-
spiracy theories remain relatively underexplored.
Moreover, prior research has predominantly fo-
cused on English-language data, commonly built
through pre-filtering of corpora using keywords
that introduce a bias towards a few particular CTs
and rather explicit narratives. This limits the under-
standing regarding the efficacy of existing model-
ing approaches in broader thematic contexts, and
the practical applicability of such models for civil
society organizations that often monitor, e.g., entire
communities rather than posts containing specific
keywords. Our work addresses this gap by un-
dertaking a comprehensive modeling attempt for
automated CT detection in German-language texts.
We leverage an annotated dataset from the pan-
demic time, randomly sampled from public Tele-
gram channels known for disseminating conspiracy
narratives (Steffen et al., 2023), without relying on
keyword-based filtering.

We compare text classification approaches us-
ing supervised fine-tuning with BERT-based mod-
els (Devlin et al., 2019), and prompt-based clas-
sification using generative models including the
closed models GPT-3.5 and GPT-4, and the open
model Llama 2. Our first objective is to determine
whether BERT-based models fine-tuned on a cor-
pus obtained without keyword-based filtering can
achieve a performance in a similar range as models
trained on English keyword-based online datasets
(RQ1). Next, we investigate the model’s practi-
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cal utilization by evaluating it in a wider range
of channels and a different time frame within the
same platform (RQ2). We then investigate whether
prompt-based models can match or even surpass
models obtained through supervised fine-tuning
(RQ3), and explore the impact of different configu-
rations on their performance, including zero-shot
vs. few-shot, provided definition, and output con-
straints (RQ4).

With regard to RQ1, we present the model 7el-
ConGBERT which achieves a macro-averaged F1
score of score of 0.85 (0.79 for the positive and 0.9
for the negative class, respectively). This perfor-
mance is close to that of other models trained to
detect conspiracy theories in English language so-
cial media posts obtained through keyword-based
filtering (with F1 scores around 0.85, see Section
2.1). When applying the model to data from later
time ranges (RQ?2), it shows moderate to good per-
formance (F1 score of up to 0.72 for the positive
class). Regarding RQ3, both the supervised fine-
tuning and the prompting approach achieve results
in the same range, with no statistically significant
difference. Nevertheless, the models’ predictions
disagree on 15% of the test data. A notable obser-
vation regarding RQ4 is the superiority of zero-shot
models over few-shot models, confirming the re-
sults reported by, e.g., Chae and Davidson (2023).
The best performing and most stable generative
model is GPT-4, provided with a tailored expert
definition of CTs, while the performance of GPT-
3.5 and Llama 2 is less robust with regard to input
configurations and output constraints.

2 Related Work

In research, the term conspiracy theory is often
used synonymously with disinformation, misinfor-
mation, rumors, or fake news (Mahl et al., 2022).
While these phenomena can overlap (e.g., by us-
ing misinformation to support a conspiracy theory),
CTs have distinct features: They assert a strong
belief in a secret group intending to control institu-
tions or even the world through intentionally caus-
ing complex, often unsolved events. (Mahl et al.,
2022; Sunstein and Vermeule, 2009). CTs offer
alternative interpretations by attributing events to
hidden powerful figures. They typically involve ac-
tors such as corrupt elites pursuing malicious goals,
such as population control, through strategies like
microchip insertion via vaccinations (Samory and
Mitra, 2018). In the realm of social media and
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messaging services, complex narratives are often
fragmented, especially when the audience is as-
sumed to be partly informed (Sadler, 2021; Ernst
et al., 2017).

2.1 Supervised Fine-Tuning of (small) LMs

The increasing dissemination of conspiracy theo-
ries in the context of the COVID-19 pandemic has
prompted computational efforts for their large scale
detection and analysis. A fundamental step in such
efforts is typically the creation of labeled datasets
by human experts or crowd annotators. Until re-
cently, Twitter has been an important source of
data. Pogorelov et al. (2021b) compiled a dataset
of ~10, 000 tweets containing keywords related to
COVID-19 and 5G, and trained a binary classifica-
tion model which attained an F1 score of 0.84. The
dataset was later extended to the COCO dataset
(Langguth et al., 2023), which also contains labels
indicating whether a tweet relates to or supports a
mentioned CT.

Phillips et al. (2022) compiled ~ 3,000 texts
based on keywords related to climate change, the
COVID-19 virus, and the Epstein-Maxwell trial. A
macro-F1 score of 0.9 was achieved, indicating that
even smaller corpora can be sufficient in a restricted
scenario!. Moffitt et al. (2021) collected a dataset
of ~8, 000 tweets by using search terms related to
CTs. They fine-tuned a BERT model and the spe-
cialized COVID-Twitter-BERT model CT-BERT
(Miiller et al., 2023), achieving an F1 score of 0.87
on a test set of 200 tweets. CT-BERT and other
models adapted for Twitter or COVID-19 have also
been successfully used for the ‘FakeNews: Corona
Virus and Conspiracies Multimedia Analysis Task’
(Pogorelov et al., 2021a) in the MediaEval chal-
lenge 2021, see, e.g., (Peskine et al., 2023; Vaigh
et al., 2021).

When interpreting the performance of these mod-
els, it is important to take into account that the un-
derlying corpora were obtained through keyword-
based filtering. This is a typical step in pipelines
for the automated detection of CTs and related
phenomena (Marcellino et al., 2021; Memon and
Carley, 2020; Moffitt et al., 2021; Medina Serrano
et al., 2020), usually deemed necessary to obtain a
sufficient number of examples from the target class
(sometimes even as high as 75% in Phillips et al.
(2022)). As shown by the authors of the LOCO

'The corpus was created using the terms epsteincoverup,
GhislaineMaxwellTrial, JeffreyEpstein, LolitaExpress, Pe-
dophilelsland, epsteinDidntKillHimself.



dataset(Miani et al., 2021), CT related keywords
such as ‘big pharma’ or ‘NWO’ can already serve
as a well performing binary classifier of CT con-
tent for some types of content such as standalone
web-documents.

However, as such filters narrow the scope to texts
explicitly mentioning pre-defined signal terms, it
is unclear whether similar performance is realistic
for broader data cohorts.?). Diverging from this
paradigm, the TelCovACT dataset, which we uti-
lize in this article, consists of ~4,000 messages
randomly sampled from around 100 public Ger-
man Telegram channels previously identified as
frequently disseminating CTs and misinformation
in the context of COVID-19 (Steffen et al., 2023).
It was annotated with regard to the occurrence of
CTs, narrative components and stance. The col-
lection procedure ensured a decent proportion of
relevant samples (around 36%). Furthermore, fo-
cusing on Telegram data enables researchers to
analyze a domain with hardly any content modera-
tion (Holzer, 2021; Hoseini et al., 2023; Salheiser
and Richter, 2020; Winter et al., 2021), providing
a haven for accounts ‘deplatformed’ from major
platforms due to spreading of disinformation and
hate speech (Curley et al., 2022; Zeitung, 2021).
As such, we believe that it requires more attention
from research.

2.2 Zero-Shot and Few-Shot Classification

The availability of advanced autoregressive Large
Language Models (LLMs) stimulated research into
their capacity to detect deceptive and harmful on-
line content, including misinformation (Bang et al.,
2023; Pan et al., 2023; Chen and Shu, 2023), hate
speech (Li et al., 2023), toxic language (Wang
and Chang, 2022), antisemitism (Pustet and Mi-
haljevi¢, 2024), or racism and sexism (Chiu et al.,
2021). Such models enable text classification with
prompts containing minimal (few-shot) or even no
(zero-shot) in-context examples. Prompting, the
design of textual instructions for the model, plays
a vital role: These instructions may shape response
formats, guide model focus, or offer additional in-
formation like definitions or in-context examples
(Liu et al., 2023; White et al., 2023).

Initial evaluations show that these models can
outperform human annotators in content modera-

21t should be noted that keyword-based pre-filtering not
necessarily results in a limited set of CTs, as this clearly
depends on the set of selected keywords (cf. methods in
(Miani et al., 2021)
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tion (Gilardi et al., 2023) and political text classifi-
cation (Tornberg, 2023). When tasked with the de-
tection of hateful, offensive, and toxic (HOT) con-
tent, GPT-3.5-turbo achieved F1 scores between
0.43 to 0.67 for the positive class of the respective
HOT category, with an approximate accuracy of
80% compared to crowdworkers’ annotations (Li
et al., 2023). Huang et al. (2023) demonstrated
ChatGPT’s capability not only in identifying 80%
of implicit hateful tweets from the LatentHatred
dataset (ElSherief et al., 2021) but also in generat-
ing explanations of comparable quality to human
annotators. Mendelsohn et al. (2023) evaluated
GPT-3 and GPT-4 on the task of identifying ‘dog
whistles’, finding that performance varies greatly
across different target groups.

Comparisons between fine-tuned small LMs and
prompting-based experiments with LLMs yield in-
conclusive results, which vary depending on the
task, corpus, and experimental setting (Russo et al.,
2023; Bang et al., 2023; Pelrine et al., 2023; Pustet
and Mihaljevié, 2024). Fine-tuned BERT-based
models can compete or even outperform genera-
tive models, at significantly reduced costs (Chae
and Davidson, 2023; Mu et al., 2023; Yu et al.,
2023). Pelrine et al. (2023) conduct extensive ex-
periments on detecting misinformation, comparing
small LMs with GPT-4 in settings similar to ours.
GPT-4 achieves the highest performance (F1 score
of 0.68) for binary classification when predicting a
probabilistic score with a threshold optimized on a
validation set.

Liu et al. (2024) used a corpus created from
the COCO dataset (Langguth et al., 2023) and an
annotated subset of the LOCO dataset (Mompelat
et al., 2022) to fine-tune an emotion-based LLM for
five prompt-based classification tasks, comparing
it to a number of baselines. The best model in the
binary classification task achieved an F1 score of
0.74, while the ChatGPT baseline F1 score was
0.66. Several works use prompt-based zero shot
classification with ChatGPT to establish baselines,
reporting F1 scores around 0.40 (Lei and Huang,
2023), 0.66 (Liu et al., 2024), or a macro-averaged
F1 score of 0.44 (Poddar et al., 2024).

Other findings point to certain limitations and
inconsistencies of prompt-based approaches. These
include the non-deterministic outputs of GPT-3 and
Llama 2, as well as the substantial impact of minor
prompt variations on the models’ outputs (Reiss,
2023; Mu et al., 2023; Khatun and Brown, 2023).
Chae and Davidson (2023) observed a decline in



performance in few-shot scenarios compared to
zero-shot settings.

Some studies focus on deceptive content in low-
resource languages. Kuznetsova et al. (2023), for
example, conduct prompt-based experiments in
Ukrainian, Russian, and English, albeit with a
small dataset containing only five statements per
language across five topics, including one CT state-
ment each. The ACTI challenge (Russo et al., 2023)
utilized an Italian-language Telegram dataset, re-
sulting in models with F1 scores between 0.78 and
0.86. The data compilation procedure is similar
to that of TelCovACT (that we utilize). However,
the final dataset is smaller in size and appears to
be skewed towards four CTs (data selection and
annotation process are not fully clear). To the best
of our knowledge, our work is the first to compre-
hensively evaluate prompt-based approaches for
the automated detection of German-language con-
spiracy theories.

3 Data and Methods

3.1 Dataset

We employ the dataset 7el/CovACT (Steffen et al.,
2023), in whose creation we participated and which
is accessible upon request. It contains 3,663
German-language messages from public Telegram
channels known for their opposition to pandemic
countermeasures. The messages were posted be-
tween March 11, 2020, and December 19, 2021.
The dataset was annotated by an interdisciplinary
research team with regards to three aspects: (1)
the presence of a CT, indicated by a binary label,
(2) narrative components of a CT, including ac-
tor, strategy, goal, and references to known CTs
(e.g. #NWO), and (3) the stance, which can be
belief, authenticating, directive, rhetorical question,
disbelief, neutral or uncertain. The models and
experiments presented in this paper consider the
binary task only. Around 36% of the texts contain
CTs, 95% of which express belief in the communi-
cated content. The two most frequently identified
narrative components were strategy (72%) and ac-
tor (64%). Only 26% of the records contained all
of actor, strategy, and goal, indicating that the ma-
jority of narratives are fragmented. For the positive
class, we include only texts that express belief, and
exclude texts that contain only a reference (such
as a hashtag), in order to prevent the model from
focusing solely on explicit signal words. Table 1
provides an overview of the dataset split for train-
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ing and evaluation.

Dataset Negative class Positive class
Train (80%) 1,873 886
Validation (10%) 241 104

Test (10%) 230 115

Total 2,344 1,105

Table 1: Training, validation and test dataset sizes.

3.2 Supervised Fine-Tuning

As a first step, we evaluated nine pre-trained BERT-
based models to determine the most promising ones
for the subsequent experiments. The models were
selected from Huggingface based on their suitabil-
ity for German texts, relevance to the TelCovACT
corpus, and popularity within the platform. Var-
ious combinations of model- and dataset-related
hyperparameters were evaluated through Bayesian
optimization. No German models specifically de-
signed for pandemic-related documents or for data
from Telegram were found®. As previous studies
have shown improved performance through further
pre-training (retraining) on in-domain data (Belt-
agy et al., 2019; Lee et al., 2019; Nguyen et al.,
2020), we also applied this step to the pre-trained
model that performed best in the initial experiment.
Details on fine-tuning and retraining are provided
in the appendix. Additionally, we compared the per-
formance of the best BERT-based model with a gen-
erative model, GPT-3 davinci-002, fine-tuned us-
ing default hyperparameters. To ensure the model
adhered to the most probable answer, the tempera-
ture was set to 0. To restrict the outputs to 0 and 1,
we set a maximum of one token and adjusted the
logit bias for the corresponding token IDs to 100.

3.3 Prompt-Based Setting

We evaluate the models GPT-3.5
(gpt-3.5-turbo-0613), GPT-4 (gpt-4-0613),
and Llama 2 (Llama2-7@b-chat). Although

Llama 2 was primarily trained on English data
(Touvron et al., 2023), it was selected due to the
absence of scientifically evaluated open alterna-
tives for German texts. Preliminary experiments
showed that Llama 2 has a basic comprehension of
German and can differentiate texts related to CTs,
justifying its inclusion.

All GPT model experiments were carried out
through OpenAI’s API*, while Llama 2 was ac-

3The COVID-Twitter-BERT model (Miiller et al., 2023)
was exclusively trained on English language data.
*https://openai.com/
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cessed via Replicate’s API.

3.3.1 Zero-Shot

Experiments were conducted in two settings: a bi-
nary prediction task with answer options limited to
‘Yes’ and ‘No’, and a probabilistic prediction task
that required predicting a probability score between
0 and 1. We opted for this approach that was also
applied by Li et al. (2023) to assess the model’s
confidence, as recent research indicates the ability
of LLMs to articulate better-calibrated confidences
using (numerically) verbalized probability scores
compared to the internal conditional probabilities
(Tian et al., 2023). The experimental setup varied
additionally in terms of the definition of CTs pro-
vided to the model: a) a custom definition based
on the annotation guide used for the Tel CovACT
dataset, b) a 100-word version of Lorem Ipsum,
and c) no definition. The same prompt structure
was used for GPT and Llama 2 to ensure compara-
bility, with minor adjustments to achieve a parsable
output with Llama 2. See Table 7 and 8 in the
Appendix for the concrete prompts.

3.3.2 Few-Shot

For this experiment, the model was provided with
a set of in-context examples and corresponding la-
bels. It was then tasked to classify a given text by
returning the corresponding label (cf. Table 9 in the
Appendix). To evaluate robustness, we composed
ten sets of 14 in-context examples, each compris-
ing seven randomly selected instances for the posi-
tive and the negative class. The sampling of posi-
tive examples reflected the distribution of narrative
components (actor, strategy, goal) in the dataset,
including two messages with one component, three
messages with two, and two messages with three
components. While some studies propose that se-
lecting in-context examples based on their semantic
similarity with the target message can enhance per-
formance (Liu et al., 2021), it may not be feasible
in real-world situations, as it would require a sub-
stantial array of different examples, nullifying the
advantage over supervised fine-tuning approaches.
Therefore, we opted to use random sampling of in-
context examples. To avoid lengthening the input
and due to cost considerations, we made the deci-
sion not to include a definition in this experiment.

Shttps://replicate.com/
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3.4 Comparison of models

Relevant differences in model performances are
tested for statistical significance using suitable tests,
mainly the t test and McNemar’s test, with signifi-
cance level of 0.05 (Japkowicz and Shah, 2011).

4 Results
4.1 Supervised Fine-Tuning

Based on the initial assessment, the pre-trained
model deepset/gbert-base was selected as the
most suitable. However, most models produced
comparable results, suggesting their usefulness for
the task. We present the fine-tuned model that
achieved the best F1 score for the positive class
and a possibly balanced precision and recall on the
validation set during hyperparameter tuning. Table
2 displays the model’s performance on the test set,
with an F1 score of 0.75 for the positive class and
a macro-averaged F1 score of 0.82.° As expected,
applying the same hyperparameter optimization to
the additionally pre-trained model resulted in sig-
nificantly higher scores: As Table 2 shows, the F1
score on the positive class increases to 0.79, espe-
cially due to an improvement in precision. Note
that, in contrast to the previous experiments, several
hyperparameter configurations yielded satisfactory
results, indicating an overall improved suitability
of the domain-adapted model.

The last column in Table 2 presents the test set
performance of the GPT-3 davinci model. Fine-
tuned solely with standard hyperparameters, it
achieves performance almost as good as the fine-
tuned domain-adapted BERT-based model. In fact,
the difference between these two models is not sta-
tistically significant. This demonstrates that achiev-
ing comparable performance with a model much
larger than BERT requires significantly less effort
in fine-tuning.

The retrained model that achieved the best F1
score among the fine-tuned models will be referred
to as TelConGBERT.

4.1.1 Intra-Domain and Temporal Transfer

To evaluate the robustness of TelConGBERT, we
annotated two ‘transfer datasets’ following the an-
notation scheme of the utilized dataset TelCovACT
(Steffen et al., 2023). The additional data was pro-
vided by Bundesarbeitsgemeinschaft ‘Gegen Hass

®Replacing the cross-entropy loss with the self-adjusting
dice loss during hyperparameter optimization resulted in a

slightly higher recall for class 1. However, this came at the
cost of a lower precision, and subsequently a lower F1 score.
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Table 2: Performance of the best fine-tuned models,
for the base model deepset/gbert-base, the retrained
model TelConGBERT, and GPT-3 davinci. The highest
scores for each metric are highlighted in bold.

Metric Class Base Retrained | GPT-3
Precision 0 0.87 0.88 0.87

1 0.76 0.83 0.83
Recall 0 0.89 0.92 0.93

1 0.73 0.76 0.71
F1 score 0 0.88 0.90 0.89

1 0.75 0.79 0.77

macro | 0.82 0.85 0.83
Accuracy 0.83 0.87 0.86

im Netz’ (BAG)”, an NGO that monitors hateful
communication on Telegram in the long term, and
has categorized a large number of Telegram chan-
nels based on their ideological stance. Our sam-
ple covers channels categorized as conspiracism
(’Konspirationismus’) and right-wing extremism
(’Rechtsextremismus’).

For the first transfer dataset, we randomly se-
lected 1,000 messages from these channels that
were posted within the three months immediately
following the time range of TelCovACT (mid De-
cember 2021 to March 31, 2022). For the second
set, we sampled 1,000 messages posted between
April 1, 2022, and July 31, 2023, thus extending
the time frame to include more recent topics. To
test the model with more intricate examples, we
restricted to channels categorized under the subcat-
egories "QAnon’ and ’conspiracy ideology’ (Ver-
schworungsideologie).

It should be noted that both transfer sets were
sampled from a wider range of channels than the
TelCovACT dataset: Set 1 covers a total of 1,021
channels, out of which only 66 were represented in
TelCovACT, while set 2 covers 450 channels, out
of which only 46 overlap.

Messages that were considered too short after
removing URLs and author handles were excluded.

Table 3 presents the performance of
TelConGBERT on the two transfer datasets:
For set 1, the model achieves an F1 score of 0.72
for the positive class and a macro-averaged F1
score of 0.84, which is close to its performance
on the test set (see Table 2). For set 2, we report
an F1 score of 0.67 for the positive class. The
decrease in performance suggests challenges
due to the broader temporal and topical scope of
the data. However, the results demonstrate that
TelConGBERT has moderate to good transferability,

"https://bag-gegen-hass.net/
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providing a positive answer to RQ2.

Table 3: Performance of TelConGBERT on data sourced
from an expanded set of channels within a time frame
following the training data.

Transfer Transfer
Metric Class dataset 1 dataset 2
Support 0 672 589
1 84 (11%) 88 (13%)
Precision 0 0.98 0.96
1 0.64 0.64
0 0.94 0.94
Recall 0.82 0.7
F1 score 0 0.96 0.95
1 0.72 0.67
macro | 0.84 0.81
Accuracy 0.93 0.91

4.2 Zero-Shot Classification

Table 4 presents the results of the zero-shot exper-
iments. To binarize the probabilistic outputs, we
computed an optimal threshold for each model on
the validation set based on precision-recall-curves.
With optimal thresholds of 0.8 for GPT-3.5, 0.7
for GPT-4 and 0.85 for Llama 2, respectively, the
models appear to be sub-optimally calibrated.

Table 4: Zero-shot performance by model, provided
definition, and prediction type (binary vs. probabilistic).
In the probabilistic setting, scores > a model-specific
threshold are assigned to class 1. Highest scores for
each prediction setting are highlighted in bold.

Model Definition F1_0 F1_1 macro Acc.
F1
Binary classification
Custom 0.87 0.68 078 0.82
GPT-3.5 Lorem Ipsum | 0.86 0.63 0.75 0.80
None 0.87 072 0.8 0.83
Custom 0.89 0.79 0.84 0.86
GPT-4 Lorem Ipsum | — - - -
None 0.84 075 0.8 0.81
Custom 0.85 059 072 0.79
Llama2 Lorem Ipsum | 0.81 0.08 0.44 0.68
None 0.87 063 075 0.81
Probabilistic classification
Custom 0.83 072 0.78 0.79
GPT-3.5 LoremIpsum | 0.86 0.76 0.81 0.82
None 0.84 072 0.78 0.80
Custom 0.89 0.79 0.84 0.86
GPT-4 Lorem Ipsum | — - - -
None 0.84 074 0.79 0.80
Custom 0.56 0.60 058 0.58
Llama2 LoremIpsum | 0.71 0.61 0.66 0.67
None 0.64 063 064 0.63

The best performing model was GPT-4 with
an F1 score of 0.79 for the positive class and
a macro-averaged F1 score of 0.84. The model
performs best when provided with the custom
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definition.® Within each of the two settings (bi-
nary/probabilistic), the best performing GPT-4
model is statistically significantly better than the
other models. GPT-4 performs equally well in the
binary and the probabilistic setting (no statistically
significant difference), with disagreement on only
7 out of 345 texts from the test set. Also, there is no
significant difference compared to Te1ConGBERT.

In contrast to GPT-4 and our expectations, GPT-
3.5 does not achieve its best performance with a
custom definition. It attains its highest F1 score
for the positive class in probabilistic prediction
with the Lorem Ipsum definition. While most of
the performance differences for GPT-3.5 are not
significant, e.g. providing no definition vs. Lorem
Ipsum in the probabilistic setting, some are, e.g.
probabilistic vs. binary setting using Lorem Ipsum.

Llama 2 underperforms compared to both GPT
models. We assume this to be due to the model’s
low exposure to non-English training data (Touvron
et al., 2023). The model achieves its best F1 score
on the positive class without a definition, both in
the binary and probabilistic settings. It produces
similar scores for each definition in the probabilis-
tic setting, but its performance varies greatly in
the binary setting, ranging from F1 scores for the
positive class from 0.08 to 0.63.

Further experiments showed that even minor
and semantically negligible modifications of the
prompt, such as changing the notation or the order
of labels, impacted the performance of both GPT-
3.5 and Llama 2. Additionally, formatting Llama
2’s output in a parsable format was more difficult
than for GPT models. Further investigation into
this issue is required, e.g. to determine whether
this is a language-independent issue. Moreover,
that fact for both models, the optimal definition
setting depends on the prediction setting, suggests
that both are less robust than GPT-4.

All models, except for Llama 2 in one experi-
ment, have higher F1 scores for class 0 compared
to class 1, mirroring the trends observed in super-
vised fine-tuning. This outcome is expected due to
the predominance of negative examples and their
overall easier detection (Li et al., 2020).

In summary, concerning RQ3, we can conclude
that GPT-4’s performance in the zero-shot setting
with a custom definition of conspiracy narratives is

8Due to its higher performance with a custom definition
compared to the setting without a definition, and for cost
reasons, we did not conduct the Lorem Ipsum definition ex-
periment for GPT-4.
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Table 5: Few-shot performance targeting binary label
prediction. The values represent the mean + standard
deviation from ten runs using distinct training sets.

Mean £ SD

Class | GPT-3.5 GPT4 Llama 2
Precision 0 0.884+0.03 | 0.934+0.02 | 0.64+0.26

1 0.59+0.04 | 0.594+0.05 | 0.34+0.06
Recall 0 0.72+0.06 | 0.68+0.08 | 0.29+0.23

1 0.80+0.07 | 0.89+£0.05 | 0.7540.22
F1 0 0.79+0.03 | 0.78+0.05 | 0.36+0.22

1 0.68+0.02 | 0.7 £0.03 | 0.4540.07

macro| 0.73+0.02 | 0.74+0.03 | 0.41+£0.1
Accuracy 0.75+£0.03 | 0.754+0.04 | 0.43 +0.1

comparable to that of the best supervised fine-tuned
model, TelConGBERT.

4.3 Few-Shot Classification

Table 5 shows that in the few-shot setting, all exper-
iments produced inferior results compared to the
corresponding zero-shot setting. These findings res-
onate with the conclusions drawn in a recent study
by Chae and Davidson (2023). The F1 score for
the positive class hovers around 0.7, while nearly
0.8 are achieved in zero-shot settings. It could be
assumed that the lower performance in the few-shot
setting is due to the lack of a definition. However,
the performance also falls below that of zero-shot
prompts without definition. Notably, there is no
statistically significant advantage of GPT-4 over
its predecessor GPT-3.5 in this setting. In contrast,
Llama 2 shows instability in few-shot scenarios,
with high standard deviations. The model’s outputs
were also difficult to control, resulting in unusable
data for analysis. Regarding the fact that Llama 2
was trained mainly on English-language data, its
instability may be caused by the larger amount of
German input in the few-shot setting.

Few-shot experiments took 8 hours for GPT-3.5,
24 hours for GPT-4, and 15 hours for Llama 2.

4.4 Comparative analysis

As mentioned in Section 3.1, the dataset TelCov-
ACT encompasses information whether a text com-
municating CTs alludes to the narrative compo-
nents actor, strategy, and goal. Expert annotators
faced the most challenges when the narrative was
fragmented in the sense that not all three of these
components were simultaneously present (Steffen
et al., 2023). This raises the question of whether
detection models encounter the same difficulties.
Furthermore, there is a broader question regarding
the overlap in the models’ predictions, particularly



between TelConGBERT and the best prompt-based
model (GPT-4, binary, custom definition).

When tested against positive samples, both
TelConGBERT and GPT-4 demonstrate enhanced
performance when at least two of the three com-
ponent are simultaneously present (82% and 88%
detected, respectively) compared to highly frag-
mented narratives in which only one component
was present (61% and 69% detected, respectively).
This supports the hypothesis that increased frag-
mentation of the conspiracy narrative challenges
the model’s detection capabilities.

Moreover, the prediction probabilities of
TelConGBERT and the output scores of the best
GPT-4 model in probabilistic mode correlate with
the fragmentation score of a text in the positive
class, defined as the number of missing narrative
components (thus ranging between O and 2), as
shown in Table 6. (Note that the scores are only
meaningful per model.) For GPT-3.5, on the con-
trary, no clear trend is visible.

Table 6: Mean probability and probabilistic output score,
respectively, grouped by fragmentation score of the test
data.

fragl;g‘r?m’“ TelConGBERT =~ GPT-4  GPT-3.5
0 0.9 078 0.76
1 0.85 077 078
2 0.81 063 071

While TelConGBERT and GPT-4 achieve compa-
rable performance, their predictions do not align
too well. In fact, the models do not agree on 15% of
the test data. Fragmentation, however, seems not to
explain the divergence in assessment. It would be
interesting to explore the differences in more detail,
by e.g. allowing the prompting models to produce
explanations and analyzing these qualitatively.

4.5 Application of Te1ConGBERT

As posited initially, models adept at detecting texts
that propagate CTs can be invaluable for entities
monitoring communications on both mainstream
and fringe platforms. To indicate some insights
that can be gained from utilizing such a model
in practice, we applied TelConGBERT to a total
of 2,358,751 messages that were posted between
March 11, 2020, and December 19, 2021, on one
of 215 public channels that heavily focused on
mobilization against Corona measures in German-
speaking regions. Details regarding the channel
selection can be found in the Appendix.

20

The model estimated that an average of 11.74%
of all messages circulated CTs, translating to over a
quarter-million such messages. In fact, the average
frequency of messages per channel communicating
CTs stood higher at 13.3%, as one of the extremely
populous channels, boasting more than 100,000
messages during the examined time frame, had a
mere 2.5 messages predicted by the model as part
of the positive class. Delving deeper into the 178
channels that dispersed a minimum of 500 mes-
sages during this period, the ones most rife with
conspiracy-laden communication were: ‘freiAuf’
(with 40% out of 1,323 messages), ‘DanielPrinzOf-
fiziell’ (38.7% from 3,084 messages), and ‘stefan-
magnet’ (36.1% out of 714 messages). On narrow-
ing our focus to channels dispatching over 1,000
messages, the ‘ATTILAHILDMANN’ channel, as-
sociated with its notorious namesake conspiracy
theorist and antisemite, ranks third with 34.1% of
respective posts. A cursory glance at the descrip-
tions of these channels corroborates the model’s
evaluations. For instance, ‘freiAuf’, shorthand
for ‘Freiheitliche Aufkldrung’ (engl.: Liberty en-
lightenment), headlines its Facebook page with the
claim, “if you’re not convinced, watch this video
which explains that the virus is a cover for 5G.”
‘DanielPrinzOffiziell’ is operated by Daniel Prinz,
who gained notoriety through his book ‘Wenn das
die Menschheit wiisste...” (engl.: If only mankind
knew that ...), and promises to provide insights on
the background to politics, Corona, and Deep State.

5 Summary, Discussion and Future Work

We comprehensively evaluated fine-tuning and
prompting based approaches to classify Telegram
posts obtained without keyword filters regarding
the presence of conspiracy theories. Several of our
modelling approaches demonstrate performance
close to that of existing models for keyword-
constrained English-language corpora. It is note-
worthy that detecting conspiracy theories in Tele-
gram posts is challenging, even for expert anno-
tators, as evidenced by a Cohen’s kappa value of
0.7 on the dataset utilized (Steffen et al., 2023).°
We thus encourage data compilation strategies that
mitigate keyword bias and better reflect real-world
application scenarios, even when dealing with chal-
lenging tasks and datasets.

°Solopova et al. (2021) report £ = 0.65 as interrater agree-
ment on message-level assignment of categories of harmful
language in data from one Telegram channel of Donald Trump
supporters.



Our best supervised fine-tuning approach
TelConGBERT presents a viable and dependable
choice that will be made available for researchers
and NGOs in this field.

With regard to RQ2, our evaluation of tempo-
ral transfer scenarios within Telegram offers prac-
tical insights into model adaptation, suggesting
that models like TelConGBERT can be applied in
real-world scenarios with modest additional anno-
tation and fine-tuning efforts. In collaboration with
NGOs, we will conduct a transdisciplinary research
project aimed at optimizing the real-world deploy-
ment of TelConGBERT to monitor CTs on Telegram.
We will investigate strategies for efficiently acquir-
ing samples to update training data, methods for
effectively communicating overall error rates and
individual probabilities to end users, and mecha-
nisms for collecting and integrating user feedback.
These efforts address the current gap in practical
applications of detection models for political texts
(cf., e.g., (Salminen et al., 2021; Kotarcic et al.,
2023)), while exploring opportunities for transdis-
ciplinary collaborations to maintain and improve
these technologies. Furthermore, this work will
expand the dataset TelCovACT by posts on dif-
ferent topics and from other Telegram channels.
Extending it further by texts from other platforms
would be beneficial, as a larger, more diverse cor-
pus would allow for the exploration of CT detection
in German on a more realistic corpus.

Nevertheless, it is essential to acknowledge
that continuous annotation by experts requires re-
sources and time, while exposing annotators to
mental stress. Zero-shot classification using GPT-
4, and even GPT-3.5, offers an alternative with
competitive performance that does not require ex-
plicit training data. However, it comes with its own
set of challenges, primarily associated with high
computational and monetary costs at prediction
time, and its proprietary character. The decision re-
garding which approach to adopt ultimately hinges
on the specific use case and available resources.
Practitioners contemplating the integration of such
models into real-world scenarios must carefully
evaluate their needs and constraints to determine
the optimal path (Chae and Davidson, 2023).

Our findings have demonstrated that few-shot
learning consistently produces suboptimal out-
comes when compared to zero-shot scenarios. Ad-
ditionally, this approach necessitates more time,
resources, and financial investment than zero-shot
learning. As other research has shown, the decline
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in performance within few-shot settings might stem
from the fact that “some examples may negatively
impact performance when compared to using the
prompt alone, potentially due to their increased
length and complexity” (Chae and Davidson, 2023).
While strategic sampling might mitigate these neg-
ative impact, this method might not be practically
viable in real-world scenarios, as argued in Sec-
tion 3.3.2. Nevertheless, alternative strategies for
selecting in-context examples warrant further ex-
ploration. For instance, investigating aspects such
as the impact of total input length could shed light
on whether reduced examples (i.e., shorter input
length) yield better results than longer inputs (Chae
and Davidson, 2023; Zhang et al., 2022). Addition-
ally, our experiments employed an equal distribu-
tion of examples from positive and negative classes.
However, a well-balanced set of examples does
not have to consistently enhance performance or re-
duce variance. Some experiments even suggest that
the model might not require exposure to examples
for all labels (Zhang et al., 2022). Considering this,
experimenting with different label balances, such
as providing only positive examples, could offer an
approach applicable to real-world scenarios with
limited financial resources.

The outputs of Llama 2 experiments were chal-
lenging to control and at times hard to explain,
especially in the few-shot setting. Furthermore, the
stark predominance of English pre-training data of
the model may have contributed to the model’s
struggle with processing German-language in-
put. Against this background, fine-tuning German-
specific Llama 2 models as well as the utilization
of other open models for German texts would be
a promising area for future work, hopefully allow-
ing for results comparable to TelConGBERT and
GPT-4 at lower mental and monetary cost.

Another prospective direction for future re-
search, particularly in examining differences be-
tween prompt-based and supervised fine-tuning ap-
proaches, entails analyzing the reasonings gener-
ated by prompting models. We have already con-
ducted some exploratory experiments to obtain re-
spective output, and are planning to continue fur-
ther in this direction. Nevertheless, expectations
regarding achieving very high F1 scores should
be toned down however. The task of CT detec-
tion remains complex due to the complexity of the
phenomenon, and often defies binary classification.
Acknowledging this complexity is vital, particu-
larly regarding real-world application.
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A Appendix

A.1 Ethical Considerations

Our research adheres to established ethical stan-
dards and is guided by best practices outlined in
(Rivers and Lewis, 2014). Our work is centered
on enhancing methods for the detection of harmful
content, ultimately contributing to the reduction of
negative impacts associated with online communi-
cation. The data employed in our experiments was
thoroughly collected and processed, adhering to
established best practices, namely gathering only
publicly available data and ensuring that no infor-
mation could be used to identify authors or individ-
uals. Moreover, the data utilized for model training
is available upon request and adheres to FAIR prin-
ciples (Bischoff et al., 2022). In the context of our
research, it is essential to acknowledge the inher-
ent challenges associated with the deployment of
Al models. Model errors can have negative conse-
quences, especially when applied in real-world con-
texts: False positives may penalize counter speech
or lead to unjustified regulations or sanctions on
users. Conversely, detection algorithms are vul-
nerable to strategic deception by malicious actors,
which might increase the number of false negatives
and therefore proliferate the dissemination of CT
content instead of mitigating it.

In contrast to NLU-oriented models like our best
performing model TelConGBERT, the use of gener-
ative models in this context presents unique ethical
considerations, as they can potentially be misused
to produce harmful content. We emphasize that
our experiments did not request models to generate
such content, and that providers of these models
have implemented guardrails to prevent misuse.

Further ethical challenges stem from the lim-
ited transparency of closed models, and the costs'®
associated with their usage, resulting in severe lim-
itations of accessibility for e.g. smaller monitoring
NGOs who could benefit from automated detection

10The total cost of our experiments using models from Ope-
nAl amounted to around 500 Dollars.
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methods, but only have limited resources. To ad-
dress these concerns, we will make our best model
publicly available under a permissive license, to
promote accessibility and usage among organiza-
tions with limited resources.

A.2 Fine-Tuning of Transformer Models

Initial Experiment The
pre-trained models were
bert-base-multilingual-cased,
bert-base-multilingual-uncased,
deepset/gbert-base, deepset/gbert-large,
distilbert-base-multilingual-cased,
distilbert-base-german-cased,
xIm-roberta-base, xlm-roberta-large,
uklfr/gottbert-base. We used the following
hyperparameter setting: both dropout probabilities
set to 0.1, batch size of 16, learning rate set to
5e-05, no weight decay, trained for 8 epochs. For
all models the validation loss starts to grow after
2 epochs latest. We thus evaluated the models in
terms of the F1 score on class 1 and the macro F1
score based on the first 2 epochs.

following
assessed:

Hyperparameter Optimization A Bayesian op-
timization of the best performing pre-trained model
was employed to assess various combinations of
model and dataset-related hyperparameters. Specif-
ically, we examined the impact of emojis and
channel-specific footers; we created a balanced
variant of the training data by randomly downsam-
pling the negative class; and we allowed adjust-
ments of typical model-specific hyperparameters.
Fine-tuning was limited to a maximum of 4 epochs
as fine-tuning for classification tasks on small
datasets typically converges after 2 to 3 epochs.
The optimization procedure encompassed 600 itera-
tions, aiming to minimize the cross-entropy loss on
the validation set. We additionally conducted a grid
search within a narrowed hyperparameter space in-
formed by the results of the Bayesian optimization
to assess the tradeoff between computing time effi-
ciency and performance improvement. Moreover,
Bayesian hyperparameter tuning was repeated with
the self-adjusting dice loss (Li et al., 2020) which
should be more immune to the data-imbalance is-
sue than cross-entropy loss. The parameter « that
regulates the weight of easy examples during train-
ing was in the range between 0 and 0.7.

All experiments were run on a server equipped
with two Nvidia A30 GPUs, an Intel(R) Xeon(R)
Gold 6346 CPU, and 251 GB RAM. Details con-
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cerning fine-tuning can be found in the Appendix.
The grid search ran for 12 days on a single
Nvidia A30 GPU to complete almost 7,000 runs,
while the Bayesian optimization with 600 runs com-
pleted within 1 day. Since the latter yielded a model
with measured scores lowered only by 0.01, this
would be the recommended approach in practice.

Model Retraining We utilized the corpus from
which the annotated TelCovACT dataset was
crafted (Steffen et al., 2023), encompassing ~ 1.35
million messages from 215 public Telegram chan-
nels. The records were pre-processed by removing
URLSs, user handles, IBANSs, and trailing white
spaces as well as duplicate texts and those with
less than five tokens. The remaining data was split
at an 8:1 ratio into a training (1,199,643 records)
and a validation (149,956 records) set. The best
performing model with regard to the initial exper-
iment was further pre-trained over 20 epochs on
the Masked Language Model (MLM) task only, en-
abling a shorter training time without a negative
impact on downstream tasks (Idrissi-Yaghir et al.,
2023; Liu et al., 2019; Tunstall et al., 2022). The
tokenizer vocabulary was left unmodified, since
the addition of in-domain vocabulary, if it is not
expected to differ substantially, has a rather limited
impact (Beltagy et al., 2019; Idrissi-Yaghir et al.,
2023). To achieve faster training, the maximal se-
quence length of the inputs was reduced to 128 as
this fits well the length of typical messages in our
corpus. The learning rate was set to 2e-5 as pro-
posed by (Miiller et al., 2023), and the remaining
hyperparameters were left at their default values.
The retraining encompassed 20 epochs and took
approximately 3.5 days on an Nvidia A30 GPU,
with validation loss decreasing from 1.71 to 1.46.

A.3 Zero-Shot and Few-Shot Experiments

Conspiracy Theory Definition Conspiracy theo-
ries formulate the strong belief that a secret group
of people, who have the evil goal of taking over
institutions, countries, or the world, intentionally
cause complex, and in most cases unsolved, events
and phenomena. Conspiracy theories can be con-
sidered an effort to explain some event or practice
by reference to the machinations of powerful peo-
ple, who have managed to conceal their role. Such
a narrative is based on a simple dualism between
good and evil which leaves no space for uninten-
tional, unforeseeable things or mistakes to happen.
A conspiracy theory typically involves actors who



use a strategy to pursue a concrete malicious goal.
Often, conspiracy theories are communicated in a
fragmented way, so that not all of these components
need to be present in a text. In some cases, a con-
spiracy theory is not explicitly articulated, but only
referenced in a text via certain codes or hashtags.

System Prompt ‘You are a data annotation ex-
pert trained to identify conspiracy theories on social
media.’

Hyperparameters temperature: 0 (GPT models)
and 0.01 (Llama 2); footers removed and emojis
kept for all models.

Table 7: Prompts for zero-shot binary classification.
The bold part of the instruction is replaced by ‘or not’
in those experiments, where no definition is provided.

Model GPT-3.5 & GPT-4 [ Llama 2
Instruction| Consider the following message: ‘{message}’.
You have to decide whether the message com-
municates a conspiracy theory considering
the following definition: ‘{definition}’. Give
your answer using one of the two options:
a) Yes
b) No
Output Do not provide any | Answer in one line,
con- other outputs or any | only use Yes or No.
straint explanation for your
output.

Table 8: Prompts for zero-shot probabilistic classifica-
tion. The bold part of the instruction is replaced by
‘or not’ in those experiments, where no definition is
provided.

Model GPT-3.5 & GPT-4 [ Llama 2

Instruction| Consider the following message:’ {message}’.
You have to decide whether the message com-
municates a conspiracy theory (considering
the following definition: ’{definition}’. I
want you to provide a probability score be-
tween O to 1 where the score represents the
probability that the message communicates a
conspiracy theory. A probability of 1 means
that the comment is highly likely to communi-
cate a conspiracy theory.

Output
con-
straint

Do not provide any | Answer in one
other outputs or any | line, only return
explanation for your | the score. Do not
output. provide any other
outputs or any
explanation for
your output. The
score is:
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Table 9: Prompts for few-shot binary classification.

Model GPT-3.5 & GPT-4 [ Llama?2
Instruction| You have to decide whether the message com-
including | municates a conspiracy theory or not.
few-shot | Examples:
examples | message: {message_1}
label: {label_1}
message: {message_14}
label: {label_14}
Output message: {mes- | Answer in one line,
con- sage} only return the
straint label: label.
message: {mes-
sage}
Label:

A.4 Telegram Channels with Focus on
Mobilization Against COVID-19
Measures

In Section 4.5, we applied the model TelConGBERT
to a corpus comprising 215 public Telegram chan-
nels. The selection of these channels is described
in detail in the datasheet of the dataset TelCovACT
(Bischoff et al., 2022) which we utilized for model
training. The method for channel selection was
roughly as follows: firstly, all channels identified
as relevant for mobilization against Corona mea-
sures in a research report (Salheiser and Richter,
2020) during the pandemic’s early phase that had a
minimum of 1,000 followers were selected. Addi-
tionally, channels mentioned in tweets related to the
‘Querdenken’ movement against Corona measures
from three distinctive periods centering around piv-
otal demonstrations in 2020 and 2021 were added.
The dataset TelCovACT itself was sampled from a
subset of these channels.



