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Abstract

The prosody of a spoken utterance, includ-
ing features like stress, intonation and rhythm,
can significantly affect the underlying seman-
tics, and as a consequence can also affect its
textual translation. Nevertheless, prosody is
rarely studied within the context of speech-to-
text translation (S2TT) systems. In particular,
end-to-end (E2E) systems have been proposed
as well-suited for prosody-aware translation be-
cause they have direct access to the speech sig-
nal when making translation decisions, but the
understanding of whether this is successful in
practice is still limited. A main challenge is the
difficulty of evaluating prosody awareness in
translation. To address this challenge, we intro-
duce an evaluation methodology and a focused
benchmark (named CONTRAPROST) aimed at
capturing a wide range of prosodic phenomena.
Our methodology uses large language mod-
els and controllable text-to-speech (TTS) to
generate contrastive examples. Through ex-
periments in translating English speech into
German, Spanish, and Japanese, we find that
(a) S2TT models possess some internal repre-
sentation of prosody, but the prosody signal is
often not strong enough to affect the transla-
tions, (b) E2E systems outperform cascades of
speech recognition and text translation systems,
confirming their theoretical advantage in this
regard, and (c) certain cascaded systems also
capture prosodic information in the translation,
but only to a lesser extent that depends on the
particulars of the transcript’s surface form.1

1 Introduction

Prosody, which includes features like stress, into-
nation, and rhythm, is crucial for conveying mean-
ing in spoken language beyond the literal words
used (Ladd, 1980; Bolinger, 1989). Among oth-
ers, prosody can direct focus and clarify mean-
ing (Bolinger, 1961; Halliday, 1967), disambiguate

* Work done during an internship at Apple.
1github.com/apple/ml-speech-is-more-than-words

Example: These are German teachers.

A
Prosody These are GERMAN teachers.
Explanation Teachers from Germany
Translation Dies sind Deutschlehrer.

B
Prosody These are German TEACHERS.
Explanation Teachers that teach German
Translation Dies sind deutsche Lehrer.

Example: John laughed at the Party.

A
Prosody John LAUGHED (pause) at the Party.
Explanation Laughed while at the party (literal)
Translation John lachte während der Party.

B
Prosody John LAUGHED AT (pause) the Party.
Explanation Ridiculed the party (idiomatic)
Translation John lachte über die Party.

Table 1: Examples of prosody-aware Speech Translation
from English to German.

syntax and sentence structure (Bolinger, 1989),
convey the emotional state of the speaker (Banse
and Scherer, 1996), and provide useful cues that
make communication more effective (Shriberg
et al., 1998). For example, the phrase “Really?”
can express surprise, genuine interest or disbelief,
depending on the intonation with which is spoken.

Table 1 illustrates the importance of consider-
ing prosody when generating translations in S2TT.
Sperber and Paulik (2020) suggest that E2E S2TT
systems may have an inherent advantage over cas-
caded systems in this regard, because only the for-
mer have access to the speech signal when making
translation decisions. However, our understand-
ing of whether prosody informs translation choices
in practice is currently still limited, as prior re-
search on this topic either shows only anecdotal
evidence (Huang et al., 2023b), focuses on only a
small subset of prosodic phenomena (Zhou et al.,
2024; Chen et al., 2024), or considers how prosody
informs target-side speech with regards to gener-
ated prosody but not lexical choice (§6).
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In this paper, we take steps toward a reliable and
comprehensive evaluation methodology, which is
one of the most important prerequisites for achiev-
ing prosody-aware S2TT. We identify three central
challenges that must be addressed: (1) Existing
S2TT benchmarks often do not include prosody-
rich spontaneous speech and/or do not include
translations that are informed by the audio, limiting
the extent to which reference translations are influ-
enced by source-side prosody. (2) General-purpose
evaluation methods like BLEU (Papineni et al.,
2002) and COMET (Guerreiro et al., 2023) are in-
sensitive to the often subtle changes in translation
caused by input prosody. (3) Existing prosody-
centric benchmarks are difficult to scale to broader
coverage of languages and prosodic phenomena,
which hinders comprehensive analysis.

To address these challenges, we take inspira-
tion from prior work on behavioral testing (Ribeiro
et al., 2020; Ferrando et al., 2023) and contrastive
evaluation (Sennrich, 2017). We address the
first challenge by synthesizing prosody-rich data
that covers a wide range of prosodic phenomena
through the use of large language models (LLMs)
and controllable TTS (cTTS). We tackle the second
challenge by developing a double-contrastive evalu-
ation approach, i.e. a directional behavioral test that
relies on minimal pairs (differing only in prosody)
to evaluate prosody-awareness in S2TT in isola-
tion. The resulting benchmark, CONTRAPROST
(Contrastive Prosody ST), covers a variety of lan-
guage pairs and prosodic phenomena. Since it is
mostly automated, it can be further extended, thus
addressing also the third challenge.

To investigate how well current state-of-the-art
models understand and leverage prosody, we eval-
uate S2TT models of various sizes and types, in-
cluding both E2E and cascaded systems. We find
indications that S2TT models represent prosody
internally, but this knowledge is often not mani-
fested in the translations. We observe that while
tested cascaded systems perform better on tradi-
tional evaluation (COMET), E2E models outper-
form cascaded models on CONTRAPROST. We also
find indications that some amount of prosody is
carried through transcripts in cascaded setups, but
this depends on the particulars of the transcriptions.
The most important implication of our findings is
the need for exploring improvements of S2TT re-
garding prosody-awareness, e.g. through auxiliary
losses or finetuning on prosody-rich data.

2 The CONTRAPROST Benchmark

CONTRAPROST is composed of double-contrastive
examples (see Table 1), where each example is
composed of a sentence in English that could be
semantically ambiguous, along with two different
pairs of <speech, translation> that capture con-
trastive cases of prosody.

As it would be expensive and practically diffi-
cult to collect such test data manually, we employ
an automatic data generation process, illustrated in
Fig. 1. First, we identify several relevant categories
where prosody influences sentence semantics in
important ways, and construct illustrative examples
that reflect the respective phenomena of each cat-
egory, while highlighting differences in prosody-
induced meaning (§2.1). We then prompt GPT-
42 (OpenAI, 2024) to generate sentences similar to
the examples for each subcategory using in-context
learning, grounding the generation on different text
domains to increase diversity (§2.2). Next, GPT-4
is prompted to translate each prosodic case, while
also being given access to the prosodies, meanings
and general information of the category, thus acting
as a prosody- and context-aware oracle translator
(§2.3). Finally, we use the OpenAI TTS API3 to
synthesize the prosodic speech of each case (§2.4).
Each generation stage is coupled with filtering and
quality assessment to ensure the data are of high
quality.

2.1 Categorization of Prosodic Phenomena

Below, we summarize the examined prosodic cat-
egories. Details and examples are available in the
Appendices A and B.
(1) Sentence Stress. This is usually manifested
through increased loudness, vowel length or higher
pitch (Fry, 1955), invoking emphasis on certain
words within a sentence, potentially changing the
semantics by shifting focus (Wagner, 2020). We
further categorize prosodic stress in four subcate-
gories according to the purpose of the stress or its
use in disambiguation of linguistic phenomena (see
Appendix A.1).
(2) Prosodic Breaks. Here we consider the ex-
istence or placement of longer breaks in the flow
of speech, primarily associated with tempo, that
create different phrasal boundaries and help dis-
ambiguate syntax and sentence structure (Bolinger,
1989). We follow Hirschberg (2017) and use the

2GPT-4O-2024-05-13
3TTS-1-HD, platform.openai.com/docs/models/tts
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Figure 1: The Data Generation process for CONTRAPROST.

subcategories outlined in Appendix A.2.
(3) Intonation Patterns. This concerns the modal-
ity of the sentence, specifically whether it is a state-
ment (falling tone), or a declarative question (rising
tone) (Gunlogson, 2002).
(4) Emotional Prosody. A different emotional
tone can indicate a speaker’s emotional state and
thus affect the semantics of the utterance (Banse
and Scherer, 1996). Emotional tone is usually man-
ifested through changes in pitch, tempo, and loud-
ness. For example, happiness is associated with
higher values in pitch and tempo, while sadness
exhibits lower values for pitch, tempo, and loud-
ness (Larrouy-Maestri et al., 2024). Here, we focus
on the seven basic emotions: happy, sad, angry,
disgust, surprisal, fear, and neutral (Ekman and
Friesen, 1971; Ekman, 1992), based on which we
construct all possible pairs, thus having 21 subcat-
egories.
(5) Politeness. The level of politeness can be con-
veyed by non-verbal cues, and influences the prag-
matic context of a conversation. A polite tone is
associated with a higher pitch and a smooth rhythm,
while an impolite tone is manifested through low
pitch, irregular rhythm and very high or low loud-
ness levels (Culpeper et al., 2003; Culpeper, 2011).

2.2 Prosodic Example Generation

For each category, we prompt GPT-4 to generate
sentences based on hand-crafted category-specific
examples. More specifically, we have the LLM
generate English sentences, each with two different
textual prosodic annotations and respective mean-
ings/interpretations to guide subsequent translation
(§2.3). The generated annotations include rich text
that indicates different levels of emphasis, pause
tags, and special punctuation such as ellipsis, ex-

Prompt 1: Prosodic Example Generation

You are a helpful assistant with expert knowl-
edge in linguistics, speech, and prosody. Your
task is to come up with examples of English sen-
tences where different prosody would change the
meaning of the sentence significantly.(1)

{Details for Category & Subcategory}(2)

Here are some examples to guide you:
{List of Examples}(3)

Strictly follow these rules:
{List of Rules}(4)

Provide a rating of how significant is the differ-
ence between the two meanings.(5)

Generate {n} such examples, with rating as high
as possible,(6) in the domain of {domain}.(7)

clamation, or interobang (!?). The sentence itself is
generated to be as simple as possible, ending with
a full stop or question mark.

The general prompt template is displayed in
Prompt 1. It starts with some general informa-
tion about the task, see superscript (1). The prompt
then continues with details describing the current
category/subcategory (2). The next part refers to
in-context learning (Brown et al., 2020), where we
provide a list of illustrative, hand-crafted examples
for the LLM to follow (3). In certain subcategories,
due to repeated mistakes observed in preliminary
explorations, we also provide examples to avoid.
In (4) we provide a list of rules for the LLM to
adhere to, indicating the desired structure of the
sentence and how to use prosodic notation, which
might not be obvious from the examples (3). Ex-
amples of such rules are “do not include prosodic
annotations in the sentence,” or “stress different
noun-phrases in each prosodic case.” We further-
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more use self-criticism (Huang et al., 2023a) by
instructing the model to rate its own generations,
according to how different the two prosodic in-
terpretations are (5). Then we instruct the LLM
to generate examples that have high scores after
self-reflection (6). These scores are also used later
during filtering. Finally, to avoid repetitive exam-
ples and enhance diversity, we condition the gen-
eration on specific text domains (7) (Chung et al.,
2023). The list of domains is also generated by
GPT-4 based on the context that its subcategory
would naturally occur (e.g. legal testimonies). For
each text domain in the subcategory the LLM then
generates n candidate examples. We use several
hand-crafted text-based filtering steps to ensure
that the examples generated by the LLM at this
stage comply with the instructions specified in (4).

2.3 Oracle Translation
Recent research on the emerging capabilities of
LLM-based MT (Vilar et al., 2023; Alves et al.,
2023; Zhang et al., 2023) has shown that LLMs
can attain very high translation quality, especially
for high-resource languages (Robinson et al., 2023)
and including translation factors such as emo-
tions (Brazier and Rouas, 2024), suggesting the
possibility that LLMs can be leveraged for prosodic
translation synthesis. To obtain the translations
of the prosodic cases, we thus utilize GPT-4 as a
prosody- and context-aware oracle translator. The
LLM is prompted to translate, while having access
to the sentence, the textual prosodic annotations
(prosody-awareness), and the semantic interpreta-
tions (context-awareness). The template prompt is
shown in Prompt 2. We provide a list of contraints
to the LLM with several goals in mind: (i) avoid
generating prosodic annotations in the translations;
(ii) avoid translating the interpretations rather than
the sentences; (iii) encourage the model to generate
different translations for each case; (iv) ensure that
differences in the translations are only due to the
difference in the prosodies.

Although prosody variants substantially influ-
ence sentence semantics, this does not always imply
that the ideal translations must differ. In particular,
sometimes a translation that leaves semantics am-
biguous may be preferred as the most natural trans-
lation.4 As a consequence, constraint (iii) is some-
times overly strict and even in conflict with con-
straint (iv), leading to changes in the translations

4This is essentially an instance of the fluency-accuracy
trade-off (Lim et al., 2024).

Prompt 2: Oracle Translation

You are a helpful assistant with expert knowl-
edge in speech, prosody, linguistics and transla-
tion, particularly in English and {Target Lang}.
You will be provided with a sentence in English
(S) and two different prosodic variations (SA,
SB), focused on {Category}, which correspond
to two different semantic interpretations.
Your task is to translate S, SA and SB into {Tar-
get Lang}, as T, TA, and TB.
Carry out the translation in these steps:
(1) Translate S into T.
(2) Translate SA to TA and SB to TB, by focusing
on how T should change in order to reflect the
additional information from the prosodies.
The following constraints should be applied:
{List of Constraints}
The sentence S is: {sentence}
The two different prosodic variations are:
SA. {prosodyA} ({meaningA})
SB. {prosodyB} ({meaningB})

that do not stem from the prosodies, that are not
idiomatic. To account for that, we include a post-
editing step, where GPT-4 is instructed to choose
the most fitting translation among {T, TA, TB}
for each prosodic case, independently from the
other prosodic cases, while having access only the
prosody information (Prompt 3). We prompt the
LLM to first provide an explanation, before select-
ing the most appropriate translation, in order to
induce chain-of-thought reasoning effect (Kojima
et al., 2024).

Prompt 3: Translation Post-editing

You are a helpful assistant and an expert transla-
tor. You will be provided with a sentence in En-
glish and different possible translations in {Tar-
get Lang}. The English sentence can contain
rich prosodic text with {Category-specific in-
formation}, that affects the meaning of the sen-
tence. Your task is to select the most appropriate
and prosody-aware translation. First provide a
brief explanation of your reasoning and then the
index of the selected translation.
The sentence S to be translated is {sentence}
and the candidate translations are: [T,TA,TB]}

After post-editing we remove all examples where
the prosodic cases have identical translations, i.e.
(TA=TB). As an extra measure, we also remove
examples where the word length-ratio of the non-
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prosodic translation T and one of the prosodic
translations TA, TB is not within (0.75, 1.25)5. This
aims to remove translations that are overly explana-
tory, including new bits of information that can be
due to the prosody, but are making the translation
unnatural (see Table 10 in App. D.2 for examples.).

2.4 Controllable Speech Synthesis
We use the OpenAI TTS which can synthesize very
natural speech with high-quality audio, offering six
different voice profiles. While there are no clear
guidelines6 on how to control prosody, we identi-
fied some effective prompting strategies to control
the TTS output through trial-and-error (Table 2).

Effect TTS Prompting

Strong Emphasis *WORD*
Normal Emphasis *word*
Slight Emphasis _word_

Pause <pause>
Statement Intonation Prepend <statement>
Question Intonation Prepend <question> & Append ????

Emotional/Polite Tone Prepend & Append Emojis

Table 2: OpenAI TTS prompting strategies.

To ensure that the generated audio follows the
correct wording and exhibits the intended prosodic
characteristics we use the following process: First,
we generate six candidates (one per voice) for each
prosody, discarding invalid candidates (WER ̸=0)
using an ASR model. Then we estimate prosody
quality using category-specific tests in order to
rank or filter examples. These tests employ tech-
niques such as forced alignment (Kürzinger et al.,
2020), signal processing, punctuation probability,
and speech emotion classification. They are ex-
plained in detail in Appendix C.

3 Contrastive Evaluation

General-purpose MT metrics like BLEU and
COMET may be insensitive to subtle changes
caused by prosody, and do not allow disentangling
prosody awareness from overall translation quality.
Thus, to assess how well an S2TT model can han-
dle prosody specifically, we develop a contrastive
evaluation framework (Sennrich, 2017). Note that
previous work on contrastive evaluation uses a sin-
gle source and two or more targets (Sennrich, 2017;
Vamvas and Sennrich, 2021; Zhou et al., 2024) of
which only one is correct. The model likelihood

5We use character-based length-ratio for Japanese.
6platform.openai.com/docs/guides/text-to-speech

is then estimated for each target, and models are
preferred that assign a better score to the correct
example than to the foil(s). Here, we generalize
this approach to leverage CONTRAPROST’s double-
contrastive pairs, i.e. two sources and two targets
(Fig. 1).

Formally, each double-contrastive pair has
two cases {Xa, Z, Y a} and {Xb, Z, Y b}, where
Xa, Xb are the two different prosodic speech sig-
nals, Z is the source text (same for both cases),
and Y a, Y b are the different translated texts for
each case. Thus, each example has two correct
pairs (Xa, Y a), (Xb, Y b) and two incorrect ones
(Xa, Y b), (Xb, Y a). We propose the following
conditions to assess whether the S2TT model can
correctly solve the contrastive example, and to what
degree:

CG = 1
[
f(Y a | Xa; θ)− f(Y b | Xa; θ) > 0

and f(Y b | Xb; θ)− f(Y a | Xb; θ) > 0
]

CD = 1
[
f(Y a | Xa; θ)− f(Y b | Xa; θ)

+f(Y b | Xb; θ)− f(Y a | Xb; θ) > 0
]

Here, 1[·] is the indicator function, and f(·) > 0
is a function that measures the agreement between
audio input X and target translation Y under the
S2TT model with parameters θ. CG is a global
condition, requiring the model to prefer both of the
correct pairs versus the incorrect ones according
to f . CD is a directional condition (Ribeiro et al.,
2020) where we require a net positive directional
movement for the two comparisons. We expect a
model to have a strong internal representation of
prosody if it can solve the global condition, and
weak representation if it can only solve the direc-
tional one.7

We consider two different functions f to mea-
sure the agreement of X and Y .

3.1 Contrastive Likelihood

Similar to prior work on contrastive evalua-
tion (Sennrich, 2017; Vamvas and Sennrich, 2021;
Zhou et al., 2024) we use the model likelihood to
measure the level of agreement between input au-
dio and target text. We obtain the model likelihood
L ∈ R+ for a reference Y = (y1, . . . , y|Y |), given
a speech signal X ∈ Rk and an E2E S2TT model
with parameters θE2E. It is defined as the product

7Note that CG is a sufficient condition for CD .
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of the conditional probabilities, normalized by the
length of the reference. Formally:

L(Y | X; θE2E) =
1

|Y |

|Y |∏

i=1

pθE2E

(
yi | X, y<i

)

For a cascaded S2TT model we approximate the
true likelihood by considering the top-n ASR hy-
potheses Z = {Z(1), . . . , Z(n)}. Assuming the
lengths of the Z are generally similar, we get:

L(Y | X; θcasc) ≈ L(Y | Z; θMT)L(Z | X; θASR)

≈
∑n

j=1

[
L(Y | Z(i); θMT) · L(Z(i) | X; θASR)

]
∑n

j=1 L(Z(i) | X; θASR)

Furthermore, to remove a potential bias of the
model against rare translations, we normalize by
the unconditioned decoder likelihood of the refer-
ence:8

fL(Y | X; θ) =
L(Y | X; θ)

L(Y | θ) (1)

3.2 Contrastive Translation Quality
A common criticism of using model likelihoods
is that they do not assess whether the correct out-
put is actually generated in practice, due to teacher
forcing. To address this, we propose another func-
tion that leverages translation quality estimation
(QE) to compare unconstrained autoregressively
generated model outputs. We obtain the hypothesis
Ŷ of input X by generating with the S2TT model
Mθ, and use XCOMET (Guerreiro et al., 2023) to
measure the quality of the translation. Thus:

fQ(Y | X; θ) = Q
(
Y,Mθ(X)

)
= Q(Y, Ŷ ) (2)

The contrastive metrics using fQ are expected to
give us a better insight into how influential prosody
is when translating with S2TT models, as com-
pared to using fL (Eq. 1), since they consider au-
toregressive generation and beam search.

4 Experimental Setup

4.1 Data Generation
For prosodic example generation with GPT-4 (§2.2)
we used a temperature of 1, and 20 text domains
per subcategory. The model was prompted to gen-
erate 10 examples9 for each pair of (subcategory,

8Estimated by using an empty audio for E2E case and
empty source text in the MT model for the cascade.

9We generated 15/20 examples for intonation pat-
terns/politeness, respectively.

domain). The total number of subcategories is 27
(more details in App. A), amounting to 5.5k exam-
ples of English sentences with pairs of prosodies
and meanings created initially. Then we gener-
ated the candidates for the six voices with the TTS
(5.5k×6×2 = 66k) and choose the 11k best candi-
dates as described in §2.4. After quality assessment
we end up with 2.8k examples with good prosody
quality in the generated audio. Then we separately
translated each one to the three target languages
German (De), Spanish (Es), and Japanese (Ja).
After post-editing and filtering we obtained 1.3k–
1.4k full examples for each language pair (Table 3).

Category En-De En-Es En-Ja

Emotional prosody 373 379 376
Sentence stress 277 279 342
Prosodic breaks 276 252 289
Politeness 212 193 206
Intonation patterns 173 173 173

Total 1,311 1,294 1,386

Table 3: Number of examples for each language pair in
CONTRAPROST. More details are in Appendix D.1.

4.2 Speech-to-text Translation Models

We evaluated S2TT models that fall under these
three categories:

• E2E, where inference is done without an in-
termediate transcription step. The decoder of
this model has full access to the prosody of
the input.

• AED-based cascade, which is composed of an
attentional encoder-decoder (AED) (Vaswani
et al., 2017) ASR model and an MT model.
We expect the decoder of the MT model to
have limited access to prosody, unless the
ASR model is able to encode it in the tran-
scription. This is possible mainly though
punctuation, but also when the ASR model
is acting more interpretative (i.e. generating
synonyms that better fit the prosody rather
than the spoken words).

• CTC-based cascade, which uses a CTC en-
coder (Graves et al., 2006) for the ASR part.
The decoder of the MT model is expected to
have almost no access to prosody since CTC
model outputs are not punctuated and cannot
be interpretative.
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We are evaluating the following S2TT models:

• SEAMLESSM4T (Seamless Communication,
2023b) is a multilingual and multimodal
encoder-decoder. It is trained with multi-
task learning on ASR, MT, S2TT and also
on speech-to-speech translation (S2ST), and
can thus be used in either E2E or cascaded
(AED) mode.

• XLS-R (Babu et al., 2021) is a multilin-
gual E2E model, of which the encoder is
based on WAV2VEC2.0 and its decoder on
MBART50 (Tang et al., 2020).

• ZEROSWOT (Tsiamas et al., 2024) is a zero-
shot E2E model that connects a WAV2VEC 2.0
CTC encoder and NLLB (NLLB Team, 2022).

• SALMONN (Tang et al., 2024) is an audio
LLM that connects WHISPER (Radford et al.,
2022) and BEATs (Chen et al., 2023) to the
Vicuna LLM (Peng et al., 2023), and can be
used as an E2E S2TT model.

• WHISPER & NLLB (AED-based cascade).
• CTC & NLLB (CTC-based cascade) with

WAV2VEC 2.0 or HUBERT (Hsu et al., 2021).

We considered different versions of these 6 mod-
els, thus evaluating in total 31 S2TT model variants
of different sizes and capabilities (App. E).

4.3 Metrics
We used beam search with beam size 5 to generate
hypotheses. For estimating the conditional likeli-
hood of the cascade (§3.1) we used the top-5 ASR
hypotheses. For the contrastive translation quality
(§3.2) we used XCOMET-XL10 (Guerreiro et al.,
2023), which is a state-of-the-art neural quality es-
timation metric based on XLM-R (Conneau et al.,
2020). For all evaluated models we present their
contrastive likelihood and contrastive translation
quality scores, both global and directional versions,
as a percentage of solved examples. We also eval-
uate them on standard QE using XCOMET-XL,
by using the 2 correct pairs of each example (2.6k
samples). For statistical significance testing we
used bootstrap resampling (Efron, 1979) with 10k
resamples and a 95% confidence interval.

5 Experimental Results

In Table 4 we present the results of evaluating a se-
lection of large and recent model versions all three

10hf.co/Unbabel/XCOMET-XL

language pairs. We find that most S2TT mod-
els have at least some internal representation of
prosody, enabling them to outperform the random
baseline of 50% for the directional contrastive like-
lihood. On the other hand, when we consider au-
toregressive generation, we observe that the scores
for the directional contrastive quality are relatively
low11, indicating that prosody is often not promi-
nent enough in the internal representations of the
models for it to be manifested in the generated
translations. Furthermore, we find that the task
of correctly solving both sub-cases of each exam-
ple (global agreement) is very challenging for all
models, with scores ranging around 10% for both
contrastive metrics. We observe that even though
the best performing model according to standard
evaluation (XCOMET) is a cascade system, it falls
behind the best E2E models when considering the
contrastive evaluation on CONTRAPROST. This
finding illustrates why it is beneficial to separate
prosody evaluation from general accuracy evalu-
ation to study the phenomenon, which is further
supported by our observation that the prosody and
general accuracy metrics are only moderate corre-
lated (see Fig. 5 in App. F).
Are model type and model size important for
prosody-awareness? We evaluate all 31 S2TT
models using global contrastive quality, and run a
regression analysis with the model type (E2E/AED-
cascade/CTC-cascade) and model size as inputs.
We use a mixed effects model (Pinheiro and Bates,
2006) to group together each model family, and
thus account for random effects, such as the training
data and hyperparameters. Specifically:

yij=β0+β1Sij+β2AEDij+β3CTCij+uj+ϵij ,

where yij is the score of i-th model variant of the
j-th model family, β0 is the intercept, S is the log
of the model size, AED and CTC are binary vari-
ables, uj is the random effect for j-th model family,
and ϵij is a residual error term. All scores are avail-
able in Table 11 in App. F. In Figure 2 we confirm
with statistical significance that the E2E models
outperform the cascades in all three language di-
rections.12 There is also a statistically significant
negative impact on prosody-awareness when the
cascade is based on a CTC ASR model that may
be explained by the absence of punctuation in CTC

11Assuming XCOMET is 0 for randomly generated text, the
baseline scores are also 0.

12Note that results are borderline non-significant for En-Ja
against the AED-cascade.
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Model Name Contrastive Likelihood Contrastive Quality
XCOMET

Directional Global Directional Global

English → German

SEAMLESSM4T-V2-LARGE 61.2 13.5 37.4 14.5 0.988
XLS-R 2B 59.3 4.6 31.1 7.3 0.980
ZEROSWOT-LARGE 60.6 9.7 29.2 8.7 0.990
SALMONN-13B 62.8 7.2 43.2 15.9 0.975
SEAMLESSM4T-V2-LARGE 60.2 12.9 31.1 10.4 0.991
WHISPER-V3-LARGE & NLLB-3.3B 60.7 5.8 23.1 5.5 0.992
HUBERT-XL & NLLB-3.3B 39.4 0.5 20.5 2.6 0.979

English → Spanish

SEAMLESSM4T-V2-LARGE 64.9 13.4 37.9 11.0 0.982
XLS-R 2B 57.6 5.6 32.0 8.4 0.930
ZEROSWOT-LARGE 57.5 9.2 31.1 5.6 0.948
SALMONN-13B 61.3 3.6 39.6 12.3 0.967
SEAMLESSM4T-V2-LARGE 61.3 11.7 29.5 7.6 0.984
WHISPER-V3-LARGE & NLLB-3.3B 63.2 2.9 25.4 4.8 0.987
HUBERT-XL & NLLB-3.3B 41.8 0.2 20.8 2.4 0.968

English → Japanese

SEAMLESSM4T-V2-LARGE 59.4 12.4 40.3 13.8 0.956
XLS-R 2B 60.0 4.6 27.4 7.0 0.950
ZEROSWOT-LARGE 58.8 7.9 23.6 7.9 0.970
SALMONN-13B 60.4 10.8 46.1 16.1 0.859
SEAMLESSM4T-V2-LARGE 59.4 9.1 31.0 8.7 0.961
WHISPER-V3-LARGE & NLLB-3.3B 59.8 4.9 21.5 5.3 0.960
HUBERT-XL & NLLB-3.3B 40.4 0.8 15.7 2.5 0.922

Average

SEAMLESSM4T-V2-LARGE 61.8 13.1 38.5 13.1 0.975
XLS-R 2B 59.0 4.9 30.2 7.6 0.953
ZEROSWOT-LARGE 59.0 8.9 28.0 8.1 0.969
SALMONN-13B 61.5 7.2 42.9 14.8 0.933
SEAMLESSM4T-V2-LARGE 60.3 11.2 30.5 8.9 0.979
WHISPER-V3-LARGE & NLLB-3.3B 61.2 4.5 23.3 5.2 0.980
HUBERT-XL & NLLB-3.3B 40.5 0.5 19.0 2.5 0.956

Table 4: Contrastive Evaluation of S2TT models on CONTRAPROST. Grey background indicates a cascaded system.

transcripts, which if present can at least approxi-
mately signal some prosodic phenomena. Finally,
although there is some evidence that larger models
are more prosody-aware, results are not statistically
significant. We speculate that larger models have
more capacity to encode prosody in the weights,
but since prosody is perhaps not sufficiently repre-
sented in the training data, this effect is limited.
How do results compare across categories and
models? In Figure 3 we present results across
individual prosodic categories for four different
English-German models, and perform pairwise
model comparisons via bootstrap resampling13.
The only category models are able to solve con-
sistently is intonation patterns, which can also be
solved by cascaded models due to the presence of

13English-Spanish/Japanese are available at Figures 6, 7 in
App. F.

punctuation in the transcription. The comparably
lower scores in the other four categories further
demonstrate the inability of current state-of-the-art
models to use prosody, with sentence stress be-
ing the most challenging. Through the pairwise
comparisons, we find that an LLM-based model
(SALMONN) is not statistically different from a
more standard S2TT model, like SEAMLESSM4T.
Next, comparing the SEAMLESSM4T model in
both E2E and cascade allows us to control for pa-
rameters such as training data and architecture, in
order to observe the effect of model type, giving
more clarity of our results on the theoretical ad-
vantage of E2E models. Finally, we observe a clear
performance gain by using the SEAMLESSM4T
cascade over the WHISPER & NLLB one. We hy-
pothesize this advantage is due to the multitasking
nature of SEAMLESSM4T, which makes its ASR
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Figure 2: Regression Analysis of model types and model sizes per language pair.

mode more interpretative than standard ASR mod-
els. This allows the ASR part of the cascade to es-
cape the word-by-word paradigm, and use more fit-
ting words in the transcription (such as synonyms)
that fit better the prosody of the audio. Supporting
this hypothesis. we observe a worse WER score
for SEAMLESSM4T (11%) compared to WHISPER

(4%).
Is the level of prosody-awareness language-
dependant? In Figure 4 we carry out a similar
regression analysis as in Figure 2, but with the lan-
guage pair as an independent categorical variable.
Interestingly, we observe that there are differences
between the three language pairs, and also signifi-
cant for Spanish vs. German, which indicates that
prosody-awareness in S2TT could be language-
dependant. We hypothesize that the expressivity of
the target language might be a relevant factor, since
more expressive languages might be able to easier
encode the prosody of the source speech into text.

6 Related Work

Prosody has traditionally been an important topic
for TTS research (Kohler, 1991), either for trans-
ferring (Skerry-Ryan et al., 2018) or encoding
it (Pamisetty and Sri Rama Murty, 2022) in the syn-
thesized speech. Furthermore, Torresquintero et al.
(2021) created a dataset for evaluating prosody
transfer in TTS models, which contains several
categories, similar to our study here. Naturally
prosody has also been the focus of S2ST sys-
tems, in order to translate in a more expressive
way (Aguero et al., 2006; Do et al., 2017; Commu-
nication et al., 2023). The topic has received less

attention in the context of S2TT. Chen et al. (2024)
present a dataset for emotional prosody based on
speech and translations from TV series, and show
that finetuning with emotion labels, can improve
translation quality. Zhou et al. (2024) studied the
prosody-awareness of WHISPER in E2E and cas-
cade mode, in translating Korean wh-phrases using
contrastive likelihood, and find evidence of the
E2E model outperforming the cascade. Here we
contribute a broader study of prosody in S2TT,
by proposing a double-contrastive benchmark that
covers several prosodic categories, the use of more
generative-like contrastive evaluation, and evaluat-
ing a plethora of S2TT models. Finally, de Seyssel
et al. (2023) present a benchmark for evaluating
prosody-awareness in self-supervised acoustic rep-
resentations. Similarly to our study they present
evidence of prosody awareness in the representa-
tions. Contrary to our results, they conclude that
size has a positive effect on prosody awareness.

7 Conclusions

We presented CONTRAPROST, a benchmark based
on double-contrastive examples for evaluating
prosody-awareness in S2TT models, covering sev-
eral categories and languages. In addition to stan-
dard contrastive evaluation based on model likeli-
hoods, we proposed a generative contrastive met-
ric based on quality estimation. We evaluated a
plethora of models, and found that they exhibit
some signs of prosody-awareness, but the effect is
often not strong enough to influence the transla-
tions. We also confirmed the previously hypoth-
esized inherent advantage of E2E models com-
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Figure 3: Upper: Model performance per category (En-De). Lower Model performance comparisons (En-De), (a):
SALMONN-13B vs. SEAMLESSM4T-V2-LARGE, (b) SEAMLESSM4T-V2-LARGE(E2E) vs. SEAMLESSM4T-V2-
LARGE(cascade), (c) SEAMLESSM4T-V2-LARGE(cascade) vs. WHISPER-V3-LARGE/NLLB-3.3B.

Figure 4: Regression Analysis of language pairs.

pared to cascaded models. We hope that our bench-
mark and findings will motivate more research into
prosody-aware S2TT in the future, enabling us to
better understand it and improve it.

Limitations

For creating CONTRAPROST we relied on an al-
most entirely automated data generation process.
This allowed us to create a comprehensive dataset
covering several prosodic phenomena and three
language pairs, in a fast and cost-effective way. It
would also enable expanding the coverage of lan-

guages and prosodic phenomena relatively easy in
the future. Nevertheless, despite our best efforts
regarding filtering and quality assessment (§2 and
App. C), the data is not perfect and includes a cer-
tain amount of noise. We observed the following
sources of noise in order of decreasing importance:
(1) prosody not prominent in the generated speech;
(2) translations overly explanatory or not encoding
prosody; (3) semantic interpretations of the two
cases rather similar. We do not expect these is-
sues to be so frequent as to alter the findings of
this work in a systematic way, but additional hu-
man annotation or verification would be a valuable
step for future work. Furthermore, as the land-
scape of available generative models, in particular
controllable TTS, is changing quickly, the quality
of results using our data generation process would
expectantly become less of a concern in future iter-
ations.

Our study follows a contrastive evaluation
methodology in order to isolate prosody-related
behavior. As a consequence, our study does not
allow drawing conclusions on how much prosody
matters in real life data, and in what domains it is
especially important. In addition, we hypothesize
that some prosodic phenomena could be correctly
translated by having access to the broader context
of the conversation (context-aware S2TT), which
we leave for future research.
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A Prosodic Subcategories

Here we expand the categorization of §2.1, and
discuss the identified subcategories for sentence
stress and prosodic breaks, which are 4 and 6 re-
spectively. Intonation patterns and Politeness do
not have subcategories. For emotional prosody we
have 15 emotion pairs14, thus having 15 subcat-
egories. Examples are available at Tables 5 and
6.

A.1 Sentence Stress Subcategories
(1.1) Contrastive Stress, which highlights differ-
ences or corrects previous statements, emphasizing
contrasts between elements (Bolinger, 1961).
(1.2) New vs. Given Information, which differenti-
ates between new and given information, empha-
sizing what is considered new (Halliday, 1967).
(1.3) Relational vs. Descriptive Adjectives, where
stressing the adjective or the noun can differenti-
ate between the relational and descriptive uses of
attributive adjectives (Liberman and Sproat, 1992).
(1.4) Focus-Sensitive Operators, where stress indi-
cates the focus of adverbs of quantification (only,
just, etc), shifting the meaning of the sentence ac-
cordingly (Halliday, 1967; Jackendoff, 1972).

A.2 Prosodic Break Subcategories
(2.1) Direct vs. Indirect Statements, where a
prosodic break can indicate whether a phrase is
a direct or an indirect quote (Klewitz and Couper-
Kuhlen, 1999; Jansen et al., 2001).
(2.2) Restrictive vs. Non-Restrictive Clauses, which
involves the use of prosodic breaks to differentiate
between essential and non-essential information,
impacting the specificity of the noun being de-
scribed (Nespor and Vogel, 1986).

14Removed fearful emotion due to issues with the TTS.

(2.3) VP vs. NP Attachment, where a trailing
phrase can be attached either to the verb-phrase
or the noun-phrase, depending on the existence of
a prominent prosodic break (Pynte, 1996).
(2.4) Particle vs. Preposition, where a prosodic
break can disambiguate between the literal and id-
iomatic meaning of phrasal verbs, by grouping the
preposition with or without it (Price et al., 1991).
(2.5) Broad vs. Narrow Scope, where the existence
of a prosodic break can signal that a modifier (ad-
jective) has narrow scope, and refers only to one of
two nouns that follow it (Hirschberg, 2017).
(2.6) Complementizer vs. Parenthetical, where the
location of a prosodic break indicates whether an
intermediate phrase acts as a complementizer or
simply parenthetical to the main one (Dehé, 2014).

B Examples for In-context Learning

In Tables 5, 6 and 7 we present some of the exam-
ples used for in-context learning when generating
new examples with GPT-4 (§2.2).

C Quality Assessment for TTS candidates

Here we present the objectives we defined for as-
sessing the quality of the generated speech candi-
dates for each contrastive example. The objective
is applied only to candidates that had WER = 0
using WHISPER. If all candidates are invalid for
a prosodic case, the whole example is removed.
We also defined some threshold levels for the ob-
jectives after trial-and-error, in order to remove
examples where the best candidate was below it.
Sentence Stress. We use forced-alignment with
WAV2VEC 2.0 (Baevski et al., 2020) to obtain the
segment for each word in the signal, and extract
their loudness, pitch and duration features. Then
we define the stress level stress for a word w as the
weighted sum of these three features. Finally we
select the best candidate according to a simple ob-
jective objstress that has three goals: (1) maximize
the stress of the target word (stresstgt), (2) minimize
the stress of the target word of the contrastive case
(stressfoil), and (3) minimize the average stress of
the rest.

stressw = λ1loudw + λ2pitchw + λ3durw
objstress = 2 · stresstgt − stressfoil

− 1

n− 1

∑

w ̸=tgt

stressw,

where we used λ1 = 0.5, λ2 = 0.3, and λ3 = 0.2.
Note that in the sentence stress examples, there is
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1.1 Contrastive Stress
Sentence She didn’t give the book to John.
ProsodyA She didn’t give the *BOOK* to John.
MeaningA Something else was given to John.
ProsodyB She didn’t give the book to *JOHN*.
MeaningB The book was given to someone else.

1.2 New vs. Given Information
Sentence The committee decided to postpone the meeting.
ProsodyA The *COMMITTEE* decided to postpone the meeting.
MeaningA Given: Someone decided to postpone the meeting; New: It was the committee who decided.
ProsodyB The committee decided to *POSTPONE* the meeting.
MeaningB Given: The committee decided something; New: The decision was to postpone it.

1.3 Relational vs. Descriptive Adjectives
Sentence They are German teachers.
ProsodyA They are *GERMAN* teachers.
MeaningA Teachers who teach the German language. (Relational)
ProsodyB They are German *TEACHERS*.
MeaningB Teachers who are German. (Descriptive)

1.4 Focus-Sensitive Operators
Sentence I only introduced John to Maria at yesterday’s party.
ProsodyA I only introduced *JOHN* to Maria at yesterday’s party.
MeaningA John was the only person I introduced to Maria.
ProsodyB I only introduced John to *MARIA* at yesterday’s party.
MeaningB Maria was the only person I introduced John to.

Table 5: Examples in the category Sentence Stress that were used for in-context learning.

always exactly 1 target word in each contrastive
prosodic case.

Prosodic Breaks. Likewise, after forced-
alignment, we measure the duration dur of each
gap l between the words in the utterance, and de-
fine a similar objective objbreak as:

objbreak = 2
1

|tgt|
∑

l∈tgt

durl −
1

|foil|
∑

l∈foil

durl

− 1

n− |tgt|
∑

l /∈tgt

durl

In this category, there can be 0 to 2 breaks in each
prosodic case, which could be shared between the
two prosodic cases. In the objective we consider
only the ones that are not common in the two cases.

Intonation Patterns. We use teacher-forcing with
WHISPER to extract the punctuation probabilities
given the transcription text without the ending
punctuation. The probability of the sentence to
be a statement is the sum of the probabilities of
the tokens “.” and “!”, while the probability of a
question is the probability of the token “?”. Thus

the objective objinton for a statement is defined as:

objinton = p(. | X,Z<n) + p(! | X,Z<n)

− p(? | X,Z<n),

where X is the speech signal and Z<n are the to-
kens of the transcription, excluding the final one,
which corresponds in all cases of this category. to
the punctuation. The negative objective −objinton
is used for a case that is a question.
Emotional Prosody. We employ an emotion clas-
sifier15 which is a based on a finetuned WAV2VEC

2.0 on the RAVDESS dataset (Livingstone and
Russo, 2018), and define the objective as:

objemo = p(etgt | X)− p(efoil | X),

where θ are the parameters of the classifier, etgt

is the target emotion label and efoil is the emotion
label of the other prosodic case.
Pragmatic Prosody. To the best of our knowledge
there is no open-sourced audio classifier to detect
politeness levels, thus we re-purpose the emotion
classifier and define the probabilities of politeness

15hf.co/ehcalabres/wav2vec2-lg-XLS-R-en-speech-
emotion-recognition
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2.1 Direct vs. Indirect Statements
Sentence Alex announced Jamie will meet the manager.
ProsodyA Alex *ANNOUNCED* | Jamie will meet the manager.
MeaningA (Direct Statement)
ProsodyB Alex announced Jamie will meet the manager.
MeaningB (Indirect Statement)

2.2 Restrictive vs. Non-Restrictive Phrases
Sentence The students who were talking were sent out.
ProsodyA The students who were *TALKING* | were sent out.
MeaningA Only the students who were talking were actually sent out. (Restrictive)
ProsodyB The *STUDENTS* | who were talking | were sent out.
MeaningB All students were sent out, and the fact they were talking is additional information. (Non-restrictive)

2.3 Verb-phrase vs. Noun-phrase Attachment
Sentence Paula phoned her friend from Alabama.
ProsodyA Paula phoned her friend | from *ALABAMA*.
MeaningA Paula called her friend while she was in Alabama. (VP Attachment)
ProsodyB Paula phoned | her *FRIEND* from Alabama.
MeaningB Paula phoned her friend who is from Alabama. (NP Attachment)

2.4 Phrasal Verbs
Sentence John laughed at the party.
ProsodyA John *LAUGHED* | at the party.
MeaningA John laughed while he was at the party. (Literal)
ProsodyB John *LAUGHED AT* | the party.
MeaningB John made fun of the party. (Idiomatic)

2.5 Complementizer vs. Parenthetical
Sentence We only suspected they all knew that a burglary had been committed.
ProsodyA We only *SUSPECTED* | they all knew that a burglary had been committed.
MeaningA The suspicion was that they all knew about the burglary. (Complementizer)
ProsodyB We only suspected | they all *KNEW* | that a burglary had been committed.
MeaningB They all knew that we only suspected that a burglary had been committed. (Parenthetical)

2.6 Modifier Scope
Sentence This collar is dangerous to younger dogs and cats.
ProsodyA This collar is dangerous to *YOUNGER* dogs and cats.
MeaningA Younger refers to both dogs and cats. (Broad Scope)
ProsodyB This collar is dangerous to *YOUNGER* dogs | and *CATS*.
MeaningB Younger refers only to dogs. (Narrow Scope)

Table 6: Examples in the category Prosodic Breaks that were used for in-context learning.

and impoliteness as a weighted sum of the 8 avail-
able emotion classes.

p(polite) =
∑

ewep(e | X)∑
ewe

,

and similarly for impolite. We used the weighted
scheme displayed in Table 8, which was obtained
by prompting GPT-4.

D Data

D.1 Data Statistics

In Table 9 we provide the analytic data statistics
for each category/subcategory, throughout the gen-
eration process stages. The poor quality of the
cTTS, where prosody was not always encoded in

the speech, led us to remove a large percentage of
the examples before translating them. Also many
examples where removed because the oracle trans-
lations for both cases were the same.

D.2 Overly Explanatory Examples

In Table 10 we present two examples where GPT-4
acting as an oracle translator (§2.3) proposed overly
explanatory translations in the emotional prosody
category. Both are inline with the emotion of the
speaker, but they contain new bits of information,
not initially there. These were removed in filtering
due to excessive word-length ratio between the two
cases.

1251



3. Intonation Patterns
Sentence You can solve this problem
ProsodyA You *CAN* solve this problem.
MeaningA Encouraging or asserting the person’s ability to solve this problem.
ProsodyB You _can_ solve this problem?
MeaningB Questioning the person’s ability to solve this problem.

4. Emotional Prosody (Happy/Sad)
Sentence The surgery went as expected.
ProsodyA <happy> The surgery went *AS EXPECTED*!
MeaningA The surgery’s successful outcome aligns with hopes and predictions, leading to joy and relief.
ProsodyB <sad> The surgery went _as expected_ ...
MeaningB The expected outcome was not favorable, leading to a somber tone.

4. Emotion Prosody (Fearful/Angry)
Sentence Can we talk about this later?
ProsodyA <fearful> Can we... talk about this... later?
MeaningA Indicates hesitation or fear about the topic, or the situation in general.
ProsodyB <angry> Can we *TALK* about this later!?
MeaningB Implies urgency or frustration, and a demand for immediate attention.

5. Politeness
Sentence Can you move your car?
ProsodyA <polite> Can you _move_ your car?
MeaningA A polite request to move the car.
ProsodyB <impolite> Can you *MOVE* your *CAR*?!
MeaningB A rude demand to move the car, with an aggressive tone.

Table 7: Examples in the categories Intonation Patterns, Emotional Prosody, Politeness, and that were used for
in-context learning.

Emotion Politeness Impoliteness

Happy 0.3 -0.1
Calm 0.3 -0.2

Neutral 0.2 0.1
Surprised 0.1 0.1

Sad 0.0 0.2
Disgust -0.1 0.3
Angry -0.2 0.4
Fearful -0.1 0.0

Table 8: Weighting scheme for Politeness and Impolite-
ness labels based on the emotion classifier.

E Evaluated Speech Translation Models

Here we describe in more detail the model fam-
ilies and the specific versions used. We evalu-
ated in total 31 S2TT model variants. All models
are available in the Transformers Huggingface Li-
brary (Wolf et al., 2020). For inference we used the
default generation parameters and a beam search
of 5.

1. SEAMLESSM4T (Seamless Communication,
2023a) and its updated version v2 (Seamless

Communication, 2023b) is a recently pro-
posed family of unified encoder-decoder mod-
els that are both multilingual (many-to-many,
100 languages) and multimodal (speech/text
input or output), meaning they can carry out
the tasks of ASR, TTS, MT, S2TT, and also
S2ST. The architecture is composed of a text
encoder, text decoder, speech encoder, and
speech decoder, and different parts are ac-
tive depending on the input/output modali-
ties. The text encoder-decoder is based on
NLLB (NLLB Team, 2022), the speech en-
coder on a newly proposed conformer (Gu-
lati et al., 2020) W2V-BERT (Chung et al.,
2021), and the speech decoder on a unit de-
coder (Inaguma et al., 2023) and a HiFi-GAN
vocoder (Kong et al., 2020). The original
version has a medium (1.2B)16 and a large
(2.3B)17 variant, while the updated v2 has a
large variant (2.3B)18. For cascade S2TT we
first use the model in ASR mode, and then the

16hf.co/facebook/seamless-m4t-medium
17hf.co/facebook/seamless-m4t-large
18hf.co/facebook/seamless-m4t-v2-large
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Initial Generated Synthesised Translated

Category / Subcategory De Es Ja

Contrastive Stress (General) 200 199 183 87 76 97
Relational/Descriptive Adjectives 200 199 147 42 33 51
Contrastive Stress (Noun-Phrase) 200 199 124 37 36 39
New/Given Information 200 197 146 51 65 91
Focus-sensitive Operators 200 181 118 60 42 64

Sentence Stress 1000 975 718 277 252 342

Complementizer/Parenthetical 200 200 171 59 46 73
VP/NP Attachment 200 200 66 23 18 20
Modifier Scope 200 200 200 83 107 81
Restrictive/Nonrestrictive 200 199 177 65 82 40
Direct/Indirect 200 198 154 41 25 70
Phrasal Verbs 42 42 17 5 1 5

Prosodic Breaks 1042 1039 785 276 279 289

Intonation Patterns 300 263 174 173 173 173

Sad-Happy 200 200 1 1 1 1
Neutral-Angry 200 199 185 123 111 119
Neutral-Happy 200 198 161 81 97 81
Disgust-Angry 200 198 18 4 5 3
Disgust-Sad 200 198 - - - -
Neutral-Surprised 200 198 43 33 35 30
Disgust-Neutral 200 197 7 2 5 5
Happy-Angry 200 197 138 50 65 72
Sad-Surprised 200 197 3 2 2 2
Sad-Neutral 200 196 4 3 2 2
Sad-Angry 200 196 5 1 4 4
Disgust-Surprised 200 196 4 2 2 1
Disgust-Happy 200 195 10 5 7 6
Happy-Surprised 200 195 52 34 27 21
Angry-Surprised 200 193 68 32 34 30

Emotional Prosody 3000 2953 699 433 418 377

Politeness 400 375 387 212 193 206

Total 5742 5605 2763 1311 1294 1386

Table 9: Number of Examples by Category and Subcategory

same model is MT mode.

2. XLS-R (Babu et al., 2021) is a multilingual
E2E S2TT model that is based on a multi-
lingual WAV2VEC 2.0 (Baevski et al., 2020)
trained with self-supervised learning on a
large speech corpus on 128 languages. For
S2TT, the encoder is coupled with the de-
coder from MBART50 (Tang et al., 2020), and
finetuned on paired speech-translation data.
We use the folowing versions that are fine-
tuned on English-to-15 on CoVoST2 (Wang

et al., 2021): 300M19, 1B20, and 2B21.

3. ZEROSWOT is a zero-shot E2E S2TT model
that softly connects a WAV2VEC 2.0 encoder
and an NLLB model, by compressing the
speech representation into subword units and
Optimal Transport (Peyré and Cuturi, 2019)
alignment, using only ASR data. The ver-
sions used here are based on NLLB that were
finetuned on the text data of CoVoST2, and
the ZEROSWOT model was trained on Com-

19hf.co/facebook/wav2vec2-xls-r-300m-en-to-15
20hf.co/facebook/wav2vec2-xls-r-1b-en-to-15
21hf.co/facebook/wav2vec2-xls-r-2b-en-to-15
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Example 1: This will only take a minute.

A (neutral) Das dauert nur eine Minute.
(This will only take a minute.)

B (angry)
Das dauert nur eine Minute,
also machen Sie keinen Aufstand.
(This will only take a minute
so don’t make a fuzz about it.)

Example 2: Our case was dismissed.

A (neutral) Unser Fall wurde abgewiesen.
(Our case was dismissed.)

B (sad)
Unser Fall wurde abgewiesen
und das macht mich fassungslos.
(Our case was dismissed
which is just perplexing.)

Table 10: Examples of overly explanatory translations
proposed by GPT-4.

monVoice (Ardila et al., 2020). The MEDIUM

version22 has 1B parameters and the LARGE

version23 has 1.7B parameters.

4. SALMONN (Tang et al., 2024) is a general-
purpose audio LLM that is capable of sev-
eral speech- and audio-related tasks, includ-
ing S2TT. It is build on top of the Vicuna
LLM (Peng et al., 2023), and uses two en-
coders, one from WHISPER and one from
BEATs (Chen et al., 2023). The concate-
nated output representations from the two en-
coders are processed by a Q-former (Li et al.,
2023) and fed to the LLM which is finetuned
with LoRA (Hu et al., 2022). There is a 7B
version24 and a 13B version25. To translate
speech into a target language we use the rec-
ommended prompt from the paper: “Listen to
the speech and translate it into {Target Lan-
guage}”.

5. WHISPER & NLLB is an AED-based cas-
cade. WHISPER (Radford et al., 2022) is an
encoder-decoder ASR and many-to-en S2TT
model. We use three different versions for this
casdade, namely the WHISPER-MEDIUM26,
the WHISPER-LARGE27, and the latest v3

22hf.co/johntsi/ZeroSwot-Medium-cv-covost2-en-to-15
23hf.co/johntsi/ZeroSwot-Large-cv-covost2-en-to-15
24hf.co/tsinghua-ee/SALMONN-7B
25hf.co/tsinghua-ee/SALMONN
26hf.co/openai/whisper-medium
27hf.co/openai/whisper-large

large version28. We primarily present re-
sults with the WHISPER-LARGE-V3, but since
it was also used for filtering we also dis-
cuss v1 in order to avoid biasing our results.
NLLB (NLLB Team, 2022) is a massively
multilingual many-to-many MT model with
access to 200 languages. We used the two
distilled versions from the 54B MoE model,
namely the distilled-600M29 and the distilled-
1.3B30, as well as the 3.3B model31. We eval-
uated all possible combinations, thus having
9 cascade variants with these models.

6. CTC & NLLB is a CTC-based cascade. We
use three different CTC encoders for the cas-
cades. The first one is the Large version
(300M) of WAV2VEC 2.032 which is finetuned
on Libri-Light (Kahn et al., 2020) and Lib-
rispeech (Panayotov et al., 2015), addition-
ally using self-training (Xu et al., 2020). The
second is the Large version (300M) of HU-
BERT33 (Hsu et al., 2021), finetuned on Lib-
rispeech. The third is also based on HUBERT,
more specifically to the XL version34 with 1B
parameters. We use the same three versions
of NLLB, as we did for the AED-based cas-
cade, thus having in total 9 variants of the
CTC-based cascade.

F Supplementary Results

In Figure 5 we present the Spearman rank cor-
relation for the four contrastive metrics and the
standard evaluation metric XCOMET. They were
computed by evaluating all 31 models (§E) for all
3 language pairs, thus having a total of 93 observa-
tions.

In Table 11 we present the global contrastive
quality scores for all 31 S2TT models for the 3
language pairs, which were used for the analysis of
Figure 2 in §5 of the main text.

In Figures 6 and 7 we present the comparisons
of the 4 models for Spanish and Japanese, similar
to what we did in Figure 3 for German in the main
text. In general, the findings and observations here
coincide with those for German.

28hf.co/openai/whisper-large-v3
29hf.co/facebook/nllb-200-distilled-600M
30hf.co/facebook/nllb-200-distilled-1.3B
31hf.co/facebook/nllb-200-3.3B
32hf.co/facebook/wav2vec2-large-960h-lv60-self
33hf.co/facebook/hubert-large-ls960-ft
34hf.co/facebook/hubert-xlarge-ls960-ft
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Model Model Type Model Size (B) Contrastive Quality (Global)

En-De En-Es En-Ja Average

SEAMLESSM4T-V1-MEDIUM E2E 1.2 9.1 10.4 10.1 9.9
SEAMLESSM4T-V1-LARGE E2E 2.3 7.8 8.7 8.2 8.2
SEAMLESSM4T-V2-LARGE E2E 2.3 14.5 11.0 13.9 13.1

XLS-R 300M E2E 0.3 10.2 9.3 9.5 9.6
XLS-R 1B E2E 1.0 9.3 8.3 8.1 8.6
XLS-R 2B E2E 2.0 7.3 8.4 7.0 7.6

ZEROSWOT-MEDIUM E2E 0.9 8.9 7.5 7.5 8.0
ZEROSWOT-LARGE E2E 0.9 8.7 7.7 7.9 8.1

SALMONN-7B E2E 7.0 12.7 9.4 12.9 11.7
SALMONN-13B E2E 13.0 15.9 12.3 16.1 14.8

SEAMLESSM4T-V1-MEDIUM Cascade-AED 2.4 7.3 7.6 6.9 7.2
SEAMLESSM4T-V1-LARGE Cascade-AED 4.6 6.5 5.8 4.3 5.5
SEAMLESSM4T-V2-LARGE Cascade-AED 4.6 10.5 7.7 8.7 8.9

WHISPER-V1-MEDIUM & NLLB-600M Cascade-AED 1.4 5.7 5.0 5.4 5.4
WHISPER-V1-MEDIUM & NLLB-1.3B Cascade-AED 2.1 6.2 5.0 5.8 5.6
WHISPER-V1-MEDIUM & NLLB-3.3B Cascade-AED 4.1 6.6 5.1 5.4 5.7
WHISPER-V1-LARGE & NLLB-600M Cascade-AED 2.2 5.9 4.9 6.1 5.6
WHISPER-V1-LARGE & NLLB-1.3B Cascade-AED 2.9 6.0 4.7 5.8 5.5
WHISPER-V1-LARGE & NLLB-3.3B Cascade-AED 4.9 6.3 4.6 5.6 5.5
WHISPER-V3-LARGE & NLLB-600M Cascade-AED 2.2 5.3 4.6 6.5 5.5
WHISPER-V3-LARGE & NLLB-1.3B Cascade-AED 2.9 5.3 4.7 5.4 5.1
WHISPER-V3-LARGE & NLLB-3.3B Cascade-AED 4.9 5.5 4.8 5.3 5.2

WAV2VEC 2.0 & NLLB-600M Cascade-CTC 0.9 1.4 1.3 2.0 1.5
WAV2VEC 2.0 & NLLB-1.3B Cascade-CTC 1.6 1.7 1.0 1.4 1.3
WAV2VEC 2.0 & NLLB-3.3B Cascade-CTC 3.6 1.6 0.9 1.7 1.4
HUBERT & NLLB-600M Cascade-CTC 0.9 3.2 2.7 2.5 2.8
HUBERT & NLLB-1.3B Cascade-CTC 1.6 2.2 2.4 2.9 2.5
HUBERT & NLLB-3.3B Cascade-CTC 3.6 2.7 2.6 2.9 2.7
HUBERT-XL & NLLB-600M Cascade-CTC 1.6 2.4 2.9 3.0 2.8
HUBERT-XL & NLLB-1.3B Cascade-CTC 2.3 3.5 1.7 2.7 2.6
HUBERT-XL & NLLB-3.3B Cascade-CTC 4.3 2.6 2.4 2.5 2.5

Table 11: Contrastive Quality (Global) scores for English-German, English-Spanish, and English-Japanese, including
their averages.
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Figure 5: Correlation Matrix of the metrics across all
language pairs and models.

1256



Figure 6: Upper: Model performance per category (En-Es). Lower: Model performance comparisons (En-Es), (a):
SALMONN-13B vs. SEAMLESSM4T-V2-LARGE, (b) SEAMLESSM4T-V2-LARGE(E2E) vs. SEAMLESSM4T-V2-
LARGE(cascade), (c) SEAMLESSM4T-V2-LARGE(cascade) vs. WHISPER-V3-LARGE/NLLB-3.3B.

Figure 7: Upper: Model performance per category (En-Ja). Lower: Model performance comparisons (En-Ja), (a):
SALMONN-13B vs. SEAMLESSM4T-V2-LARGE, (b) SEAMLESSM4T-V2-LARGE(E2E) vs. SEAMLESSM4T-V2-
LARGE(cascade), (c) SEAMLESSM4T-V2-LARGE(cascade) vs. WHISPER-V3-LARGE/NLLB-3.3B.
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