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Abstract

This paper presents the findings of the WMT
2024’s Multilndic22MT Shared Task, focusing
on Machine Translation (MT) of 22 Indian Lan-
guages. In this task, we challenged participants
with building MT systems which could trans-
late between any or all of 22 Indian languages
in the 8th schedule of the Indian constitution
and English. For evaluation, we focused on
automatic metrics, namely, chrF, chrF++ and
BLEU.

1 Introduction

India is a linguistically diverse region, with 1,369
distinct natively spoken languages which were iden-
tified in the census conducted in 2011. Among
these native languages, 22 have been listed in the
8th Schedule of the Constitution of India. Fur-
thermore, about 97% of the population of India
speaks one of these 22 languages as their first lan-
guage in their daily lives. It is important to note
that English is widely spoken and serves as the de-
fault medium of formal communication in many
areas, particularly in business, education, govern-
ment, and judiciary. However, the percentage of
the population speaking English is approximately
10% and in the interest of smooth and clear com-
munication, the importance in India of language
translation for effective communication, social in-
clusion, equitable access, and national integrity
cannot be over-emphasized.

Having established that Indian language MT is
important, the only way to improve it is via ac-
tive involvement from MT researchers and MT
system developers to push the boundaries of trans-
lation quality. To this end, we offered the first
of its kind shared task focusing on MT for all 22
scheduled Indian languages. Over half a decade
ago, in the Workshop on Machine Translation 2018
(WAT 2018) (Nakazawa et al., 2018), the organiz-
ers introduced the IndicMT task for the first time

ankunchu@microsoft.com

spanning covering 7 Indic languages. Over the
years they gradually added languages in WAT from
2018 to 2023 (Nakazawa et al., 2019, 2020, 2021,
2022, 2023), with WAT 2023 boasting 19 Indian
languages. Over the years, with the increasing num-
ber of languages and datasets for Indian languages,
these tasks have garnered growing attention, how-
ever the challenge still remains since Indian lan-
guages are still resource poor in comparison with
European languages.

This year the multilingual Indian languages M T
task, referred to as Multilndic22MT, is hosted un-
der the Ninth Conference on Machine Translation
(WMT?24) and for the first time ever, the task spans
all 22 scheduled languages of India belonging to
4 language families and written in 12 scripts. The
languages exhibit both genetic and contact related-
ness (Kunchukuttan et al., 2018). Some of these
languages are extremely low-resource. This diver-
sity makes this language group ideal for studies
in multilingual learning, language relatedness and
low-resource MT. Our primary goal behind hav-
ing this shared task was to attract both researchers
and developers to identify effective practices for
pushing the quality of Indian language Machine
Translation, especially for the lower resourced lan-
guages. Our secondary goal was also to identify
some interesting but yet unexplored practices, even
if they do not lead to state-of-the-art MT perfor-
mance.

2  Multilndic22MT Shared Task

The task covered English and 22 Indic Languages,
as follows:

1. Assamese
2. Bengali
3. Bodo

4. Dogri
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5. Konkani

6. Gujarati

7. Hindi

8. Kannada

9. Kashmiri (Arabic script)
10. Maithili

11. Malayalam

12. Marathi

13. Manipuri (Meitei script)
14. Nepali

15. Oriya

16. Punjabi

17. Sanskrit

18. Santali

19. Sindhi (Devanagari script)
20. Tamil
21. Telugu
22. Urdu.

We evaluated user submissions on 44 translation
directions (English-Indic and Indic-English). We
also evaluate the performance of 5 Indic-Indic pairs:
Bengali-Hindi, Tamil-Telugu, Hindi-Malayalam
and Sindhi-Punjabi. We encouraged the use of
multilingualism and transfer-learning by leverag-
ing monolingual data, back-translation and (po-
tentially) LLMs, to develop high quality systems.
Although the intention is to have users develop
multilingual systems and submit translations for
all directions, we also welcomed submissions for
specific language pairs. The link to the shared task
page is here!.

3 Datasets and Pre-trained Models

For this shared task, we prepared a fairly extensive
list of resources for the participants to train their
MT systems. We also describe the evaluation sets.

"https://www2.statmt.org/wmt24/
multiindicmt-task.html

3.1 Datasets

We allowed participants to use existing mined as
well as back-translated parallel data along with
monolingual data.

Parallel Data: As a source of parallel corpora,
we recommended using the Bharat Parallel Cor-
pus Collection (BPCC) dataset? (Gala et al., 2023)
which spans all 22 languages in the shared task.
BPCC is a comprehensive and publicly available
parallel corpus that includes both existing and new
data for all 22 scheduled Indic languages. It com-
prises two parts: BPCC-Mined and BPCC-Human,
totaling approximately 230 million bitext pairs.
BPCC-Mined contains about 228 million pairs,
with nearly 126 million pairs newly added as a part
of this work. On the other hand, BPCC-Human
consists of 2.2 million gold standard English-Indic
pairs, with an additional 644K bitext pairs from
English Wikipedia sentences (forming the BPCC-
H-Wiki subset) and 139K sentences covering every-
day use cases (forming the BPCC-H-Daily subset).
It is worth highlighting that BPCC provides the
first available datasets for 7 languages and signifi-
cantly increases the available data for all languages
covered. Note that one may pivot via English to
obtain Indic-Indic parallel corpora.

Parallel Back-translated Data: Additionally,
BPCC also contains back-translation data gener-
ated by intermediate checkpoints of IndicTrans2
(Gala et al., 2023) models for training purposes.
This data consists of English original sentences
translated to 22 Indic languages for a total of
401.9M back-translated sentences and Indian lan-
guage original sentences translated to English for
a total of 400.9M back-translated sentences. The
mined, human curated and back-translated corpora
represent an extensive training dataset which we
expect will be sufficient for training MT systems
of reasonable quality.

Monolingual Data: We also recommended the use
of monolingual data from Varta® (Aralikatte et al.,
2023), IndicCorp v2? (Doddapaneni et al., 2023)
and Sangraha® (Khan et al., 2024) corpora. San-
graha subsumes IndicCorp v2 but does not explic-
itly include Varta. Sangraha covers 22 languages,
containing a total of 251B tokens, of which con-

2https://github.com/AI4Bharat/IndicTransZ
Shttps://huggingface.co/datasets/rahular/varta
*https://github.com/AI4Bharat/IndicBERT/tree/
main#indiccorp-v2
Shttps://github.com/Al4Bharat/IndicLLMSuite?
tab=readme-ov-file#sangraha
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tains verified® (64B), unverified’ (24B), and syn-
thetic® (162B) tokens. On the other hand, Varta
spans only 9B tokens and belongs to the NEWS
domain, whereas Sangraha spans multiple domains.
Our evaluation sets, which we will describe later,
are multi-domain (including news) and hence we
expected Sangaraha to be a better source but could
not neglect Varta due to its domain specificity and
high quality.

3.2 Pre-trained Models

In addition to datasets, following recently followed
trends in shared tasks, we encouraged participants
to leverage one or all of the following publicly
available models for fine-tuning or synthetic data
generation:

IndicTrans2 (Gala et al., 2023): This consists of
the 3 IndicTrans2 models, one-to-many, many-to-
one, and many-to-many, for English to Indic, Indic
to English and Indic to Indic translation. These
are the current state-of-the-art open-source MT
systems, and we encouraged participants to build
on top of these models to improve performance,
especially for the lower resourced languages like
Santali, Sindhi, Bodo, Dogri, Konkani, Kashmiri,
Maithili and Manipuri.

mTS (Xue et al., 2021): mT5 is a well known pre-
trained model which supports half of the Indian
languages in this shared task. However, it is only
pre-trained and not fine-tuned for MT and is more
suitable for focused domain specific fine-tuning
investigations.

IndicBART (Dabre et al., 2022): IndicBART is
a small pre-trained model for 11 Indic languages
and English which, when fine-tuned, is known to
outperform mBART (Liu et al., 2020) and give
comparable performance as a mT5, despite both
models being twice its size.

VartaT5 (Aralikatte et al., 2023): This is a T5
model specific for Indic languages and is analogous
to IndicBART.

BLOOM (Workshop et al., 2023): BLOOM is
a family of decoder only pre-trained models sup-
porting 44 languages, some of them being a subset
of the Indian languages we focus on in this shared
task. Model sizes range from 500 million parame-

The URLs of webpages from which the corpora were
crawled were manually verified by linguists.

"The urls of webpages from which the corpora were
crawled were unverifiable.

8These were obtained by translating English documents
into Indian languages.

ters to 176 billion parameters. However, BLOOM
is known to be an under-trained model, and thus
we expected participants to focus more on using
Gemma.

Gemma (Team et al., 2024): Is another family
of decoder only models with 2 and 7 billion pa-
rameters. Gemma is theoretically capable of to-
kenizing all 22 Indian languages of this task but
its primary support is more in favor of the higher
resource languages like Hindi, Marathi, Bengali,
etc. We expected that participants would explore
some prompting approaches on top of Gemma to
determine its viability for Indian language transla-
tion.

4 Submission Criteria

We expected two types of submissions: Con-
strained and Unconstrained. Constrained submis-
sions were those which used the data and mod-
els stipulated by the organizers explicitly. Uncon-
strained submissions were those where any other
data or models were used without confirmation
from the organizers. Furthermore, we encouraged
primary and contrastive submissions, where partic-
ipants could submit one Primary (ranked) and one
Contrastive (unranked, optional).

5 Evaluation Sets and Metrics

Evaluation Sets: We provide participants with a
validation set and 3 test sets. The validation set
is an extension of FLORES-200 for the 22 Indian
languages’, as described in Gala et al. (2023) and
consists of 997 23-way sentences. As for the test
sets, 2 out of 3 are publicly available and one is
a hidden test set. The publicly available sets are
In22-Conv'® and In22-Gen!! spanning 1,503 and
1,024 23-way parallel sentences, for the conversa-
tional and general styles, respectively. The hidden
test set was originally described in Chitale et al.
(2024) and is an Indic language original test set
where Indic sentences were translated into English
by linguists. This is different from all other test sets
which are English original and were translated into
Indic languages. This hidden test set was released
to the participants 2 weeks before the deadline and
unlike In22-Conv and In22-Gen, the references

9https://indictransz—public.objectstore.
e2enetworks.net/flores-22_dev.zip

Ohttps://huggingface.co/datasets/ai4bharat/
IN22-Conv

"https://huggingface.co/datasets/ai4bharat/
IN22-Gen
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were kept hidden. This test set covered only 13
of the 22 Indic languages namely, Assamese, Ben-
gali, Bodo, Gujarati, Hindi, Kashmiri, Malayalam,
Nepali, Santali, Sanskrit, Sindhi, Telugu and Urdu.
While we asked participants to work on translation
to and from English for In22-Conv and In22-Gen,
for the hidden test set, only translation from Indic
to English direction was possible in order to keep
the test set hidden'.

Evaluation Metrics: We asked participants to sub-
mit their translations to us which we would then
evaluate using BLEU (Papineni et al., 2002), chrF
(Popovié, 2015) and chrF++ (Popovié, 2017) using
sacreBLEU!? (Post, 2018). We follow the appro-
priate tokenization of Indic languages as done by
Gala et al. (2023) before computing scores.

6 Participants and Submissions

Although 32 teams had registered initially, only 4
teams ended up submitting systems and 3 submitted
system description papers (1 withdrew). The teams
and their submitted systems are as follows:

6.1 BV-SLP Team

The BV-SLP team (Joshi et al., 2024), short for the
Banasthali Vidyapith Speech and Language Pro-
cessing Lab, focused on Sindhi to English transla-
tion and only submitted translations for the hidden
test set. Their approach focuses on special handling
of named entities. They first extract named enti-
ties from the source Sindhi sentence and translate
it first using a knowledge base of Sindhi-English
named entity pairs. This intermediate output is then
translated using a NMT system, which is trained to
retain the translated named entities and only trans-
late the Sindhi part. To develop the NMT system
itself, they converted the existing Sindhi-English
parallel corpus into a form where the Sindhi sen-
tences had their named entities replaced with their
English translations. This pre-translation approach
is well known to work well for handling named
entities. They used two approaches for transla-
tion itself, one (Primary) where Sindhi is directly
translated into English and one (Contrastive) where
Sindhi is first translated into Hindi and then into
English.

"2Asking for English to Indic translation meant that we
would have to release English sentences too and this would
lead to the test set references being exposed.

13https ://github.com/mjpost/sacrebleu

6.2 NITS-CNLP Team

The NITS-CNLP team (Singh et al., 2024), short
for the National Institute of Technology Silchar’s
Centre for Natural Language Processing, focused
on English to Manipuri translation and submitted a
primary and a contrastive system. Their approach
was rather straightforward, where they used the
English-Manipuri data from BPCC (Gala et al.,
2023) and trained a transformer model. They sub-
mitted results for the In22-Conv and In22-Gen test
sets. They also performed some manual evalua-
tions.

6.3 NLIP-Lab Team

The NLIP-Lab (Brahma et al., 2024), short for the
Natural Language and Information Processing Lab,
was the only team that went all out and submit-
ted translations for all translation directions and
test sets. The NLIP-Lab team use an approach
based on pre-training models using codemixed data
which was synthetically created. Specifically, they
take BPCC parallel data and replace words in En-
glish sentences with semantically similar words
of the target Indic language sentences. They then
pre-train a model with both the original and code-
mixed data. They further refine their pre-trained
model with original and code-mixed data obtained
only from the high quality BPCC-seed datasets.
Finally, they fine-tune their models only on the
seed datasets without the code-mixed counterparts.
They hypothesized that this leads to fairly strong
MT systems.

7 Results and Findings

Overall, the NLIP-Lab team got 1st rank for all
language pairs, directions and test sets, including
In22-Conv, In22-Gen and the hidden test set for
Indic to English translation.

7.1 Sindhi to English Translation

NLIP-Lab had a contender in the form of BV-SLP
team for Sindhi to English translation but where
the primary system of BV-SLP got BLEU, chrF
and chrF++ scores of 19.4, 44.6 and 43.0, respec-
tively. NLIP-Lab translations scored BLEU, chrF
and chrF++ scores of 21.2, 47.1 and 45.5, respec-
tively. This showed that NLIP-Lab’s RASP pre-
training and fine-tuning approach was definitely
better than the named entity handling approach.
The likely explanation was that NLIP-Lab used a
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lot more parallel data and trained a larger model
than their competitior.

7.2 English to Manipuri Translation

Once again, NLIP-Lab’s contender for the English
to Manipuri task was the NITS-CNLP lab. This was
for the In22-Conv and In22-Gen test sets. NITS-
CNLP got BLEU, chrF and chrF++ scores of 6.4,
28.6 and 26.6 for In22-Conv and 8.1, 32.1 and
29.4 for In22-Gen. However, NLIP-Lab got better
scores of 15.2, 43.6 and 41.1 for In22-Conv and
18.2, 48.0 and 45.0 for In22-Gen. This shows that
NLIP-Lab’s systems are substantially better. How-
ever, this is to be expected given that NITS-CNLP
did not train massively multilingual models and the
latter did.

7.3 Did NLIP-Lab Beat IndicTrans2?

Unfortunately, NLIP-Lab’s systems did not beat
IndicTrans2. For the Indic to English directions,
IndicTrans2 was almost 10 BLEU better on In22-
Gen and almost 4 BLEU better on In22-Conv. For
the English to Indic directions, however, the gap
narrowed down to about 2 BLEU. This implies that
despite IndicTrans2 being trained on significantly
larger data (mostly backtranslated) and in multiple
stages, its performance can still be approached by
systems not leveraging massive amounts of data.
This highlights then need for investigating better
approaches for translating into Indic languages. As
a side note, these same observations hold for Indic
to Indic translation.

8 Conclusion

In this report we present the findings of the Mul-
tilndic22MT shared task for machine translation
involving 22 Indian languages. Despite the initial
enthusiasm shown by participants during task regis-
tration, only 3 out of 32 teams submitted their trans-
lations and system description papers. Of these 3,
only NLIP-Lab submitted translations for all direc-
tions and got first rank for all their submissions.
Approaches explored varied from named entity re-
placement, pivot language translation (using Hindi
as a pivot), code-mixed pretraining and training
from scratch. Overall, code-mixed pre-training
stood tall and led to the best systems. However,
none of the systems could still beat IndicTrans2,
indicating that there is much effort needed for push-
ing the state of the art for translation involving In-
dian languages. Given the advent of LLMs and the

focus on decoder-only architectures which are well
suited for document level MT, we expect that the
next batch of innovations will be focused on the
same. However, most LLMs dont support Indic
languages that well and thus participants may have
to resort to using approaches like transliteration
to bridge the gap or even reduce it between the
type of scripts that LLMs have seen and those that
they have not (J et al., 2024; Dabre et al., 2020,
2022; Gala et al., 2023). We hope that more people
will participate in another iteration of this task with
interesting approaches.
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