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Abstract

This paper presents the SETU-ADAPT’s sub-
missions to the WMT 2024 Low-Resource In-
dic Language Translation task. We participated
in the unconstrained segment of the task, focus-
ing on the Assamese-to-English and English-
to-Assamese language pairs. Our approach
involves leveraging Large Language Models
(LLMs) as the baseline systems for all our MT
tasks. Furthermore, we applied various strate-
gies to improve the baseline systems. In our
first approach, we fine-tuned LLMs using all
the data provided by the task organisers. Our
second approach explores in-context learning
with few-shot prompting. In our final approach
we explore an efficient data extraction tech-
nique based on a fuzzy match-based similarity
measure for fine-tuning. We evaluated our sys-
tems using BLEU, chrF, WER, and COMET.
The experimental results showed that our strate-
gies can effectively improve the quality of trans-
lations in low-resource scenarios.

1 Introduction

Advances in deep learning have led to major im-
provements in present-day MT systems. However,
developing reasonable-quality MT systems for low-
resource languages, especially those from the Indic
language family, remains a challenge (Pal et al.,
2023). India, home to numerous ancient and mor-
phologically rich languages, presents unique ob-
stacles for MT development due to the intricate
morphology, syntax, and scarcity of parallel data
for many regional languages (Suman et al., 2023;
Ahmed et al., 2023). This motivated us to par-
ticipate in the WMT 2024 Low-Resource Indic
Language Translation task and contribute to the
advancements in indic MT systems.

Large-pre-trained models are becoming the norm
in MT due to their accuracy, scalability, and usage
flexibility. Hence, for our experiments we chose
LLMs as our baseline MT systems. More specif-
ically, we used IndicTrans2' as the baseline for
building all our MT systems. We carried out our
experiments for Assamese-to-English and English-
to-Assamese language pairs.

We conducted experiments applying different
methodologies for improving the performance of
our MT systems. Our primary approach involves
fine-tuning LLMs using all the available data.
However, Assamese is a very low-resource lan-
guage, and obtaining good quality data is challeng-
ing. Since there is limited availability of domain-
specific parallel data, in our second approach we
generated synthetic data by retrieving a large cor-
pus of monolingual data from OPUS?. We then
performed similarity search in order to identify
domain-specific sentences of target language from
the generic data and back-translated them into the
source language. Our third approach involves inves-
tigating in-context learning using few-shot prompt-
ing. We augmented the prompt with samples whose
source-side is similar to the source sentence to be
translated.

The rest of the paper is organised as follows:
we discuss related works in Section 2. We detail
the data sets used in Section 3. Our models and
experimental setups are described in Sections 4
and 5. The results are reported and findings are
discussed in Section 6. Section 7 concludes this
work and discusses avenues for future work.

1https: //github.com/AI4Bharat/IndicTrans2?tab=
readme-ov-file#indictrans2
2https: //opus.nlpl.eu/NLLB/as&en/v1/NLLB
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2 Related Work

In this section, we discuss the papers that are re-
lated to our work. Burchell et al. (2022) introduced
a framework that differentiates between lexical and
syntactic diversity in back translation. Their re-
search highlights that while both types of diversity
improve Neural MT (NMT) performance, lexical
diversity is more critical. They also demonstrated
that nucleus sampling, a method that balances di-
versity with adequacy, provides superior results for
low-resource and mid-resource language pairs.

Ahmed and Buys (2024) introduced the concept
of “Synthetic Pivoting” to address the limitations of
traditional pivot-based methods, which often face
challenges due to structural mismatches between
the pivot and low-resource languages. Synthetic
Pivoting generates synthetic pivot sentences that
better align with the structure of both the source
and target languages, resulting in more accurate
translations. This method has substantially im-
proved translation quality, particularly for Southern
African languages, by simplifying the translation
process and effectively utilising high-quality syn-
thetic data.

Suman et al. (2023) focused on improving
the translation quality for low-resource Indic lan-
guages: Manipuri and Assamese. They leveraged
linguistic and scriptural similarities between these
languages and Bengali to improve translation out-
comes. By utilising pre-trained models on Bengali
and incorporating transliteration techniques, they
were able to overcome the challenges posed by
the limited resources available for Manipuri and
Assamese. Their experiments showed that their
approaches were effective in improving translation.

Moslem et al. (2023) explored using LLMs for
adaptive translation. Their research demonstrated
that in-context learning with LLMs enables real-
time adaptation to specific terminology and stylis-
tic preferences during inference. They showed that
this eliminated the need for extensive fine-tuning.
They found that few-shot in-context learning, es-
pecially when combined with fuzzy matches from
translation memories, can outperform traditional
encoder-decoder models regarding translation qual-
ity, particularly for high-resource language pairs.

Zhang et al. (2023) investigated the potential of
fine-tuning LLMs for MT, focusing on decoder-
based models that had not been extensively studied
before. They evaluated 15 publicly available LLMs
using methodologies such as zero-shot prompting,

few-shot learning, and fine-tuning, with a particular
emphasis on the QLoRA (Dettmers et al. (2023))
fine-tuning method. QLoRA proved a highly effec-
tive technique, reducing memory usage by quan-
tising the model to 4-bit precision and limiting
the number of trainable parameters. Their find-
ings showed that fine-tuning LLMs, especially us-
ing QLoRA, significantly outperformed zero-shot
and few-shot approaches, particularly in document-
level translation tasks.

3 Data

We utilised the data provided by WMT organisers
for our experiments. The data statistics are detailed
in Table 1.

Assamese <+ English

Files Sentences
Train 50,000
Valid 2,000
Test (2023) 2,000
Test (2024) - Blind Test 500

Table 1: Statistics of the datasets used.

4 Models used
4.1 IndicTrans2

We used IndicTrans2, a Transformer-based
(Vaswani et al, 2023) Multilingual NMT
model trained on the BPCC dataset,> as
our baseline MT system. We used the
aidbharat/indictrans2-indic-en-1B and
aidbharat/indictrans2-en-indic-1B check-
points for our systems. For building our MT
systems we set the following hyperparameters:

* the data was tokenised to a fixed length of
128 tokens, where sequences longer than
128 tokens were truncated and shorter ones
were padded to ensure uniform length across
batches,

» the learning rate: 2 x 1072,
* the batch size: 16,

* the training ran for 3 epochs satisfying our
stopping criterion,

* a weight decay of 0.01 for improving the
model’s generalisation capabilities.

3https: //aidbharat.iitm.ac.in/bpcc/
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We fine-tuned the model in order to adapt it to the
domain and styles of data of Assamese-to-English
translation task.

4.2 GPT-4o

GPT-40 (OpenAl et al., 2024) is a language model
from OpenAl based on Transformer, which serves
as the foundation for many language models today.
It comprises multiple layers of self-attention mech-
anisms and feed-forward neural networks, enabling
the model to efficiently process and generate text
sequences. The model has been trained on a diverse
and extensive dataset, allowing it to capture various
linguistic patterns and contextual knowledge. We
used GPT-40 for our in-context learning strategy.
We used the following set of hyper-parameters for
our experiment: (i) the temperature was set to 0.2,
which controls the randomness of the output, ensur-
ing more deterministic responses, and (ii) all other
hyperparameters were not explicitly set and were
set to the default values.

5 Experiments

In this Section we discuss our experiments. As
discussed in Section 4, we used IndicTrans2 as
our baseline model. We selected this model as the
baseline due to its superiority as far as translation
performance on low-resource Indian languages like
Assamese is concerned (cf. Figure 1). We evalu-
ated our MT models using the test data described in
Section 3. We used BLEU (Papineni et al. (2002)),
chrF (Popovi¢ (2015)), WER, and COMET* (Rei
et al. (2020)) metrics for evaluation. The following
subsections describes our MT systems.

5.1 Assamese-to-English
5.1.1 Primary

Our primary MT system for the Assamese-to-
English translation task is the fine-tuned Indic-
Trans2 model (cf. Section 4). In other words, we
fine-tuned the baseline model on the domain data
provided by the organisers. Our data sets were
detailed in Section 3. We used the same set of
hyperparameters that we described in Section 4.

5.1.2 Contrastive System One

as for our second system, we implemented
an in-context few-shot learning approach, us-
ing which we generated English translations of
Assamese sentences using OpenAl’s GPT-4o.

*COMET version 3.19.1 supports Assamese language.

More specifically, for few-shot learning we cre-
ate prompts for the model with a few samples
of translation pairs (source and target) whose
source-side is similar to the source sentence we
want to translate. We will now explain how
we obtained training instances, whose source-
side is similar to the sentence to be translated.
We first convert all the Assamese training set
sentences into dense vector embeddings using
sentence-transformers/all-MinilM-L6-v2 .
The resulting embeddings were then indexed using
FAISS.® enabling efficient similarity searches to
retrieve the most relevant examples.

Furthermore, for each Assamese sentence of the
test set, we used FAISS to retrieve the top five
closest sentences from the training data based on
the cosine similarity of their embeddings. Then,
we constructed a detailed prompt for the GPT-4o0
model using the sentence-pairs that were retrieved
from the training set. In Figure 2, we show an
example of prompt used for in-context learning.

5.1.3 Contrastive system two

For building our second Contrastive system we
used our primary MT model (see Section 5.1.1) as
our baseline. We adapted this MT system by fine-
tuning it with a synthetic data. In order to create the
synthetic data, we used a large English corpus com-
prising 5,000K sentences from the OPUS reposi-
tory’s NLLB project. We took 500k sentences for
that large corpus for our experiment. We further
filtered the sentences to include only those whose
lengths are of 100 to 500 characters. With this, we
omitted very short and excessively long sentences.

To extract domain-similar sentences from the
now filtered corpus, we performed a semantic
search on it using the validation set. All the
corpus sentences were first converted to 768-
dimensional dense vector embeddings using the
sentence-transformers-qa-mpnet-base-dot-v1
7 model. We chose the gqa-mpnet-base-dot-v1
model over the all-MinilLM-L6-v2 model used
in 5.1.2 because it can store more detailed
information about a sentence and capture semantic
relationships across a wide range of contexts,

Ssentence-transformers/all-MiniLM-L6-v2:
//huggingface.co/sentence-transformers/
all-MinilM-L6-v2

SFAISS: https://github.com/facebookresearch/
faiss

"sentence-transformers-qa-mpnet-base-dot-v1:
https://huggingface.co/sentence-transformers/
multi-ga-mpnet-base-dot-v1

https:
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Figure 1: A visual representation of the advancements in machine translation systems for Indic languages using the
IN22-Gen Evaluation set in the En-Indic direction. IT1, IT2 refers to IndicTransl and IndicTrans2 respectively.
Negative chrF++ values indicate poor translation quality or situations where the translation system fails to
generate meaningful or accurate translations. Adapted from (Gala et al., 2023)

essential for extracting accurate and richer
sentence representations from OPUS. These
sentence embeddings were then indexed using
FAISS. Later, we performed similarity searches
by querying the FAISS index with embeddings
of the validation sentences. We retrieved the top
five nearest neighbours from the corpus for each
validation sentence based on cosine similarity. We
then removed sentences with similarity scores
below 0.2. This process ensured that only the most
relevant and contextually similar sentences were
selected.

The final fuzzy matching English sentences were
then back-translated into Assamese using our pri-
mary checkpoint. These new English-Assamese
sentence pairs were used to create a new check-
point by fine-tuning the primary system checkpoint
and translation capabilities.

5.2 English to Assamese
5.2.1 Primary

We build out primary systems using an MT ap-
proach similar to the one we used in Constrative
system one (5.1.2) of the Assamese-to-English
translation section, where we utilised OpenAI’s
GPT-40 model. The primary difference lies in the
prompt structure. In Figure 3, we show the sample

prompt that was modified to treat English sentences
as inputs and Assamese sentences as outputs.

6 Results

This section presents the evaluation results of the
MT systems for both the Assamese-to-English and
English-to-Assamese tasks. We performed the ini-
tial evaluation using the test pairs from the WMT
2023 dataset. Additionally, we present the results
of our evaluation of the blind test set provided by
the organisers. The results are reported in terms of
BLEU, chrF, WER, and COMET metrics.

To ensure the reliability of our findings using the
2023 dataset, we conducted a statistical evaluation
across pairs of models. This involved using boot-
strap resampling (Koehn, 2004), calculating BLEU
scores, and performing paired t-tests. For each
test, we generated 100 bootstrap samples, each con-
taining 100 randomly selected sentences from the
dataset without repetition. This method maintains
the original dataset’s integrity while ensuring diver-
sity in each sample. The results of these statistical
analyses are also presented in this section. In all
comparisons, we tested the null hypothesis that
there is no difference in performance between the
systems by calculating p-values. A low p-value
(less than 0.05) indicates that we can reject the
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Give only the final English
sentence in a single line.

Context:

Assamese 1: <Assamese sentence 1>

Translation in English 1: <
English translation 1>

Assamese 2: <Assamese sentence 2>

Translation in English 2: <
English translation 2>

Assamese 5: <Assamese sentence 5>
Translation in English 5: <
English translation 5>

What is the English translation
for Assamese: <input sentence
>?

Give only the final Assamese

sentence in a single line.
Context:
English 1: <English sentence 1>

Translation in Assamese 1: <
Assamese translation 1>

English 2: <English sentence 2>

Translation in Assamese 2: <
Assamese translation 2>

English 5: <English sentence 5>
Translation in Assamese 5: <
Assamese translation 5>

What is the Assamese translation
for English: <input sentence>?

Figure 2: Prompt structure for GPT-4o0 model:
Assamese-to-English

null hypothesis, suggesting that the observed dif-
ferences are statistically significant and not due to
random variation.

Four models were evaluated for the Assamese-
to-English translation task: the baseline, primary,
contrastive model one and contrastive model two.
The evaluation results are summarised in Table 2.

Model | BLEU 1 | chrF 1 | WER | | COMET 1
B 0.2946 | 0.5646 | 0.7000 0.8064
P 0.3418 | 0.5748 | 0.6455 0.8086
C1 0.3110 | 0.5690 | 0.7035 0.8157
C2 0.3221 | 0.5724 | 0.6556 0.8075

Table 2: Evaluation Results for Assamese-to-English
Translation using WMT2023 test pair.

B = Baseline, P = Primary (5.1.1), C1 = Contrastive 1
(5.1.2), C2 = Contrastive 2 (5.1.3). T indicates higher
is better, and | indicates lower is better.

As shown in Table 2, the primary model (P)
outperforms the baseline (B) in all metrics ex-
cept COMET, where Contrastive system one (C1)
achieves slightly higher scores than Contrastive sys-
tem two (C2) . The BLEU and WER improvements
suggest that the primary MT model provides more
accurate and fluent translations compared to those
by the baseline and contrastive models.

The statistical analysis further supports these
findings. When comparing model B and P, the
BLEU score of P (0.3418) was higher than that of

Figure 3: Prompt structure for GPT-40 model: English
to Assamese

B (0.2946), with a t-statistic of -10.71 and a p-value
of 1.72e-09. Similarly, when comparing P to C1
(0.3110), the t-statistic was -10.17 with a p-value of
7.70e-20. In the comparison with C2 (0.3221), the
t-statistic was -8.64, and the p-value was 5.25e-08.
Across all comparisons, the null hypothesis was
rejected, indicating that p consistently performed
better than the other models.

For the English-to-Assamese translation task,
two models were evaluated: the baseline and the
primary model. The results are summarised in Ta-
ble 3.

Model | BLEU 1 | chrF 1 | WER | | COMET 1
B 0.1432 | 0.4948 | 0.8105 0.8263
P 0.1768 | 0.4815 | 0.7457 0.8220

Table 3: Evaluation Results for English-to-Assamese
Translation using WMT2023 test pair.

B = Baseline, P = Primary (5.2.1). 1 indicates higher
is better, and | indicates lower is better.

In Table 3, the primary model shows a noticeable
improvement over the baseline in BLEU and WER,
indicating better translation accuracy and reduced
word errors. However, the chrF and COMET scores
are slightly lower than those of the baseline.

The statistical significance tests compares Base-
line and Primary (BLEU scores of 0.1432 for the
Baseline and BLEU scores of 0.1768 for the Pri-
mary) with a t-statistic of -53.11 and a p-value of
1.45e-74. These results clearly indicate that Pri-
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mary produces better translations than those by the
Baseline. The null hypothesis, which assumes no
difference in performance between the two systems,
was rejected, confirming that the Primary system
outperforms the Baseline.

We now present our results on the blind test set
provided by the WMT organisers. The results for
Assamese-to-English translation in WMT24 Low-
Resource Indic Language Translation Task are sum-
marised in Table 4. We observe that contrastive sys-
tem two generally achieves the best results, leading
to 0.3227 BLEU, 0.7563 METEOR, and 0.6573
chrF points, indicating better overall translation
quality and semantic accuracy. The primary system
closely follows the best-performing system (con-
trastive system two), performing slightly better in
TER (33.56 points) and RIBES (0.3778 points),
suggesting that translations require fewer edits,
though it falls slightly behind contrastive system
two on other metrics (0.3180 BLEU, 0.7537 ME-
TEOR, and 0.6551 chrF points). Contrastive sys-
tem one consistently underperforms the other two
systems, with lower scores across all metrics, par-
ticularly 39.03 TER and 0.7219 METEOR points.

Model | BLEU T | TER | | RIBES 1 | METEOR 1 | chrF 1
P 03180 | 33.56 | 03778 07537 | 0.6551
ClI | 02981 | 39.03 | 0.3713 07219 | 0.6437
C2 | 03227 | 3363 | 03720 07563 | 0.6573

Table 4: Evaluation Results for Assamese-to-English
Translation (2024).

P = Primary (5.1.1), C1 = Contrastive 1 (5.1.2), C2 =
Contrastive 2 (5.1.3). 1 indicates higher is better, and |
indicates lower is better.

The results for English-to-Assamese translation
in WMT24 Low-Resource Indic Language Transla-
tion Task are summarised in Table 5. We only had
one system for this direction, where we obtained
0.1612 BLEU, 65.96 TER, 0.2641 RIBES, 0.3927
METEOR, and 0.5673 chrF points on the test set.

Model | BLEU 1
P 0.1612

TER |
65.96

RIBES 1
0.2641

METEOR 1
0.3927

chrF 1
0.5673

Table 5: Evaluation Results for English-to-Assamese. P
= Primary (5.2.1). 1 indicates higher is better, and |
indicates lower is better.

7 Conclusion

In this work, we presented our MT models devel-
oped for the WMT 2024 Low Resource Indic Trans-
lation Task, focusing on the Assamese-to-English

and English-to-Assamese language pairs. We con-
ducted a comparative analysis using experimen-
tal setups to explore strategies such as fine-tuning,
back translation, and in-context learning with few-
shot prompting. All of these methods demonstrated
significant performance improvements in transla-
tion.

For our future work, we intend to investigate
synthetic pivoting methods for Indic languages and
implement QLoRA technique to improve our cur-
rent in-context learning approach, both discussed
in Section 2. We believe that these techniques hold
the potential to address the challenges associated
with low-resource language translation and further
improve the performance of our models.
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