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Abstract

Collecting high-quality translations is crucial
for the development and evaluation of machine
translation systems. However, traditional
human-only approaches are costly and slow.
This study presents a comprehensive investi-
gation of 11 approaches for acquiring trans-
lation data, including human-only, machine-
only, and hybrid approaches. Our findings
demonstrate that human-machine collabora-
tion can match or even exceed the quality
of human-only translations, while being more
cost-efficient. Error analysis reveals the com-
plementary strengths between human and ma-
chine contributions, highlighting the effective-
ness of collaborative methods. Cost analysis
further demonstrates the economic benefits of
human-machine collaboration methods, with
some approaches achieving top-tier quality at
around 60% of the cost of traditional meth-
ods. We release a publicly available dataset1

containing nearly 18,000 segments of varying
translation quality with corresponding human
ratings to facilitate future research.

1 Introduction

Collecting high-quality translations efficiently
presents significant challenges. Traditional ap-
proaches rely heavily on different tiers of human
translators, ranging from professional linguists
to junior bilingual speakers (Zouhar and Bojar,
2024). While these approaches can produce high-
quality translations, they are often expensive, time-
consuming, and challenging to scale for large
datasets.

Recent advancements in machine translation
with large language models (OpenAI, 2024; Gem-
ini, 2024) have demonstrated models’ impressive
abilities to generate human-like translations. How-
ever, recent research (Yan et al., 2024) tends to

1The dataset can be found at https://github.com/
google-research/google-research/tree/master/
collaborative-tr-collection.
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Figure 1: Our 11 translation systems, organized by
initial translation type (human or machine) and post-
editing type (none, human, or machine). Detailed sys-
tem descriptions are provided in Section 2.2.

position human translators and machine transla-
tion systems as competitors rather than potential
collaborators, which could result in efficient alter-
natives for addressing the limitations of traditional
translation data collection methods.

In this paper, we aim to fill the gap by com-
prehensively investigating the potential of human-
machine collaboration to efficiently collect high-
quality translation data. We hypothesize that com-
bining the strengths of humans and machines could
lead to higher quality, cost-efficient translation col-
lection methods. To verify the hypothesis, we ex-
plore 11 different methods for acquiring translation
data, including human-only, machine-only, and var-
ious hybrid methods.

Our research seeks to answer the following key
questions:

• Can human-machine collaborative approaches
produce translations of comparable or higher
quality than traditional human-only or
machine-only methods?

• How do different collaborative methods im-
pact translation quality, and where do the im-
provements primarily originate?

• What are the cost implications of these various
approaches, and can human-machine collabo-
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ration offer a more cost-efficient solution for
high-quality translation collection?

Our findings demonstrate that human-machine
collaboration can match or even exceed human-
only translation quality while being more cost-
efficient. We present detailed error analyses to re-
veal the complementary strengths of the collabora-
tive methods and conduct a thorough cost analysis
to illustrate the economic benefits of collaborative
approaches.

To support future research, we also release a
publicly available dataset containing nearly 18,000
segments of varying translation quality with corre-
sponding human ratings.

2 Collecting Translations

Translating text from one language to another can
either be done by bilingual annotators or machine
translation systems. However, both cases are prone
to producing errors in their translations, including
well-trained expert translators (Freitag et al., 2023).
As such, translations can be post-edited, a process
of correcting a translation, either manually or with
a model, that often yields higher-quality transla-
tions.

Both steps of this process — the initial transla-
tion collection and the post-editing — can either
be done with humans or with models, each with
their own advantages and disadvantages in terms
of speed, quality, cost, and scalability. In this work,
we explore how combinations of human and ma-
chines for both steps of this pipeline can combine
to produce high-quality translations.

2.1 Data Sources

We use the test sets provided by the WMT23
General MT Shared Task (Kocmi et al., 2023)
and collect new translations using several meth-
ods. These data sets comprise 460 English-
German (EnDe) paragraph-level segments and
1175 Chinese-English (ZhEn) sentence-level seg-
ments with human rating annotations.

2.2 Data Collection Systems

Figure 1 illustrates the combinations from the two
dimensions: initial translation and post-editing
methods from either human annotators or machines.
Machines may be either large language models
(LLMs) or machine translation (MT) systems. This
results in the 11 systems in the figure, named ac-

cording to the source of the initial translation with
a suffix representing the post-editing approach.

In this work, we use several different sources for
the initial translation:

• OrigHumanRef and HumanRef are human
translations collected by professional transla-
tors. We refer to the original reference pro-
vided by the WMT23 General MT Shared
Task (Kocmi et al., 2023) as ORIGHUMAN-
REF. We collected a new from-scratch profes-
sional translation HUMANREF following the
standard annotation steps.

• BestWMT is the top-ranked MT system
picked from the official results of WMT23
General Translation Task: GPT4-5shot (Ope-
nAI, 2024) for EnDe and Lan-BridgeMT (Wu
and Hu, 2023) for ZhEn, representing the
state-of-the-art MT capability we can access.

• MidWMT is a middle-ranked MT system
from the official results of WMT23 General
Translation Task: ONLINE-G for both EnDe
and ZhEn, representing the conventional MT
quality we can use.

We additionally explore the following different
methods for post-editing translations:

• HumanPE refers to the post-edit service
provided by a separate batch of linguists.
HumanPEx2 means the translation going
through two independent rounds of post-edits
from professional translators. There is no
translator overlap between the two batches.

• LLMRefine (Xu et al., 2024) is one of the
state-of-the-art post-edit approaches leverag-
ing error feedback for pin-pointing correc-
tions. Here we reproduced its error-feedback
process and leverage Gemini-1.0 Ultra (Gem-
ini, 2024) with the reported prompts to gener-
ate post-edited text.

2.3 Evaluation
In this paper, we use Multidimensional Quality
Metrics (MQM; Lommel et al., 2014; Freitag et al.,
2021) to evaluate translation quality. MQM is the
state-of-the-art human evaluation framework for
MT. In MQM, expert raters identify error spans
within translations, which are automatically con-
verted to numeric scores. Lower scores indicate
fewer errors and thus higher quality.
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Figure 2: Cross-BLEU scores for different EnDe trans-
lation collection approaches.

3 Data Quality Analysis

In this section, we seek to understand how our
collected translations differ from each other (§3.1),
how those differences correspond to changes in
quality (§3.2), and what those results indicate about
the value of human-machine collaboration in terms
of quality (§3.3).

3.1 Lexical Overlap and Similarity

Figure 2 presents a cross-BLEU (Freitag et al.,
2022) similarity matrix for English-German trans-
lations, which measures lexical similarity between
pairs of translations. See Figure 8 in Appendix A.1
for Chinese-English results. Higher scores indicate
greater similarity.

One prominent pattern in these results is that
systems based on the same initial translation re-
tain high similarity even after post-editing. This
indicates that post-editing still preserves some
characteristics of the original translation. Also,
translation systems based on MT (BESTWMT,
MIDWMT, and their post-edited versions) are
more similar to each other than to translations
based on an initial human translation.

Table 1 presents a subset of the information in
Figures 2 and 8, to emphasize the interaction be-
tween using human- vs. model-based approaches
for the initial translation and post-edit. This illus-
trates the trend that humans and machines tend
to make more changes to translations from the
other group.

Source + HUMANPE + LLMREFINE

EN-DE

HUMANREF 95 72
BESTWMT 81 83
MIDWMT 70 77

ZH-EN

HUMANREF 88 79
BESTWMT 84 89
MIDWMT 68 71

Table 1: Cross-BLEU score comparison between differ-
ent post-edited versions of the same translation. Lower
numbers indicate less similarity and more changes
from the initial translation.

Reference MQM per segment

HUMANREF+LLMREFINE 2.76
ORIGHUMANREF 2.80
BESTWMT+HUMANPE 2.98

BESTWMT 3.30
BESTWMT+LLMREFINE 3.36
HUMANREF+HUMANPE 3.53
HUMANREF+HUMANPEX2 3.70

HUMANREF 3.79
MIDWMT+HUMANPE 3.83
MIDWMT+LLMREFINE 4.02

MIDWMT 6.45

Table 2: English-German MQM human evaluation re-
sults. Lower scores represent higher translation quality.

3.2 MQM Quality Evaluation

Tables 2 and 3 present the MQM human evalu-
ation results. The solid lines denote significance
clusters, where every system in a cluster is statisti-
cally significantly better than every system below
that cluster, based on random permutation tests
with 10,000 trials, where a p-value of less than
α = 0.05 is considered significant.

The results reveal that HumanRef+LLMRefine
and BestWMT+HumanPE are the overall win-
ners, with each appearing in the best significance
cluster in both language pairs.

Tables 2 and 3 show that post-edits, both HU-
MANPE and LLMREFINE, demonstrate a posi-
tive impact on initial translations. These meth-
ods consistently either elevate the translation qual-
ity to a higher level of significance or preserve the
existing quality.
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Reference MQM per segment

HUMANREF+LLMREFINE 1.82
HUMANREF+HUMANPEX2 1.82
BESTWMT+HUMANPE 1.87
HUMANREF+HUMANPE 1.91
BESTWMT+LLMREFINE 1.94

HUMANREF 2.05
BESTWMT 2.22
MIDWMT+HUMANPE 2.23

MIDWMT+LLMREFINE 2.45

MIDWMT 3.98

ORIGHUMANREF 5.63

Table 3: Chinese-English MQM human evaluation re-
sults. Lower scores represent higher translation quality.

3.3 Human-Machine Collaboration

Table 4 and Figure 3 present a detailed analysis that
highlights the quality benefits of human-machine
collaboration.

Figure 3 shows the gains in quality that can be
provided by our post-edit approaches. The gains
are more pronounced when starting with a lower-
quality translation (MIDMT), but even high-quality
translations (HUMANREF, BESTWMT) can be im-
proved. The quality differences between initial
translations are greatly reduced after post-editing,
but not eliminated.

Table 4 provides a finer-grain analysis of the ef-
fect of each post-edit approach on different initial
translations. In both language pairs, an LLM-based
method provides the most benefit when starting
with human translation, while human post-editing
provides the most benefit for machine translation.
Recall that in Table 1 we showed that model-based
methods and humans make more changes to trans-
lations from the other group; here we see that
these changes are also net-positive. This indicates
that human-machine collaboration is an effec-
tive way to achieve high-quality translations.

4 Error Analysis

Here we present more detailed error analysis of
both initial translation and post-edit stages to inves-
tigate where the quality improvements originate.
Using English-German as an example, we first
present analysis of the initial translations in Sec-
tion 4.1 to understand the initial error distributions.
Then, we further investigate the error-correction
dynamics during post-editing in Section 4.2 to un-
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Figure 3: MQM Scores for different translation sys-
tems across two language pairs: Chinese-English and
English-German. Bars represents the average MQM
scores for each translation system. The systems are
grouped and colored by initial translation and further
categorized by post-editing method with different fill
patterns. Lower MQM scores indicate better quality.

derstand why human-machine collaboration stands
out from other approaches.

4.1 Error distribution from Initial
Translation

We present the error type and severity distribution
of the English-German initial translations in Ta-
ble 5 and that of Chinese-English in Appendix A.2.
It shows that accuracy-related errors are the pri-
mary source of major errors and that the distribu-
tion of minor errors is more evenly spread across
different categories. Importantly, these error distri-
butions are similar for both human and machine-
based initial translations. This consistency pro-
vides a solid foundation for comparing different
post-editing techniques in our downstream analy-
sis.

4.2 Error Correction from Post-Editing

To understand the error-correction dynamics of dif-
ferent post-editing methods and find the origin of
the improvements of human-machine collaboration,
we explored three key questions:

• Do different post-editing methods agree on
which segments to modify?

• How do different post-editing methods affect
the total number of major and minor errors?

• How do different post-editing methods affect
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Source Init. Translation + HumanPE + HumanPEx2 + LLMRefine
Score ↓ ∆ Score ↓ ∆ Score ↓ ∆

EN-DE

HUMANREF 3.79 3.53 -0.26 3.70 -0.09 2.76 -1.03
BESTWMT 3.30 2.98 -0.32 - - 3.36 +0.06
MIDWMT 6.45 3.83 -2.62 - - 4.02 -2.43

ZH-EN

HUMANREF 2.05 1.91 -0.14 1.82 -0.23 1.82 -0.23
BESTWMT 2.22 1.87 -0.35 - - 1.94 -0.28
MIDWMT 3.98 2.23 -1.75 - - 2.45 -1.53

Table 4: MQM human evaluation comparison of each post-edit approach on different initial translations. Lower
MQM scores indicates better quality.

Error Type OrigHumanRef HumanRef BestWMT MidWMT

No-error 200 175 144 116

Major 186 263 211 470

Fluency 27 (15%) 29 (11%) 25 (12%) 88 (19%)
Accuracy 114 (61%) 149 (57%) 108 (51%) 275 (59%)

Style 22 (12%) 54 (21%) 45 (21%) 60 (13%)

Minor 659 745 891 1084

Fluency 257 (39%) 242 (32%) 439 (49%) 538 (50%)
Accuracy 181 (27%) 211 (28%) 186 (21%) 226 (21%)

Style 141 (21%) 190 (26%) 178 (20%) 213 (20%)

Table 5: Error type and severity distributions of
English-German MQM human evaluation results.

the total number of high- and low-quality seg-
ments?

We first examine how often human post-editors
(HUMANPE) and machine post-editing methods
(LLMREFINE) agree on which segments need cor-
rection. Figure 4 shows that both methods iden-
tify more segments for editing in lower-quality
initial translations as evidenced by the shrinking
"No Change" (yellow) section. Notably, agreement
between HUMANPE and LLMREFINE increased
from 23.9% for high-quality HUMANREF transla-
tions to 67.4% for lower-quality MidWMT trans-
lations as observed by the expanded "HumanPE &
LLMRefine" (purple) section. This suggests more
consensus on obvious errors in lower-quality texts
while greater divergence for higher-quality transla-
tions in editing approaches. A detailed numerical
breakdown is shown in Table 8 in Appendix A.3.

Another interesting observation from Figure 4 is
that HUMANPE (purple + red) identifies a larger
proportion of segments needing correction in BEST-
WMT (48.9% + 19.3% = 68.2%) compared to
HUMANREF (23.9% + 11.5% = 35.4%), despite

2Tabular statistics are provided in Tables 8 and 9 in Ap-
pendix A.3.

23.9%

27.2%
37.4%

11.5%

Total
460

HumanRef

48.9%

12.2%

19.6%

19.3%

Total
460

BestWMT

67.4% 3.0%
10.0%

19.6%

Total
460

MidWMT

HumanPE & LLMRefine
LLMRefine Only

No Change
HumanPE only

Figure 4: Agreement between HumanPE and LLM-
Refine in identifying segments requiring post-edit on
English-German data. Each pie chart2represents a dif-
ferent initial translation source.

the superior quality of BESTWMT over HUMAN-
REF as shown in Table 2. This suggests that hu-
man post-editors might overlook certain errors in
human translations due to their familiar patterns.
Conversely, the unfamiliar patterns in machine-
generated text may make errors more salient to
human editors. This interpretation is consistent
with the pattern depicted in Figure 2, where hu-
man post-editors make fewer changes to human
translations than to machine translations. This ob-
servation provides one plausible explanation for
the necessity of human-machine collaboration in
achieving high-quality translations. Detailed statis-
tics for English-German are shown in Table 8 and
similar trends are also observed in Chinese-English
in Table 9 in Appendix A.3.

We wish to investigate how many errors are cor-
rected during post-editing, but because it is difficult
to automatically determine whether an individual
error was corrected, we instead examine how the
total number of errors changes after post-editing,
also considering severity. Figure 5 shows that both
human and machine post-editing reduce overall
error counts across different initial translation qual-
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Figure 5: Error changes percentages by different post-
editing approaches on English-German data. The per-
centages present the changes in error counts for each
post-editing method compared to its initial translation.
A negative indicates a decrease in errors, while positive
value indicates an increase in the error type.

ities. LLMREFINE outperforms HUMANPE on
HUMANREF initial translation in reducing major
errors (-27.8% vs. -2.7%), while HUMANPE is su-
perior for BESTWMT, decreasing major-error seg-
ments compared to the increase for LLMREFINE

(-4.3% vs. +8.5%). On MIDWMT, both methods
show substantial improvements, with HUMANPE
moderately ahead of LLMREFINE (-41.3% vs. -
37.0% decrease in major-error segments). These
findings highlight the complementary strengths of
human and machine post-editing methods, indi-
cating that a hybrid method is likely the most ef-
fective strategy for reducing errors, regardless of
the initial translation’s origin. Similar trends are
also observed in Chinese-English in Figure 9 in
Appendix A.3.

To understand the error correction dynamics
for each segment, we analyzed how MQM scores
change before and after post-editing. Ideally, post-
editing would fix existing errors while minimizing
the introduction of new ones. However, as Fig-
ure 6 illustrates, post-editing is not guaranteed to
improve every segment: while some segments are
improved, others are worsened.

Figure 6 compares HUMANPE and LLM-
REFINE on HUMANREF initial translations for
English-German data. Both methods reduce
the number of high-scoring (low-quality) seg-
ments (MQM >= 5). Notably, LLMREFINE out-
performs HUMANPE by showing fewer quality-
degrading corrections and more quality-improving
ones. LLMREFINE minimizes low-to-high-scoring

(a) From HUMANREF to HUMANREF+HUMANPE

(b) From HUMANREF to HUMANREF+LLMREFINE

Figure 6: Segment-level quality shift through HU-
MANPE and LLMREFINE from English-German HU-
MANREF. Each segment is categorized into one of
three groups based on its MQM score: 1) high-scoring
segments with MQM >= 5; 2) low-scoring segments
with 0 < MQM < 5; 3) error-free segments with
MQM=0. Higher MQM scores indicate more nu-
merous/severe errors and accordingly lower translation
quality.

transitions with a narrower flow from low-scoring
segments (0 < MQM < 5) to high-scoring seg-
ments compared to HUMANPE. Moreover, LLM-
REFINE achieves a significant reduction in high-
scoring segments by 6.5% (from 29.1% to 22.6%)
compared to HUMANPE’s 1.3% (from 29.1% to
27.8%), suggesting that it is more effective at
achieving post-editing gains while preserving origi-
nally good translations. A similar trend is observed
for Chinese-English with HUMANREF initial trans-
lation in Figure 10 in Appendix A.3.

To demonstrate that the quality improvement
is not solely due to the capabilities of LLMRE-
FINE, we conducted further experiments as shown
in Figure 7. This figure compares HUMANPE and
LLMREFINE with BESTWMT initial translations.
Interestingly, the results are reversed: HUMANPE
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(a) From BESTWMT to BESTWMT+HUMANPE

(b) From BESTWMT to BESTWMT+LLMREFINE

Figure 7: Segment-level quality shift through HU-
MANPE and LLMREFINE from English-German
BESTWMT.

outperforms LLMREFINE in this scenario, show-
ing fewer quality-degrading corrections and more
quality-improving ones. HUMANPE demonstrates
a significantly wider flow from high-scoring seg-
ments to low-scoring ones. It achieves a notable
reduction in high-scoring segments by 3.2% (from
26.5% to 23.3%), while LLMREFINE sees an in-
crease of 0.7% (from 26.5% to 27.2%). Further-
more, HUMANPE significantly increases the No-
Error segments (MQM=0) by 12.2% (from 33.5%
to 45.7%) compared to LLMREFINE’s 2.2% in-
crease.

The distinct performance differences of LLM-
REFINE and HUMANPE in these two sets of
experiments highlight that the quality improve-
ment stems primarily from the complementary
strengths of human and machine collaboration,
rather than the superior capability of either LLM-
REFINE or HUMANPE alone. This underscores the
importance of leveraging both human and machine
strengths in achieving optimal translation quality.

Systems Quality Rank Costs
EnDe ZhEn

HUMANREF 3 2 1X
HUMANREF+HUMANPE 2 1 1.6X
HUMANREF+HUMANPEX2 2 1 2.2X
HUMANREF+LLMREFINE 1 1 1X
BESTWMT+HUMANPE 1 1 0.6X

Table 6: Quality rank and costs comparison of different
data collection systems. 1st rank indicates the transla-
tion quality belongs to the highest quality significance
cluster in Table 2 and 3.

5 Costs Analysis

So far we have focused on comparing quality
between various translation data collection ap-
proaches. However, practical considerations make
it important to consider the trade-off between qual-
ity and costs. Table 6 analyzes relative human an-
notation costs between various approaches, along
with the rank of the significance cluster that each
method appeared in. The exact costs for the human
annotation conducted in this study are confiden-
tial (although all annotators were paid fair market
wages), so we instead use relative costs, based on
the industry standard that post-editing text of a
given length takes less time (and accordingly costs
less) than producing a translation of that length. We
specifically assume that human post-editing costs
around 60% of what human translation does. Ac-
cording to existing literature (Plitt and Masselot,
2010; Zouhar et al., 2021; Green et al., 2013) and
internal statistics, we believe it’s a fair assumption,
although the exact costs can vary upon different
vendors, languages, task size, etc.

With this framework, the best combination of
quality and cost appears to be human post-editing
of high-quality MT (BESTWMT+HUMANPE), at-
taining quality in the top significance cluster in
both language pairs with only 60% of the human
annotation cost of collecting an initial human trans-
lation. Meanwhile, we see that one or two rounds
of human post-editing of an initial human trans-
lation increases costs without a meaningful gain
in quality, while just applying an LLM post-editor
(HUMANREF+LLMREFINE) brings quality to the
top significant cluster with no additional human
annotation cost, making it a viable option when
human translations are already collected. It’s worth
noting that LLM inference costs are negligible (on
the order of dollars per million tokens) compared
to human annotation costs, further enhancing the
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cost-effectiveness of LLM-based approaches. This
indicates that human-machine collaboration can
be a faster, more cost-efficient alternative to tra-
ditional collection of translations from humans, op-
timizing both quality and resource allocation by
leveraging the strengths of both humans and ma-
chines.

6 Related Work

There have been a few studies investigating meth-
ods of acquiring high-quality translations. Re-
cently, Zouhar et al. (2024) proposed collecting
high-quality translations by building consensus
between multiple translators. Zouhar and Bojar
(2024) proposed collecting multiple translations
from different tiers of human translators with care-
ful budget calculations to optimize cost-efficiency.

Human Post-Edits Computer-aided translation
tools are now widely used by professional transla-
tors for interactive translation and post-editing (Al-
abau et al., 2014; Federico et al., 2014; Green et al.,
2014; Denkowski, 2015; Sin-wai, 2014; Kenny,
2012). Carl et al. (2011) have shown that human
translators work faster and make fewer mistakes
when editing machine translations than when trans-
lating from scratch. Toral et al. (2018) supports this,
demonstrating even greater improvements with neu-
ral machine translation compared to phrase-based
systems. Zouhar et al. (2021) investigates the rela-
tionship between machine translation quality and
post-editing efforts and found no straightfoward re-
lationship. On the other hand, Popovic et al. (2016)
suggested that post-edits should be used carefully
for MT evaluation due to the bias of each post-
edit towards its MT system. Further, Toral (2019)
showed that human post-edits are simpler and more
normalised in language than human translations
from scratch.

Automatic Refinement Lin et al. (2022) showed
how the errors that humans make differ from those
made by MT systems. They constructed a Trans-
lation Error Correction (TEC) corpus with profes-
sional translators and showed that models trained
on it outperform Automatic Post-Editing (APE)
models (Knight and Chander, 1994) that are trained
to correct MT output. Since the emergence of
LLMs, new refinement approaches based on de-
tailed MQM annotations have appeared (Xu et al.,
2023; Fernandes et al., 2023). Xu et al. (2024)
showed that these refinement method can be used

to improve the quality of human translations.
Meanwhile, machines have been extensively

evaluated and utilized as an alternative to human
annotators for data collection (Zouhar et al., 2021;
Yan et al., 2024).

In contrast to the above methods, we investigate
the interaction between humans and machines in
the initial translation and post-editing stages, in-
cluding detailed analysis of the resulting changes
in quality while also considering cost-efficiency.

7 Conclusion

We investigate various approaches for gathering
translation data, including human-only, machine-
only, and hybrid approaches. Our results demon-
strate that human-machine collaboration can consis-
tently generate high-quality translations at a lower
cost than human-only methods. Through detailed
error analysis, we uncovered the nuances of er-
ror correction dynamics and highlighted the ad-
vantages of human-machine collaborative meth-
ods. Our cost analysis also demonstrates the cost-
efficiency of human-machine collaboration meth-
ods. Finally, we release to the public a dataset
of roughly 18,000 translation segments of vary-
ing quality from different collection methods along
with human ratings, to facilitate further research in
this area.
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Limitations

This study focuses on two language pairs, English-
German and Chinese-English. They are chosen
due to the extensive study in the WMT23 metrics
shared task (Freitag et al., 2023) and the availability
of data from various translation systems from the
WMT23 general shared task (Kocmi et al., 2023).
While our analysis provides support for the find-
ings presented in this work and we offer a plausible
explanation for the observed results, it is impor-
tant to acknowledge certain variables are not ac-
counted for in this work, including using translators
or post-editors with varying quality levels, different
systems for translation and post-editing, utilizing
sentence or paragraph datasets from other domains,
and higher or lower resource language pairs beyond
the two investigated here. Therefore, we cannot
guarantee the observed trends will generalize to
different datasets.

We want to especially highlight the need for fur-
ther exploration of the quality variance observed
among human translators, such as ORIGHUMAN-
REF and HUMANREF in the English-German trans-
lation task. The current study’s limited annota-
tion budget and timeline restricted the depth of
this investigation. Future experiments aimed at ex-
amining the impact of post-editing on annotator
agreement would be particularly interesting and
valuable.

Ethical Statement

The source data used for translation and post-edits
is accessible to the public. We’re certain that the
data annotated by human labors is free from risk
or toxic content. We used an internal, proprietary
tool to collect human translation, post-edits, and
evaluation data. The annotators were compensated
fairly and were not required to disclose any per-
sonal details during the annotation process. All the
test data used in this study are publicly available
and annotators were allowed to label sensitive in-
formation if necessary. The annotators are fully
informed that the data they collected will be used
for research purposes.
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A Appendix

A.1 Cross-BLUE scores

Figure 8 presents the cross-BLEU similarity matrix
for Chinese-English translation systems.

A.2 Error Distribution of Initial Translation

Table 7 presents the error type and severity distribu-
tions of Chinese-English MQM human evaluation
results.
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Figure 8: Cross-BLEU scores for different Chinese-
English translation collection approaches

Error Type OrigHumanRef HumanRef BestWMT MidWMT

No-error 225 453 490 304

Major

Total 955 284 260 648

Fluency 18 (2%) 15 (5%) 5 (2%) 23 (4%)
Accuracy 851 (89%) 229 (81%) 221 (85%) 568 (88%)

Style 31 (3%) 12 (4%) 5 (2%) 18 (3%)

Minor

Total 1902 1303 1238 1704

Fluency 625 (33%) 431 (33%) 364 (29%) 522 (31%)
Accuracy 599 (31%) 412 (32%) 388 (31%) 447 (26%)

Style 629 (33%) 402 (31%) 436 (35%) 677 (40%)

Table 7: Error type and severity distributions of
Chinese-English MQM human evaluation results.

A.3 Error Correction from Post-Editing
Figures 9, 10, and 11 present Chinese-English re-
sults comparable to the English-German results
presented in Section 4.2. Table 8 presents the same
data as in Figure 4 for English-German, and Table 9
presents the same for Chinese-English.

-60% -50% -40% -30% -20% -10% 0% 10%
Error Change Percentage

HumanRef
+HumanPE

HumanRef
+HumanPEx2

HumanRef
+LLMRefine

BestWMT
+HumanPE

BestWMT
+LLMRefine

MidWMT
+HumanPE

MidWMT
+LLMRefine

 -4.6%
 -7.8%

 -8.1%
 -11.7%

 -10.9%
 -8.7%

 -7.5%
 -22.2%

 -15.7%
 -9.4%

 -51.1%
 -21.1%

 -47.1%
 -15.8%

Major Errors
Minor Errors

Figure 9: Error changes percentages by different post-
editing approaches on Chinese-English data. The per-
centages present the changes in error counts for each
post-editing method compared to its initial translation.
A negative indicates a decrease in errors, while positive
value indicates an increase in the error type.

(a) From HUMANREF to HUMANREF+HUMANPE

(b) From HUMANREF to HUMANREF+LLMREFINE

Figure 10: Segment-level quality shift through HU-
MANPE and LLMREFINE from Chinese-English HU-
MANREF.
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Initial
Translation Total Seg HumanPE LLMRefine

HumanPE
&

LLMRefine

Human
Only

LLMRefine
Only

HumanRef 460 163 (35.4%) 235 (51.1%) 110 (23.9%) 53 (11.5%) 125 (27.2%)
BestWMT 460 314(68.3%) 281 (61.1%) 225 (48.9%) 89 (19.3%) 56 (12.2%)
MidWMT 460 400 (87.0%) 324 (70.4%) 310 (67.4%) 90 (19.6%) 14 (3%)

Table 8: Numerical breakdown of the agreement between HUMANPE and LLMREFINE in identifying segments
requiring post-editing in English-German

Initial
Translation Total Seg HumanPE LLMRefine

HumanPE
&

LLMRefine

Human
Only

LLMRefine
Only

HumanRef 1175 558 (47.5%) 225 (19.1%) 161 (13.7%) 397 (33.8%) 64 (5.4%)
BestWMT 1175 830 (70.6%) 133 (11.3%) 123 (10.5%) 707 (60.2%) 10 (0.9%)
MidWMT 1175 1006 (85.6%) 408 (34.7%) 399 (34.0%) 607 (51.7%) 9 (0.8%)

Table 9: Numerical breakdown of the agreement between HumanPE and LLMRefine in identifying segments
requiring post-editing in Chinese-English

(a) From BESTWMT to BESTWMT+HUMANPE

(b) From BESTWMT to BESTWMT+LLMREFINE

Figure 11: Segment-level quality shift through HU-
MANPE and LLMREFINE from Chinese-English
BESTWMT.
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