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Abstract

This paper describes our submission system,
NovelTrans, from NLP2CT and DeepTranx for
the WMT24 Discourse-Level Literary Transla-
tion Task in Chinese-English, Chinese-German,
and Chinese-Russian language pairs under un-
constrained conditions. For our primary sys-
tem, three translations are done by GPT4o us-
ing three different settings of additional infor-
mation and a terminology table generated by
online models. The final result is composed
of sentences that have the highest xCOMET
score compared with the corresponding sen-
tences in other results. Our system achieved an
xCOMET score of 79.14 which is higher than
performing a direct chapter-level translation on
our dataset.

1 Introduction

In the rapidly evolving field of natural language
processing (NLP), discourse-level literary machine
translation remains a challenging task. It involves
not only complex semantic phenomena but also
long-term dependency, rare or new terminologies,
and cultural background (Pang et al., 2024; Liu
et al., 2023). These factors pose a high require-
ment for the translation model. Training or fine-
tuning such a model is extremely costly. To address
this, pretrained large language models (LLMs)
and training-free methods like in-context learn-
ing (Brown et al., 2020) are widely used. Up to
now, significant advancements have been made in
sentence-level machine translation using training-
free methods. These methods, such as TEaR (Feng
et al., 2024), DUAL-REFLECT (Chen et al., 2024),
Multi-Aspect Prompting and Selection (He et al.,
2024), and Multi-Agent Debate (Liang et al., 2024),
have proven effective. However, few studies have
been conducted on the document level.

This paper presents our submission to the
WMT24 Discourse-Level Literary Translation
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shared task. We utilize online commercial general-
purpose LLMs, DeepSeek (DeepSeek-AI et al.,
2024) and GPT4o (OpenAI et al., 2024), to perform
the translation with the help of techniques including
Document-level Multi-Aspect Prompting and Selec-
tion (d-MAPS), LLM-generated terminology table
and dynamic retrieval of in-context learning ex-
amples using Reranked BM25 (R-BM25; Agrawal
et al. 2023). We also explore the potential of post-
correction of punctuation errors in LLMs’ transla-
tion results. Using the above method, NovelTrans
achieves an xCOMET score of 79.14, 0.68 points
higher than the GPT4o baseline. Moreover, the
consistency of rare or unseen terminologies has
significantly improved and the number of mistrans-
lated or awkwardly translated phrases is greatly
reduced. The remaining part of this paper is struc-
tured as follows. Section 2 contains an overview
of our pipelines and detailed descriptions of each
procedure in the pipelines. Experiments and re-
sults analysis of our method are given in Section 3.
Finally, the conclusion is presented in Section 4.

2 System Overview

2.1 Pipeline

For our pipeline, we implemented three variants
which were named Primary, Contrastive-1, and
Contrastive-2. The Primary system has a pipeline
shown in Figure 1. For each input document, we
first generate a terminology table and then replace
all terminologies in the document with their corre-
sponding translations, ensuring the consistency of
terminology translation throughout the document.
Then the document is split into chapters using regu-
lar expressions. Each chapter is divided into 20-line
segments. Each segment is translated using GPT4o,
with MAPS and R-BM25 enhancing the translation
quality. The translated text will then proceed to
the post-correction stage, where the GPT4o model
will detect and resolve punctuation errors. For the
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Figure 1: The translation flowchart of our NovelTrans
system where post-correction is not included.

Contrastive-2 system, the MAPS uses a different
way to determine the quality of translation and will
be discussed in Section 2.2. The Contrastive-1 sys-
tem is the same as the primary system except for
the removal of the post-correction stage. As the
API service for GPT4o we used contains a content
filter, if a segment’s translation is filtered by the
content filter, the process will be handled using the
DeepSeek API.

2.2 Document-level Multi-Aspect Prompting
and Selection

Multi-Aspect Prompting and Selection (MAPS)
is a powerful prompting strategy that can help a
model understand the complicated relationships
in discourse-level corpus better. Inspired by
the MAPS, we chose to transfer MAPS to the
document-level (d-MAPS). Considering both re-
source limitations and characteristics of web nov-
els, we implemented d-MAPS as follows. We
first acquire explanations for colloquialisms and
the segment summary through the cooperation of
DeepSeek and GPT4o. Then, three different trans-
lations are produced by GPT4o: one with explana-
tions, one with the summary, and one without any
extra information. Afterward, the COMET-22-kiwi
reference-free translation quality evaluation model
(Rei et al., 2022) is applied to obtain the quality
score of each sentence in these three results. To
select the final translation result, we employ two
different strategies. In the Primary and Contrastive-

1 system, the final result is composed of sentences
that have the highest xCOMET score compared to
the corresponding sentences in other translations.
In Contrastive-2, the final translation is determined
by choosing the result with the highest average
xCOMET score.

2.3 LLM-generated Terminology Table
In the traditional novel translation pipeline, it is
crucial to set up a terminology table before the
translation to unify the translations of those rare
terms throughout the corpus. To generate the termi-
nology table, we use the DeepSeek API which has
better knowledge of Chinese cultural backgrounds
to retrieve proper nouns and then translate these
words into the target language considering their
context. With the terminology table acquired, we
then replace all the terms in the source corpus with
their corresponding translations to ensure consis-
tency. The consistency mentioned above refers to
the uniformity of special terminology translation.

2.4 Re-ranked BM25
Re-ranked BM25 (R-BM25; Agrawal et al. 2023)
is an in-context example retriever that can ensure
both sample quality and retrieving speed. After 100
sentences are retrieved by a normal BM25 retriever,
a score will be computed for each sentence using
the following formula, in which S and Q denote the
source and retrieved sentence’s n-grams separately.

Rn =

∑
ngram ∈S∩QCountmatched ( ngram )
∑

ngram ∈S CountS( ngram )
(1)

Score = exp

(
1

n

∑

n

log (Rn)

)
(2)

Then these sentences are re-ranked using these
scores to solve the problems that BM25 favors
rare words (Robertson and Zaragoza, 2009). To
form the sentence pool for the R-BM25 to search,
we utilize the GuoFeng Webnovel Corpus1 (Wang
et al., 2023) which has three subsets named TRAIN,
VALID1, and VALID2. By combining all three sub-
sets, we formed a large dataset and then filtered out
sentences with low xCOMET scores. During the
experiment, VALID2 is not included because our
valid set is sampled from VALID2. To generate the
in-context learning examples for a particular seg-
ment, we retrieve three samples for each sentence

1http://www2.statmt.org/wmt23/
literary-translation-task.html
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Zh-En Zh-Ru Zh-De
xCOMET d-BLEU xCOMET d-BLEU xCOMET d-BLEU

DeepSeek 76.58 18.03 - - - -
GPT3.5-Turbo-16k 77.33 17.92 - - - -
GPT4o baseline 78.46 18.85 83.74 26.51 80.69 38.33
NovelTrans (Ours) 79.14 18.69 84.42 26.44 80.85 39.78

Table 1: Experiment result compared with other models. Results listed here expect NovelTrans are all generated by
direct chapter-level translation. xCOMET scores in this and tables below are all computed using XCOMET-XL.

Method xCOMET BLEU d-BLEU

GPT4o baseline 78.46 20.17 18.85
NovelTrans 79.14 19.94 18.69

w/o ICL 78.85 19.67 18.63
w/o ICL & Terminology Table 78.71 20.60 18.63
w/o ICL, Terminology Table & d-MAPS 78.68 20.80 18.97

Table 2: Ablation study of our proposed pipeline. ICL examples are selected by R-BM25 score. Terminology table
represents the terminology table obtained by the cooperation of GPT4o and DeepSeek. The GPT4o baseline is
generated by directly translating the text at the chapter level.

in that segment using R-BM25 and then randomly
sample eight sentences to form the final in-context
learning example. It is tested that choosing eight
examples will result in the best performance boost.

2.5 Post-Correction of Translation

After reviewing the translation results, we observed
that punctuation errors, such as comma splices, ap-
peared at a high frequency due to the inappropriate
use of punctuation in the source corpus. To solve
this, we employed a post-processing method that
uses GPT4o to correct punctuation errors at the
sentence level. Given the sentence above and be-
low the target sentence, we asked the model to
check and resolve punctuation errors. This method
resulted in a better version of the target sentence.

3 Experiments

3.1 Experiments Setup

The datasets we used are GuoFeng Webnovel Cor-
pus V1 and V2. V1 contains a Chinese-English
parallel corpus while V2 contains Chinese-German
and Chinese-Russian nonparallel corpus. For the
Chinese-English direction, we performed experi-
ments on 10 chapters in VALID2 of the dataset.
These chapters are taken from different books to
avoid bias. For Chinese-German and Chinese-
Russian direction, we chose 4 chapters from dif-
ferent books and aligned them separately using

GPT4o API before experimenting. The GPT4o API
we used is provided by OpenAI. The DeepSeek API
is provided by DeepSeek Open Platform2. Since
the BLEU score faces the problem of inaccuracy in
evaluating Zero Pronoun Translation tasks (Zhan
et al., 2023; Xu et al., 2023), we focused more on
the COMET score. To be better aligned with the
human evaluation, we chose to use XCOMET-XL
(Guerreiro et al., 2023) to compute the xCOMET
score. BLEU and d-BLEU scores are all computed
by SacreBleu (Post, 2018). To compute d-BLEU,
we join all sentences in the document together and
treat them as a single sentence since it is the method
used to compute the d-BLEU score in the previous
year’s WMT literary translation task (Wang et al.,
2023).

3.2 Results

Table 1 shows the comparison between our sys-
tem and other online models in Chinese-English,
Chinese-German, and Chinese-Russian transla-
tion direction. The result shows that our system
achieves a higher xCOMET score in exchange for
the d-BLUE performance.

3.3 Ablation Study

We conduct ablation study on Chinese-English di-
rection. The result, provided in Table 2, shows that

2https://platform.deepseek.com/
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Source GPT4o Baseline NovelTrans

走，全部跟我走，去破坏对
方的 (rival)世界级传送阵.

Go, all of you come with me to
destroy the other side’s (Wrong)
world-class teleportation array.

Let’s go, everyone follows me
to destroy the enemy’s (Correct)
world-class teleportation array.

这四个字，是郑州城人类
最后的绝唱 (the last song
of mankind in the city of
Zhengzhou).

These four words were the last
human song of Zhengzhou (Bad
Phrase Translation).

These four words were the last
elegy of humanity in Zhengzhou
city (Correct).

Table 3: Case study where examples are taken from different pipeline methods.

Source Without Correction With Correction

“别紧张，自己人。” "Don’t be nervous, I’m one of
you."

"Don’t be nervous; I’m one of
you."

他们打开背后的涡旋引擎跳
了下去

They activated the vortex engine
on their backs, jumping down

They activated the vortex engine
on their backs before jumping
down.

Table 4: Comparison of translation results with or without post-translation correction.

Position Source Without Term Table With Term Table

Near the start of a chap-
ter

若非此刻在天渡船
上,可能已经大打出
手.

If they weren’t on the
Tian Du ship, he might
have already started a
fight.

If they weren’t on the
Heavenly Ferry, he
might have already
started a fight.

Near the end of the
same chapter

不多时,天渡船抵达对
岸.

Before long, the
Heaven Crossing Boat
(Inconsistent) reached
the other side.

Before long, the Heav-
enly Ferry (Consistent)
reached the opposite
bank.

Table 5: Comparison of translation results with or without LLM-generated terminology table.

removal of component in our system will result in
a performance drop on xCOMET.

3.4 Analysis

Table 3 shows two examples taken from our exper-
iment. In the first example, the direct translation
of GPT4o uses an ambiguous phrase, “other side”,
which can mean both an enemy and a geograph-
ically opposite side. However, with the context,
we can easily determine that the “other side” here
conveys only the meaning of “rival”. In the second
example, the Chinese word “绝唱” which means
the best art piece an artist has ever made is mis-
used as “last song before their death” in the source
sentence. Our system understood what the author
wanted to convey and chose a suitable word, “el-
egy”, rather than doing a literal translation. These
examples show that, compared with the baseline,
our method has a stronger understanding of the

context and Chinese cultural background. Table
4 demonstrates the effect of post-correction. The
GPT4o model can detect and correct punctuation
errors, especially comma splices that occur at high
frequency, in various ways. Table 5 shows an ex-
ample of inconsistency in the translation of special
terms and our method can greatly reduce this type
of problem.

4 Conclusion

We successfully deployed a discourse-level trans-
lation pipeline using online language models
and adapted several sentence-level techniques for
discourse-level translation. Our system achieved
a higher xCOMET score than direct translation
using GPT-4o. However, our research has some
limitations. Adapting MAPS to discourse-level
translation may disrupt long-term dependencies,
indicating a need for further investigation in this
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area. Additionally, our method utilizes significantly
more tokens than direct translation, necessitating
further discussion on how to reduce token usage.
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