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Abstract
In Multimodal Machine Translation (MMT),
the use of visual data has shown only marginal
improvements compared to text-only models.
Previously, the CoMMuTE dataset and associ-
ated metric were proposed to score models on
tasks where the imagery is necessary to disam-
biguate between two possible translations for
each ambiguous source sentence. In this work,
we introduce new metrics within the CoM-
MuTE domain to provide deeper insights into
image-aware translation models. Our proposed
metrics differ from the previous CoMMuTE
scoring method by 1) assessing the impact of
multiple images on individual translations and
2) evaluating a model’s ability to jointly se-
lect each translation for each image context.
Our results challenge the conventional views
of poor visual comprehension capabilities of
MMT models and show that models can in-
deed meaningfully interpret visual information,
though they may not leverage it sufficiently in
the final decision.

1 Introduction

The use of multimodal data, combining visual and
textual inputs, is becoming increasingly important
in deep learning, especially in language modeling.
Multimodal Machine Translation (MMT) presents
a unique challenge in this area, as previous Ma-
chine Translation (MT) systems traditionally relied
only on text. Despite the potential benefits of in-
corporating imagery, its efficacy in MMT remains
controversial. Critics often view imagery as merely
a regularizer rather than a core component of trans-
lation systems (Caglayan et al., 2016; Wu et al.,
2021). This skepticism is fueled by results with the
assumption that textual context alone suffices for
most translation tasks (Caglayan et al., 2019).

To explore these concerns, the CoMMuTE
dataset was developed to test MMT models on
source sentences where visual context is essential
for accurate selection between possible translations

(Futeral et al., 2023). Their proposed evaluation
metric scores a model’s preference/choice between
two reference translations, diverging from tradi-
tional metrics such as BLEU (Papineni et al., 2002)
and Meteor (Banerjee and Lavie, 2005) that instead
compare a generated translation against a single
reference. Initial analyses using the CoMMuTE
dataset and metric indicate that current models
show only slight, or no, improvement over using
text-only models (Futeral et al., 2023).

Building on this recent foundation, we introduce
a new complementary evaluative CoMMuTE met-
ric that assesses a model’s understanding of vary-
ing imagery on a fixed reference translation (as
described above in (Futeral et al., 2023)). We ad-
ditionally provide two group metrics designed to
evaluate a model’s ability to jointly choose each
translation given their associated image contexts.

Results with our proposed metrics demonstrate
that in many circumstances, models can indeed
effectively understand and properly interpret the
visual information, even if the final translation deci-
sions are unaffected. This suggests the significant
potential for improvements in model design to fur-
ther leverage visual information.

2 Related Work

In this section, we present an overview of recent
advancements and methodologies in two critical
areas of related research. We first explore how im-
agery can enhance translation capabilities in MMT
and subsequently shift our focus to contrastive eval-
uation methods, which represent a shift from tra-
ditional single-reference comparisons to more nu-
anced assessments using multiple contrasting refer-
ences.

2.1 Multimodal Machine Translation

MMT typically trains with datasets such as
Multi30k (Elliott et al., 2016) to enhance trans-
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lation capabilities, yet results are not largely im-
proved with sufficient textual context (Caglayan
et al., 2019). Research such as Elliott (2018)
demonstrates that the replacement of associated
images with random counterparts often does not
significantly impact translation quality, suggest-
ing a predominant reliance on textual data. A
later study further indicated that imagery typically
serves merely as a form of regularization in training
current models (Wu et al., 2021).

When imagery is available at inference time, ap-
proaches such as Graph-MMT (Yin et al., 2020),
VTLM (Caglayan et al., 2021), Gated Fusion (Wu
et al., 2021), and VGAMT (Futeral et al., 2023)
are applicable. These methods leverage diverse
global visual features from sources such as ResNet-
50 (He et al., 2016) and CLIP (Radford et al.,
2021), as well as visual semantic features through
advanced object detectors like MDETR (Kamath
et al., 2021).

In scenarios lacking visual data at inference time,
innovative models such as CLIP-Trans (Gupta et al.,
2023), UVR-NMT (Zhang et al., 2020), and ImagiT
(Long et al., 2021) instead strategically leverage
image-text datasets only during their training phase.
These models employ sophisticated mechanisms to
enhance their semantic understanding during train-
ing such as aligning image-text embedding spaces
and synthesizing visual features. By pretraining on
multimodal data, these models acquire a nuanced
understanding of complex semantic relationships
that text alone might not fully encapsulate. Some
models, such as CLIP-Trans, can be modified to
support the use of imagery at inference time by
replacing CLIP text embeddings with CLIP image
embeddings.

There has also been notable progress in adapting
pretrained language models (LMs) such as BERT
(Devlin et al., 2019) and XLM (Conneau and Lam-
ple, 2019) for multimodal use. Techniques such
as visually-conditioned masked language model-
ing (VMLM) are explored in various architectures
(Chen et al., 2020; Lu et al., 2019; Su et al., 2020;
Li et al., 2020; Zhou et al., 2021; Ni et al., 2021;
Futeral et al., 2023). Furthermore, the development
of adapters and other lightweight modules can sig-
nificantly enhance multimodal capabilities of LMs
(Houlsby et al., 2019; Eichenberg et al., 2022; Yang
et al., 2022; Tsimpoukelli et al., 2021; Sung et al.,
2022; Futeral et al., 2023).

2.2 Contrastive Evaluation

Contrastive evaluation methodologies have become
crucial for nuanced assessments of translation sys-
tems. These methodologies utilize contrastive test
sets designed to challenge models to correctly rank
pairs of translations, helping distinguish between
correct and incorrect alternatives (Futeral et al.,
2023). Contrastive datasets have been used to eval-
uate linguistic phenomena including grammatical-
ity (Sennrich, 2017), pronoun translation (Müller
et al., 2018; Bawden et al., 2018; Voita et al., 2019),
and multi-sense word disambiguation (Rios Gonza-
les et al., 2017; Raganato et al., 2019; Futeral et al.,
2023). Moreover, the coherence of lexical usage
across translations has been thoroughly explored
(Bawden et al., 2018; Voita et al., 2019).

3 CoMMuTE Dataset and Metric

The CoMMuTE dataset (Futeral et al., 2023) was
recently introduced to score an MMT model’s pref-
erence between two given translations for an am-
biguous source based on the provided imagery.
Specifically, CoMMuTE is comprised of 154 am-
biguous English sentences, each paired with two
contrasting images and their respective translations,
where the two translations are available in French,
German, and Czech. Each instance in the dataset is
structured as a tuple (s, ia, ta, ib, tb), where s is an
ambiguous source sentence and (ia, ib) are images
that disambiguate the sentence into two possible
translations (ta, tb), respectively. For example, in
Fig. 1, the English source sentence “That’s lots of
bucks!” could refer to either deer or dollars, and
the image is needed to determine the appropriate
context.

To specifically score such disambiguation capa-
bilities, the authors proposed a metric, which we
refer to as TextCoMMuTE (TC), that compares the
model’s preference for the correct translation over
the incorrect translation based on a single provided
image context.

The model’s uncertainty in a translation t given a
source s and an image i is quantified by perplexity,
defined as

P(s, i, t) = exp

(
− 1

N

N∑

k=1

log p(tk|s, i, t<k)

)

(1)
Here, N is the number of tokens in the transla-
tion, tk is the k-th token in the translation, and
p(tk|s, i, t<k) denotes the conditional probability
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of the k-th token given the source, image, and pre-
ceding tokens. In practice, this probability is ap-
proximated using the softmax of model outputs.
Perplexity can be seen as a measure of uncertainty
as it is the exponential of the negative mean log
probability. Hence, lower perplexity is desired for
a correct output versus an incorrect output.

The TC metric is then defined for a single image-
translation triple (im, tm, tn) as

TCm,n = 1{P(s, im, tm) < P(s, im, tn)} (2)

where im and tm correspond to the matching im-
age/translation and tn is the incorrect translation in
the associated triple. Moreover, 1 is the indicator
function that is 1 if the perplexity for the correct
translation is less than that of the incorrect transla-
tion, and 0 otherwise.

Note that each of the 154 tuples in CoMMuTE
yields 2 TC scores: TCa,b and TCb,a. Hence,
there are actually 308 individual TC scores for the
dataset. An average is taken over the N=154 TC
pairs as a summary statistic

TC =
1

2N

N∑

j=1

{TCaj ,bj + TCbj ,aj} (3)

Again, the TC score (Eqn. 3) views the two
triples in each tuple independently even though
both triples are associated with the same source
sentence. TC scores range from 0-1 with 1 indi-
cating correct disambiguation of all triples in the
dataset. A text-only model scores a TC of 0.5
by definition (assuming no ties in perplexity) be-
cause for any tuple j in the dataset, exactly one
of TCaj ,bj and TCbj ,aj will be 1 while the other
is 0 (i.e., the image makes no contribution to the
translation preference for a given source).

From an MMT perspective, this metric is insight-
ful as translations with lower perplexities are typi-
cally more likely to be generated or appear higher
in an n-best list.

4 Enhanced CoMMuTE Metrics

We now propose new complementary contrastive
metrics to provide a more nuanced understanding
of the interpretation of imagery for models with the
CoMMuTE dataset.

4.1 ImageCoMMuTE
Rather than comparing two translations with the
same image and source as is done with TC, we in-

(a) French Translation a: Il
y a beaucoup de cerfs !

(b) French Translation b:
Cela fait beaucoup de dol-
lars !

Figure 1: English Source: That’s lots of bucks!

stead examine the contribution of two different im-
ages to the same translation. From this perspective,
we can directly assess whether the correctly associ-
ated image is appropriately affecting model uncer-
tainty (reducing the perplexity of its corresponding
translation). For a source s, images (im, in), and a
translation tm, we define ImageCoMMuTE (IC) as

ICm,n = 1{P(s, im, tm) < P(s, in, tm)} (4)

where im is the correctly associated image and in

is incorrectly associated image for translation tm.
Similar to TC, one can aggregate scores over a
dataset by taking the mean of the N=154 pairs

IC =
1

2N

N∑

j=1

{ICaj ,bj + ICbj ,aj} (5)

Scores for IC range from 0-1, and a score of 0.5 in-
dicates a random preference for the image context.

Our IC metric evaluates changes in model con-
fidence for the same translation when presented
with varying imagery. This approach directly as-
sesses the interplay between imagery and text in-
terpretation within the model. This differs from
the work presented in Elliott (2018), where they
assess average differences in model uncertainty,
while we assess indicators of decisions. This IC
metric also alleviates any possible concerns of the
reliance on comparing perplexity averages and cal-
ibration across translations (as is done with TC).
We will return to these potential issues in our dis-
cussion later. By maintaining a single reference
translation across different visual contexts, our IC
metric provides a more robust and precise measure
of how imagery is understood by the model.

4.2 Group CoMMuTE

Though TC and IC are insightful metrics on their
own, they both ignore the consistency desired for
the underlying source-translation pairs. With TC,
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the set of both translations is independently pro-
cessed twice (each time with a different image con-
text). Similarly with IC, the set of both images is
independently processed twice (each time with a
different translation target). What is truly desired
is that the model consistently and correctly under-
stands both cases for each set jointly to demonstrate
true understanding.

Therefore, we propose a new group variant
for TC and IC. To evaluate consistency across
the paired nature of the task, we define Group
TextCoMMuTE (GTC) as

GTCa,b = TCa,b · TCb,a (6)

and Group ImageCoMMuTE (GIC) as

GICa,b = ICa,b · ICb,a (7)

These group metrics function with a logical “AND”
between the two independent triple scores, ensuring
that a score of 1 reflects consistent and correct
interpretations for the tuple as a whole. As earlier,
one can also aggregate group scores using a mean
with

GTC =
1

N

N∑

j=1

GTCaj ,bj (8)

GIC =
1

N

N∑

j=1

GICaj ,bj (9)

These scores also yield values between 0-1.
Our primary goal is to assess if the model prop-

erly interprets and understands imagery for the
translations. Group scores such as GTC and GIC
are crucial because they assess consistent model
behavior with different text-image combinations,
indicating true comprehension rather than coinci-
dental correctness.

5 Experiments and Results

We present a comprehensive assessment of the pre-
vious and new CoMMuTE metrics on three pre-
trained English-to-French MMT models. Our eval-
uation is structured to elucidate how well these
models understand the imagery with respect to re-
solving ambiguities in the CoMMuTE dataset. We
begin by evaluating performance on the original
CoMMuTE dataset, followed by an assessment us-
ing an extended set of imagery we collected for
each CoMMuTE tuple to reveal further strengths
and weaknesses across models.

5.1 Models

We employed three English-to-French MMT mod-
els, each chosen for its unique approach to integrat-
ing visual data with textual information. Across
all models, we preprocessed imagery by resizing
the smaller edge to 224px (maintaining the aspect
ratio) and then taking a center crop of 224px ×
224px.

VGAMT. The authors of CoMMuTE proposed
VGAMT (Futeral et al., 2023), enhancing a pre-
trained mBART MT model (Liu et al., 2020) by
incorporating CLIP ViT-B/32 image embeddings
and fine-tuning adapters. While VGAMT included
an object detector and a visually guided attention
mechanism, our evaluation focused on its simpli-
fied variant from their ablation study (Futeral et al.,
2023), which solely uses CLIP image embeddings.
This model was trained using both visual masked
language modeling and MMT objectives, having
1B total parameters. In our experiments, we em-
ployed three VGAMT models provided by the au-
thors, each trained with a different random seed.

CLIP-Trans. The authors (Gupta et al., 2023)
align the embedding spaces of a pretrained mBART
MT model (Liu et al., 2020) with a multilingual
M-CLIP model (Carlsson et al., 2022) via a map-
ping network. The model first trains on an image-
captioning task using M-CLIP image embeddings
followed by text-only MT training with M-CLIP
text embeddings. They also suggest that imagery
can be utilized at inference time, substituting M-
CLIP text embeddings with image embeddings,
even though it is not directly trained on MMT. We
used a model following this approach with 1.3B
total parameters. In the experiments, we evaluated
one CLIP-Trans model provided by the authors.

Gated Fusion. This model introduces a dynamic
gating mechanism that adaptively combines image
and text representations, with gate values ranging
from 0 to 1 for image components (Wu et al., 2021).
The model leverages ResNet-50 (He et al., 2016)
image features and a tiny transformer for a total of
32M parameters (substantially smaller than CLIP-
Trans and VGAMT). We trained the model solely
on the Multi30K dataset (Elliott et al., 2016), adher-
ing to the authors’ training protocol. We observed
that the gating mechanism frequently assigns low
values, often near 0, which tends to minimize the
impact of visual data. To better incorporate image
content into the translation process, we trained ad-
ditional variants with fixed gate values of 0.25, 0.5,
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Figure 2: Mixed imagery from Fig. 1 used for a pseudo-
text-only baseline.

and 0.75. Each of these variants was trained and
evaluated using three different random seeds.

5.2 Baseline Results

We first conducted a baseline evaluation on the
CoMMuTE dataset. The second and third columns
in Table 1 display the mean TC and GTC scores
taken across models with random seeds (standard
deviations were very low in all cases). For refer-
ence, a pure text-only MT model will have TC=0.5
and GTC=0, since the model will always choose
one translation over the other for each tuple.

VGAMT scores highest in these two metrics,
with the CLIP-Trans and Gated Fusion variants
scoring near text-only in TC. This model also
scores the highest in BLEU on Multi30k, as re-
ported in previous work (Futeral et al., 2023; Gupta
et al., 2023). The GTC scores of all models are
above 0%, suggesting that all models can consis-
tently disambiguate at least some tuples, though the
scores are low. The gate values within the default
Gated Fusion model were inspected and found to
be near 0 (as expected). Interestingly, we see that
TC for Gated Fusion improves slightly with a fixed
larger gate value of 0.25 indicating that the strength
of imagery does have the potential to change trans-
lations.

5.3 Comparison with Ambiguous Imagery

We next examined how much the imagery affected
model decisions in comparison to the underlying
textual bias. We compared the changes in TC
scores using the original image context pairs (from
CoMMuTE) versus an ambiguous mixed image.

As MMT models are trained with both imagery
and text, one cannot properly obtain a pure text-
only result through simple methods such as pass-
ing a zero image or removing the image context
from the tokens. To obtain a pseudo-text-only base-
line, we employed a 50/50% “mixup” (Zhang et al.,
2018) of the two image contexts for each tuple to

Figure 3: Perplexities of the correct translations using
the correct image, the incorrect image, and the mixed
image.

create a single ambiguous image (see Fig. 2). Here,
both image contexts are provided in a single image.
However, there are other possible ways to create
ambiguous imagery, such as arranging the images
side-by-side. In Fig. 3, we see the perplexities of
the correct translations using the mixed imagery
typically fall between the perplexities using the cor-
rect and incorrect imagery, supporting the use of
the mixed imagery as a baseline for comparison.
We evaluated TC using this mixed image and also
using the original images to get two competing
TC scores for each image-translation triple. Note
that the pseudo-text-only MMT model will score
TC=0.5 (and GTC=0) by definition (we are using
the same mixed image across two comparisons, and
thus, preference does not change).

We measure changes in the score between the
original images and the mixed image for each tuple
using four consistency rates. The first two rates
measure the percent of image-translation triples
for which the original imagery and the mixed im-
agery gave different preferences for translations.
That is, in these cases, the model’s decision when
using the original imagery was different from the
model’s decision when using the mixed imagery.
The inconsistent positive rate (IPR) measures the
percentage of image-translation triples that chose
the right translation with the original imagery and
the opposite/wrong translation with mixed imagery.
The inconsistent negative rate (INR) measures the
percentage of image-translation triples that chose
the wrong translation with the original imagery and
the opposite/right translation with mixed imagery.
The performance of the remaining examples can be
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Model Mean TC ↑ Mean GTC ↑ IPR ↑ INR ↓ CPR ↑ CNR ↓
VGAMT 0.63 0.26 0.13 0.00 0.50 0.37

CLIP-Trans 0.51 0.03 0.01 0.00 0.50 0.49
Gated Fusion 0.50 0.02 0.01 0.01 0.49 0.49

Gated Fusion0.25 0.52 0.10 0.07 0.05 0.45 0.43
Gated Fusion0.5 0.50 0.07 0.05 0.05 0.45 0.45
Gated Fusion0.75 0.49 0.02 0.02 0.04 0.46 0.48

Table 1: Baseline TC and GTC scores on the original CoMMuTE dataset, and consistency rates compared to
pseudo-text-only baseline.

quantified by a consistent positive rate (CPR) and
a consistent negative rate (CNR), measuring the
percentage of triples whose correct and incorrect
preferences did not change when using the original
or mixed imagery. Since the corpus is evenly split
into 2 ambiguities, these rates are bounded in [0,
0.5] with IPR + CNR = INR + CPR = 0.5.

The last four columns in Table 1 display the con-
sistency rates using the pseudo-text-only baseline
for each of the models. The VGAMT model scores
the highest IPR of 0.13 with an INR of 0, indicating
that the model corrected 13% of translations with-
out any negative impact when using the original
imagery. In contrast, the CLIP-Trans and Gated
Fusion variants show smaller IPR and INR rates,
suggesting that imagery has a weaker yet still no-
ticeable effect on these models. The higher INR
rates for Gated Fusion models indicate that imagery
can actually hurt their performance.

By examining the CPR and CNR rates in the
table, we see that imagery may not be signifi-
cantly impactful in the decisions across all models.
These rates only measure the proportion of image-
translation triples (with the original imagery) that
agree with the pseudo-text-only baseline (with the
mixed imagery). They do not describe if the model
associates correct/incorrect imagery with transla-
tion confidence. The model still might correctly
associate the original imagery, giving lower per-
plexity of the correct translation (desired), but this
change may not be drastic enough to overturn the
model’s underlying textual preference. This high-
lights the need for a metric, such as the proposed IC,
to measure how confidence in a translation changes
with correct and incorrect imagery.

5.4 ImageCoMMuTE Results
We next conducted an evaluation of the CoMMuTE
dataset using our proposed IC and GIC metrics.
Table 2 displays the mean IC and GIC scores taken
across the models with random seeds. Note that IC

Model Mean IC ↑ Mean GIC ↑
VGAMT 0.81 0.66

CLIP-Trans 0.58 0.22
Gated Fusion 0.51 0.11

Gated Fusion0.25 0.51 0.12
Gated Fusion0.5 0.50 0.13
Gated Fusion0.75 0.50 0.11

Table 2: Baseline IC and GIC scores.

Model TC IC
VGAMT vs CLIP-Trans 0.39 0.18

VGAMT vs Gated Fusion0.25 0.25 0.16
Gated Fusion0.25 vs CLIP-Trans 0.36 0.32

Table 3: Intersection-Over-Union of failures as deter-
mined by TC and IC.

and GIC metrics are undefined for a pure text-only
MT model, and thus, we cannot compute the four
consistency rates.

Our image-based metrics (IC and GIC) demon-
strate that VGAMT interprets imagery most effec-
tively, achieving 0.81 on IC and 0.66 on GIC, which
are significantly higher than the TC of 0.63 and
GTC of 0.26. Other models continue to score only
slightly above 0.5. We find that of the models we
tested, those that scored highest on MMT quality
metrics also scored highest in our proposed metrics
(as reported in (Futeral et al., 2023; Gupta et al.,
2023)). These results demonstrate that VGAMT
more appropriately adjusts uncertainty in a transla-
tion based on imagery.

We also investigated whether the different mod-
els made the same errors. We identified the image-
translation triples where each model made errors in
terms of TC and also for IC. We then calculated the
intersection-over-union (IOU) between 2 models,
which is a set similarity metric defined as the ratio
of the number of image-translation triples common
to both error sets for a given metric (intersection)
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to the total number of unique image-translation
triples in both error sets (union). This metric helps
quantify the similarity in errors across models as a
scalar bounded in [0,1] where 1 signifies exact sim-
ilarity in errors. The results in Table 3 reveal that
models do not strongly make the same mistakes yet
do share some overlap.

5.5 Extended CoMMuTE
We next extended the CoMMuTE dataset by incor-
porating additional images per translation in each
tuple. This extension allows for a broader assess-
ment of model performance across diverse image
inputs and enables a search for images that could
either improve or degrade the scores.

For each ambiguous source s, we manually gen-
erated two distinct, unambiguous captions, ca and
cb, which correspond directly to the translations
ta and tb, respectively. For example, the English
sentence “That’s lots of bucks!” is transformed to
“a photo of deer” and “a photo of dollars”.

Utilizing these unambiguous captions, we then
sourced corresponding images from the DataComp-
12.8M dataset (Gadre et al., 2023), which com-
prises 12.8 million image-text pairs harvested from
the Common Crawl (Common Crawl). The Dat-
aComp dataset serves as a foundation dataset for
enhancing the training of CLIP models. We em-
ploy a CLIP ViT-B/32 model, pretrained on the
LAION-5B dataset (Schuhmann et al., 2022), to
retrieve images most similar (cosine similarity) to
our unambiguous captions.

From this candidate set of imagery, the top 15
images that most closely aligned with each caption,
adhering to a minimum dimension of 64 pixels and
a maximum aspect ratio of 2.5, were retrieved auto-
matically. We manually selected the four most rep-
resentative images from this set (due to potentially
noisy images retrieved). If fewer than 4 suitable im-
ages were found, additional images were sourced
from Google Images. This method resulted in a
total of 1540 images, providing 5 images (instead
of just 1) for each unambiguous translation. Conse-
quently, this extended CoMMuTE dataset includes
the original source s, translations ta and tb, and
now 5 images each for ia and ib.

With this extended CoMMuTE dataset, we exam-
ined if there existed subsets of imagery that could
significantly increase or decrease the GIC score (as
we deem GIC the most important metric for each
model). For each tuple in our extended dataset, we
identified the image pair (one image taken from

each image set) that maximizes or minimizes the
GIC score. As multiple pairs can meet the criteria,
we select the pair that optimizes

{P(s, ia, ta)− P(s, ib, ta)} +

{P(s, ib, tb)− P(s, ia, tb)}
(10)

This expression reflects the confidence gaps for the
translations. Given that a lower perplexity indicates
a better result and considering the ordering of dif-
ferences in Eqn. 10, we minimize (or maximize)
this equation to maximize (or minimize) the GIC
score accordingly. When seeking images to max-
imize the GIC score, we break ties by finding the
image pair that minimizes Eqn. 10 (can be negative).
When seeking images to minimize the GIC score,
we break ties with the image pair that maximizes
Eqn. 10. We refer to the image subset specifically
tailored to maximize GIC as Image-Oracle. We
also tracked the replacement rate (RR) of the num-
ber of images replaced from the original dataset.

As shown in Table 4, the maximal GIC image
subsets show high effectiveness, with VGAMT
scoring a Max IC of 0.96 and a Max GIC of 0.92.
This suggests that the model can accurately inter-
pret the intended visual signals in these particular
image pairs for nearly all translations. This is fur-
ther supported by the notably higher Max IC and
GIC scores in the CLIP-Trans and Gated Fusion
variants. Conversely, we see that sets of images can
be found to hurt performance, especially in CLIP-
Trans and Gated Fusion. Examples of replaced
imagery can be seen in Fig. 4. Therefore, it is pos-
sible to have imagery that drastically improves or
degrades the scores. We see that replacement rates
are high, indicating that the original dataset is not
prominent in these maximal/minimal subsets. The
results with maximal/minimal GIC show that the
model does indeed have an internal understanding
of the imagery with respect to the translation task.

We would expect the Image-Oracle images that
maximized GIC to similarly improve TC and GTC
scores. However, Table 5 shows only minor im-
provements in TC and GTC across models. Thus,
even though the IC and GIC metrics strongly indi-
cate the image interpretability of the models, the
TC and GTC metrics fail to highlight the potential
contribution of imagery.

6 Discussion

This study introduced image-based and group met-
rics for CoMMuTE to better evaluate if models do
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Model Min IC ↑ Min GIC ↑ RR Max IC ↑ Max GIC ↑ RR
VGAMT 0.59 0.33 0.80 0.96 0.92 0.71

CLIP-Trans 0.46 0.01 0.77 0.89 0.77 0.77
Gated Fusion 0.40 0.00 0.77 0.73 0.48 0.78

Gated Fusion0.25 0.38 0.00 0.80 0.86 0.71 0.80
Gated Fusion0.5 0.35 0.00 0.81 0.88 0.76 0.77
Gated Fusion0.75 0.37 0.00 0.79 0.85 0.71 0.80

Table 4: Minimum and maximum IC and GIC scores along with replacement rates.

Original

Oracle
Best

Oracle
Worst

Figure 4: Examples from the CoMMuTE dataset with original imagery (top row), oracle best replacements (middle
row), and oracle worst replacements (bottom row) as determined by VGAMT.

Model Mean TC ↑ Mean GTC ↑
VGAMT 0.67 0.34

CLIP-Trans 0.52 0.05
Gated Fusion 0.51 0.02

Gated Fusion0.25 0.64 0.28
Gated Fusion0.5 0.59 0.18
Gated Fusion0.75 0.56 0.12

Table 5: Image-Oracle TC and GTC scores.

understand imagery in MMT. In this section, we ex-
plore possible reasons why TC scores are so much
lower than IC and discuss future directions on how
to further leverage the imagery to improve MMT.

There are two potential issues related to perplex-
ity and calibration that may affect the TC/GTC
scores. First, there is an assumption that perplex-
ity is indeed an appropriate uncertainty metric to
compare two translations. Perplexity is a transform

Model Mean TC ↑ Mean GTC ↑
VGAMT 0.66 0.32

CLIP-Trans 0.52 0.03
Gated Fusion 0.51 0.01

Gated Fusion0.25 0.60 0.21
Gated Fusion0.5 0.58 0.15
Gated Fusion0.75 0.53 0.07

Table 6: Image-Oracle TC scores with the shared prefix
removed in perplexity computation.

of the mean log probability and, therefore, relies
on averages where all tokens are weighted equally
(Ueda et al., 2024). There may indeed be other
better measures of uncertainty (Kauf and Ivanova,
2023). It is also assumed that the model is well
calibrated to properly compare across translations.

One method to examine the effects of averages
across sequences of different lengths in the perplex-
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Figure 5: Calibration results using temperature scaling.

ity computation is to remove any shared prefix in
ta, tb before computing perplexity and then com-
pare to the results without prefix removal (original
method). Ignoring common prefixes (while still
weighting the remaining tokens equally) actually
shows a slight degradation in scores (as illustrated
in Table 6). These results suggest perplexity (a
transform of mean log probability) does have some
issues as a comparison method. However, this does
not fully explain the low TC/GTC scores.

We also investigated the effects of model cali-
bration using a simple global temperature scaling
method (Guo et al., 2017) across a range of tem-
perature values from 0.25 to 2. As shown in Fig.
5, the TC scores appear unaffected, indicating po-
tential miscalibration, while IC scores suggest that
models are relatively well-calibrated (at T=1). We
also examined higher temperatures, which did not
change the results, suggesting calibration does not
appear to be primarily responsible for the TC/GTC
degradation.

Therefore, given the stronger results from
IC/GIC, we believe the main overall issue with
TC/GTC is that the underlying textual prefer-
ence/bias in these models is too strong and does not
allow much influence from the imagery (which we
have shown to be interpreted well by the models).

7 Recommendations for Future Work

One future area of work is the integration of im-
agery earlier in the model’s architecture rather than
appending them at the end of the processing chain
(Wu et al., 2021; Gupta et al., 2023). Integrating
image features earlier in the model’s architecture
could enhance the model’s ability to better leverage
the rich contextual cues provided by the imagery.
This approach may result in translations that are
more contextually nuanced, with increased atten-
tion to specific words critical for disambiguation.

Additionally, enhancing the impact of visual sig-

nals within the model could also prove beneficial.
This could be achieved by adjusting the gate val-
ues in models that use gating mechanisms, such
as Gated Fusion (Wu et al., 2021), to strengthen
the influence of visual data. As demonstrated, set-
ting a fixed gate value that prioritizes visual infor-
mation could help in situations where visual con-
text is crucial for disambiguating textual content.
Even though the non-gated VGAMT was the top
performer, there is still room for improvement by
strengthening the role of imagery in the processing
using some method of gating or amplification.

Earlier we have shown that the IOU of errors
between model pairs did not have strong alignment.
This diversity implies that ensembling different
models could potentially mitigate individual weak-
nesses and enhance overall performance.

8 Conclusion

Our study challenges the widespread belief that
visual cues are not generally very helpful to MMT.
By employing our proposed IC and Group CoM-
MuTE metrics within an expanded CoMMuTE
dataset, we have established a robust framework
for assessing if visual information is understood
in MMT systems. Our results reveal that while
visual data does indeed support translation prefer-
ences, it is not leveraged significantly to enhance
the outcomes over the underlying textual bias. Our
findings mark a promising direction for future re-
search in MMT, suggesting that further exploration
could uncover ways to amplify this positive impact.

Acknowledgements. We thank the authors of
CoMMuTE for providing their CLIP-only VGAMT
models. We also thank Logan Frank and Robert
Sunderhaft for their assistance.

Limitations

Firstly, we evaluated English-French translations
in CoMMuTE. It remains to be seen whether the
results generalize to other languages. Additionally,
our evaluations were conducted on an extended set
of 5 images, whereas larger sets (e.g., 100 images)
would provide more robust insights. Furthermore,
we relied on the default single reference translation
for each image. Having additional translations for
each image context would enable a more compre-
hensive evaluation.
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