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Abstract

CycleGN is a Neural Machine Translation
framework relying on the Transformer architec-
ture. Its approach is similar to a Discriminator-
less CycleGAN, specifically tailored for non-
parallel text datasets.

The foundational concept of our research posits
that in an ideal scenario, retro-translations of
generated translations should revert to the orig-
inal source sentences. Consequently, a pair of
models can be trained using a Cycle Consis-
tency Loss only, with one model translating
in one direction and the second model in the
opposite direction.

One of the main advantages of such an ap-
proach is that it makes it possible to learn with
non-parallel datasets, which are by definition
rare and short for low-resource languages. In
order to verify this hypothesis and as a contribu-
tion to the WMT?24 challenge, CycleGN mod-
els were trained for both the “Translation into
Low-Resource Languages of Spain” and “Low-
Resource Indic Language Translation” tasks.
These submissions fall under the “constrained”
category, as no pre-trained translation model
was used, and the models were trained using
the provided datasets.

Given that the CycleGN architecture demon-
strated its capacity to learn from non-parallel
datasets, the authors anticipated that it would
similarly be effective in learning from low-
resource languages. However, preliminary re-
sults indicate that, for most low-resource lan-
guage pairs, the models did not exhibit signifi-
cant learning ability. This study explores this
lack of learning.

1 Introduction

The introduction of the Transformer architecture
(Vaswani et al., 2017) marked a significant ad-
vancement in Machine Translation, rapidly gaining
widespread adoption. Its parallelized structure en-
hanced computational efficiency, allowing for the
integration of a larger number of parameters.

Neural Machine Translation (NMT) relies on
extensive text corpora, structured as aligned pairs,
where sentences of equivalent meaning are avail-
able in at least two different languages. This align-
ment is crucial for initiating model training to estab-
lish linguistic connections. Ongoing efforts, such
as OPUS (Tiedemann and Thottingal, 2020) and
Tatoeba (Tiedemann, 2012), focus on providing
public access to these datasets. However, parallel
datasets represent only a small fraction of the total
data available in monolingual datasets.

While large parallel corpora exist for many lan-
guage pairs, the ability to utilize monolingual
datasets alone would greatly increase the available
training data. This approach is particularly advan-
tageous for low-resource languages, with limited
parallel text corpora.

Back-translation (Sennrich et al., 2016) is a tech-
nique that enhances training data by using a pre-
trained machine translation (MT) model to trans-
late sentences from a monolingual dataset, creating
synthetic parallel pairs. This method allows for
the generation of additional training examples in
situations where parallel corpora are scarce.

This research builds on the concept that translat-
ing a sentence from a source language to a target
language, and then back-translating it to the source
language, provides a means to evaluate the effec-
tiveness of the translation models. By comparing
the original sentence with the machine-generated
back-translation, the discrepancy is then quantified
using a Cycle Consistency Loss, which serves as
a metric for model performance and guides the
backpropagation of gradients within the neural net-
works. This approach is analogous to techniques
used in Image-to-Image Translation, such as the Cy-
cleGAN framework proposed by Zhu et al. (2017).

2 Previous work

The TextCycleGAN model (Lorandi et al., 2023),
although not based on the Transformer architecture
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or focused on Machine Translation (MT), intro-
duced a novel approach for text style transfer. This
method applied a CycleGAN to the Yelp dataset,
enabling the model to learn mappings between pos-
itive and negative textual styles without the need
for paired examples.

Shen et al. (2017) demonstrated the potential
of training two encoder-decoder networks in an
unsupervised manner, allowing for the sharing of a
latent space and facilitating style transfer. Similarly,
Lample et al. (2018) extended this technique to the
MT domain, proving that effective translation can
be achieved without relying on parallel datasets.

3 Definitions

Machine Translation models are most commonly
trained using “parallel” datasets, which are struc-
tured collections of text pairs. Each pair comprises
a segment of text in a source language and its trans-
lation in the target language. A non-parallel dataset
on the other hand does not consist in pairs of text
segments, consequently the source and target sen-
tences do not share any explicit correspondence.

In the context of this study, the datasets are “per-
muted”. A permuted dataset is defined as a parallel
dataset wherein the sentences of one language have
been systematically rearranged. Consequently, this
results in a non-parallel corpus where it is guaran-
teed that each sentence has a corresponding trans-
lation located at an unspecified index within the
dataset.

4 Datasets

The PILAR dataset (Galiano-Jiménez et al., 2024)
has been used exclusively for the low-resource lan-
guages of Spain. Using a parallel curated dataset
as a starting point ensures that the dataset is non-
parallel by permuting the sentences. For each
Iberian language, both a literary and a crawled
versions were available in the PILAR datasets and
have been merged for training. The development
sets of the PILAR dataset are translations of the
development sets of the FLORES dataset (NLLB
Team et al., 2022), which is an evaluation bench-
mark for multilingual machine translation.

The Low-Resource Indic Language Translation
task was also part of the WMT23 (Pal et al., 2023).
The datasets were kept the same between the two
editions.

Table 1 references the number of sentences used
for each language-pair.

Language Pair Number of lines Number of epochs
Spanish-Aragonese 84,703 10
Spanish-Asturian 38,869 10
English-Assamese 2,624,715 1

English-Khasi 182,737 3
English-Manipuri 2,144,897 1

English-Mizo 1,909,823 1

Table 1: Number of sentences for each language pair
and number of epochs during training

S Training

For clarity and consistency, the mathematical no-
tations from the original CycleGAN framework
will be adopted in this study. The objective is to
develop two Neural Machine Translation (NMT)
models for two languages, X and )/, using their re-
spective datasets. Specifically, we aim to construct
models G : X — Y and F : Y — X such that,
in the ideal scenario of perfect translation, the re-
lationships G(F(y)) = y and F(G(x)) = =, with
x € Xandfory € ).

To achieve this, the Cross-Entropy Loss (CEL)
(Zhang and Sabuncu, 2018) is utilised as the Cycle
Consistency Loss (CCL), which measures the dis-
tance between the original sentence and its doubly
translated counterpart, thereby guiding the compu-
tation of gradients.

Furthermore, similar to the original CycleGAN
implementation, our study also incorporates an
Identity Loss (IL) to enhance training stability.
This loss, also based on CEL, ensures that when
the model G, which maps X — ), receives an
input y € ), the output remains unchanged, i.e.,
G(y) = y. The same loss function is applied to
F, ensuring that F (x) remains equal to z, as illus-
trated in Figure 1.

Further details of the training process, includ-
ing the specific methodologies, vocabulary orga-
nization and pretraining, are comprehensively dis-
cussed in the CycleGN submission for the WMT24
main translation task. Readers interested in the
full technical details are encouraged to refer to that
publication for a more complete understanding of
the training framework.

5.1 Model architecture

The architecture used for both models, G and F,
is the Marian framework (Junczys-Dowmunt et al.,
2018) implemented by Huggingface’s Transform-
ers library (Wolf et al., 2020), which is licensed
under the Apache Licence. While most parameters
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Figure 1: CycleGN training process

follow the default configuration, Table 2 references
the changes that were made in order to reduce the
computational cost of the architecture.

Parameter Huggingface Current work
Vocabulary size 58,101 32,000
Encoder layers 12 6
Decoder layers 12 6

Encoder attention heads 16 8
Decoder attention heads 16 8
Encoder feed-forward 4096 2048
Decoder feed-forward 4096 2048
Position embeddings 1024 128
Activation function GELU ReLLU

Table 2: Non-default parameters in the configuration of
Marian Transformer models

6 Results

Even if tracking the CCL is an inexpensive manner
to estimate the progress of the training of the Cy-
cleGN architecture, a low loss value can also hide
an absence of translation. Indeed, as there is no
Discriminator to ensure that £ belongs to X and
y belongs to ), G and F will converge towards
x =4 =2a2andy = & = g, as this approach
achieves an optimal outcome on the CCL function,
registering a value of zero. This is why an evalua-
tion metric such as COMET is crucial to assess the
progression of the CycleGN framework. To mea-
sure the performances of CycleGN, every 1,000"
batch the CCL was averaged.

6.1 Indic Languages

Tracking the evolution of the CDC clearly shows
the absence of learning in the four language pairs
examined. The evolution of the CCL is particu-
larly chaotic, which is partly due to an imbalance
of class. Table 3 displays the average number of
tokens in the Indic datasets depending on the lan-
guage. In 3 of the 4 cases, the difference is large,
i.e. sentences where the difference in the number
of tokens is more than 10%.

Language pair ‘ Length of source Length of target

English-Assamese 33.10 22.81
Encoder layers 24.09 75.27
English-Manipuri 24.09 26.07
English-Mizo 32.05 17.55

Table 3: Average number of tokens in sentences

Figures 2, 3, 4 and 5 display the respective
evolution of the Cycle Consistency Loss dur-
ing the training of the language-pairs English-
Assamese, English-Khasi, English-Manipuri and
English-Mizo.

Contrary to what the authors had hoped for on
the basis of previous results obtained for the main
task of the WMT?24 challenge, no model followed
the expected learning curve, i.e. G and F' models
with a close and slowly decreasing Cycle Consis-
tency Loss.

To reduce this imbalance of class, it may be nec-
essary to manually adjust the size of the sentences.
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Figure 2: Evolution of the Cycle Consistency Loss dur-
ing the training of the English-Assamese model
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Figure 3: Evolution of the Cycle Consistency Loss dur-
ing the training of the English-Khasi model
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Figure 4: Evolution of the Cycle Consistency Loss dur-
ing the training of the English-Manipuri model

This can be done by choosing another tokenization
method, selectively choosing phrases to keep only
those of a similar size, or by trimming sentences to
lengthen or shorten them as required.
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Figure 5: Evolution of the Cycle Consistency Loss dur-
ing the training of the English-Mizo model

6.2 Iberian Languages

As with Indic Languages, CycleGN was unable to
learn from the datasets provided. However, it was
not due to an imbalance of classes in this case, but
rather because the classes were too close together,
as the Iberian languages are very close to the source
language, Spanish.
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Figure 6: Evolution of the Cycle Consistency Loss dur-
ing the training of the Spanish-Aragonese model

Rather than translating directly from Spanish
into Aranese or Asturian, it is possible that transla-
tion can be achieved by using a different intermedi-
ate language such as English. Thus, two CycleGN
models would have to be trained, the first to trans-
late from Aranese or Asturian into English, and
the second from English into Spanish. This would
double the training time for an already expensive
framework.
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Figure 7: Evolution of the Cycle Consistency Loss dur-
ing the training of the Spanish-Asturian model

7 Conclusion

In conclusion, while the training process demon-
strated significant progress and effective transla-
tion capabilities in the main study, the results pre-
sented in this paper reveal several challenges that
prevented similar success. The issues identified,
particularly in relation to both class imbalance and
class proximity, indicate that further refinement and
investigation are necessary. Future research should
focus on addressing these challenges, with the aim
of optimizing the training process and overcoming
the outlined issues. Resolving these problems is
crucial for realizing the full potential of the frame-
work within the context discussed in this paper.

8 Future Work

Further investigations will benefit from the incor-
poration of a more extensive dataset and an explo-
ration of larger model architectures. Future work
also include methods discussed in Section 6 to al-
low translation training.

8.1 Larget dataset

The current work has been trained on a small
dataset compared to MT standards. Future work
should try to see how convergence progresses with
more iterations. Further computational optimiza-
tions are probably necessary to shorten the training
time required.

8.2 Larger models

The current architecture relies on a total of
158,769,152 parameters, which is only about a third
of the size of the default in the Huggingface library.

9 Source Code

The source code of CycleGN is available at
https://github.com/SorenDreano/CycleGN.

Limitations

The investigation acknowledges certain inherent
limitations which may impact the generalizability
and applicability of the findings.

Language diversity

Another issue that arises from the computing cost
of CycleGN is the lack in language diversity. In-
deed, our current work only used the English-
German and Chinese-English language pairs. Con-
sequently, it cannot be certain that the approach
presented can be applied to other languages and all
alphabets. This is why CycleGN is taking part in
WMT24, to explore the framework’s performance
on a wide range of language pairs.

Training limitations

Due to time constraints and the fact that CycleGN
is a computationally expensive architecture, it was
not possible to train the Spanish-Aranese pair. Sim-
ilarly, the training of all models was stopped early,
before reaching performance stagnation.

Ethics Statement

This study, focusing on the training of NMT mod-
els using non-parallel datasets, adheres to the high-
est ethical standards in research. We recognize
the critical importance of ethical considerations
in computational linguistics and machine learning,
especially as they pertain to data sourcing, model
development, and potential impacts on various lin-
guistic communities.

Our research utilizes publicly available, non-
parallel linguistic datasets. We ensure that all data
is sourced following legal and ethical guidelines,
respecting intellectual property rights and privacy
concerns.

In our commitment to scientific integrity, we
maintain transparency in our research methodolo-
gies, model development, and findings. We aim to
make our results reproducible and accessible to the
scientific community, contributing positively to the
field of machine translation.

Acknowledgements

This publication has emanated from research con-
ducted with the financial support of Science Foun-

760



dation Ireland under Grant number 18/CRT/6183.
For the purpose of Open Access, the author has
applied a CC BY public copyright licence to any
Author Accepted Manuscript version arising from
this submission.

References

Aarén Galiano-Jiménez, Felipe Sdnchez-Martinez, and
Juan Antonio Pérez-Ortiz. 2024. Pilar.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116—121,
Melbourne, Australia. Association for Computational
Linguistics.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’ Aurelio Ranzato. 2018. Unsupervised ma-
chine translation using monolingual corpora only.

Michela Lorandi, Maram A.Mohamed, and Kevin
McGuinness. 2023. Adapting the CycleGAN Ar-
chitecture for Text Style Transfer. Irish Machine
Vision and Image Processing Conference.

NLLB Team, Marta R. Costa-jussa, James Cross, Onur
Celebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia-Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzman, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation.

Santanu Pal, Partha Pakray, Sahinur Rahman Laskar,
Lenin Laitonjam, Vanlalmuansangi Khenglawt,
Sunita Warjri, Pankaj Kundan Dadure, and
Sandeep Kumar Dash. 2023. Findings of the WMT
2023 shared task on low-resource Indic language
translation. In Proceedings of the Eighth Conference
on Machine Translation, pages 682—694, Singapore.
Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment.

761

Jorg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT — Building open translation services for the
World. In Proceedings of the 22nd Annual Confer-
enec of the European Association for Machine Trans-
lation (EAMT), Lisbon, Portugal.

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Proceedings of the Eight Inter-
national Conference on Language Resources and
Evaluation (LREC’12), Istanbul, Turkey. European
Language Resources Association (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Zhilu Zhang and Mert R. Sabuncu. 2018. Generalized
cross entropy loss for training deep neural networks
with noisy labels.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks.


https://github.com/transducens/PILAR
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
http://arxiv.org/abs/1711.00043
http://arxiv.org/abs/1711.00043
https://doi.org/10.5281/zenodo.8207989
https://doi.org/10.5281/zenodo.8207989
http://arxiv.org/abs/arXiv:1902.01382
http://arxiv.org/abs/arXiv:1902.01382
https://doi.org/10.18653/v1/2023.wmt-1.56
https://doi.org/10.18653/v1/2023.wmt-1.56
https://doi.org/10.18653/v1/2023.wmt-1.56
http://arxiv.org/abs/1511.06709
http://arxiv.org/abs/1511.06709
http://arxiv.org/abs/1705.09655
http://arxiv.org/abs/1705.09655
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1805.07836
http://arxiv.org/abs/1805.07836
http://arxiv.org/abs/1805.07836
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593

