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Abstract

This paper presents the SETU-ADAPT submis-
sions to the WMT24 Chat Translation Task.
Large language models (LLM) currently pro-
vides the state-of-the-art solutions in many
natural language processing (NLP) problems
including machine translation (MT). For the
WMT24 Chat Translation Task we leveraged
LLMs for their MT capabilities. In order to
adapt the LLMs for a specific domain of in-
terest, we explored different fine-tuning and
prompting strategies. We also employed effi-
cient data retrieval methods to curate the data
used for fine-tuning. We carried out exper-
iments for two language pairs: German-to-
English and French-to-English. Our MT mod-
els were evaluated using three metrics: BLEU,
chrF and COMET. In this paper we describes
our experiments including training setups, re-
sults and findings.

1 Introduction

There have been drastic transformation in many ar-
eas of natural language processing (NLP) in recent
times mainly due to the emergence of powerful
LLMs. The LLM-based solutions are becoming
more powerful and accurate than ever before. No-
tably, we have seen the unprecedented successes
in many MT tasks in recent years, thanks to mul-
tilingual LLMs. In sum, the LLMs are the current
state-of-the-art in MT research and development.

In our submission for the French-to-English and
German-to-English Chat Translation Tasks, we
built our MT systems using multilingual LLMs
such as NLLB-200-600M (Team et al., 2022),1

1NLLB-200: https://ai.meta.com/research/
no-language-left-behind/

Llama-3-8B (Dubey et al., 2024), 2 and mBART-
50 (Tang et al., 2021).3 We fine-tuned these mod-
els using both domain-specific and synthetic back-
translated data.

Due to the lack of high-quality domain parallel
data, we used a data generation approach. For this,
we utilised a freely available monolingual data. We
retrieved domain-specific monolingual sentences of
target language and translated them back to source
language for creating new synthetic data (Sennrich
et al., 2016). This synthetic data was then com-
bined with the original data for fine-tuning the
LLMs. This approach ensured that our MT mod-
els are better adapted to the domain, thereby im-
proving the quality of translations. We retrieved
domain-specific monolingual German sentences
from OPUS ELRC-4992 Customer Support MT 4

for creating our synthetic data. We also explored
the idea of in-context learning by fine-tuning LLMs
with a few-shot approach. These techniques helped
our MT systems better adapt in translating agent in-
put from the source language to the target language
and customer response from the target language to
the source.

The rest of the paper is organised as follows. Sec-
tion 2 describes our related work. Our datasets are
explained in Section 3 and Section 4 tells about the
models and their fine-tuning. Section 5 discusses
the experimental setup describing the parameters
tuned in our systems. In Section 6, we discuss our
results. Finally, Section 7 presents the conclusion
of our work.

2Llama-3: https://github.com/unslothai/unsloth/
3mBART-50: https://huggingface.co/facebook/

mbart-large-50
4OPUS: https://opus.nlpl.eu/

ELRC-4992-Customer_Support_MT/de&en/v1/
ELRC-4992-Customer_Support_MT
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2 Related Works

In this section we discuss the papers that are re-
lated to our work. Alves et al. (2022) conducted ex-
periments on fine-tuning mBART-50 using domain-
specific data retrieved through semantic search. For
this, they used LaBSE (Language-Agnostic BERT
Sentence Embedding) (Feng et al., 2020). They
demonstrated how this approach leads them to large
gains across all language pairs under evaluation.
They also performed experiments using this data to
further adapt the model using KNN-MT (Khandel-
wal et al., 2021). Note that this approach involves a
nearest neighbor retrieval strategy, through which
a set of relevant examples are provided at decoding
time. They demonstrate how combining these ap-
proach leads to improved translation quality, over
regular fine-tuning.

Liang et al. (2022a) used pre-trained LLMs and
fine-tuned them to the domain of interest. For this,
they first trained their models on general domain
data and then fine-tuned them with chat transla-
tion training data. They used strategies such as
including the multi-encoder framework, speaker
tag prompt-based fine-tuning and boosted Self-
COMET-based (Rei et al., 2020a) ensemble models
to incorporate the potential context. They found
their strategies helpful in improving the quality of
translations produced by their MT models.

Yang et al. (2022) participated in the English-to-
German task of the WMT22 Chat Translation Task.
For this, they utilised the models previously sub-
mitted to the WMT215 news task (Wei et al., 2021)
as their MT baseline systems. These baseline mod-
els are built upon a deep Transformer architecture
(Vaswani et al., 2017). They used widely adopted
optimisation strategies to improve model perfor-
mance, including domain transfer, data selection,
back-translation, self-training, noisy self-training,
fine-tuning, and model averaging. Their results
showed the effectiveness of their approached in
improving the quality of translations.

Zhou et al. (2022) presented a multi-task multi-
stage transitional (MMT) training framework,
where they trained their model using the bilingual
chat translation dataset and additional monolin-
gual dialogues. To incorporate dialogue coherence
and speaker characteristics in their model, they
designed two auxiliary tasks: utterance discrimi-
nation and speaker discrimination. Their training
had three stages: sentence-level pre-training on

5https://www.statmt.org/wmt21/index.html

the large-scale parallel corpus, intermediate train-
ing with auxiliary tasks using additional monolin-
gual dialogues and context-aware fine-tuning with
a gradual transition. They found that the second
stage served as a medium to reduce the training dis-
crepancy between the pre-training and fine-tuning
stages. They also trained their model using a grad-
ual transition strategy, i.e. gradually transition-
ing from monolingual to bilingual dialogues, to
make their stage transition smoother. Their results
demonstrated the effectiveness of their framework,
giving them better translations.

Liang et al. (2022b) contributed to the two
large-scale in-domain paired bilingual dialogue cor-
pora (28M for English-to-Chinese and English-to-
German) through their framework. Their frame-
work consisted of scheduled multi-task learning
with three training stages, in which a gradient-
based scheduling strategy was designed to take
advantage of the auxiliary tasks for their model
for higher translation quality. They conducted ex-
tensive experiments on four chat translation tasks,
and their model achieved new state-of-the-art per-
formance and outperformed the existing chat MT
models by a significant margin.

3 Data Statistics

For our experiments we used the data provided
by the WMT-24 Chat Translation Task6 organisers.
The dataset consists of authentic bilingual customer
support conversations. This includes parallel data
of interactions between an agent and a customer
within the customer support domain. We detail the
data description in Table 1. Note that we removed
duplicates from the training data.

4 The LLMs

This section details the configurations of the LLMs
that were used for our experiments.

4.1 mBART

mBART (Liu et al., 2020) is a pre-trained encoder-
decoder Transformer model that was first trained
on an auto-denoising task with monolingual data
of twenty five languages. For adapting the mBART
to the MT task, Tang et al. (2021) performed
multilingual fine-tuning using data from fifty
supported languages. For our experiments we used
facebook/mbart-large-50-many-to-many-mmt

6https://www2.statmt.org/wmt24/chat-task.html
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Dataset EN–to–DE EN–to–FR

WMT-24

Train 10,556 7,856
Validation 2,569 3,007
Blind Test 2,041 2,091
+ Back-translation 1,317 -

WMT-22

Train 2,110 2,754
Validation - -

WMT-20

Train 10,248 -
Validation 1,619 -

Table 1: Overview of datasets.

checkpoint. We used the following hyperpa-
rameters setup for our experiments: batch
size: 4, number of training epochs: 5,
predict_with_generate: True, evaluation
strategy: epoch, logging steps: 2,000,
and checkpoint save steps: 500. The
remaining parameters were set to default values.

4.2 NLLB
NLLB is a cutting-edge multilingual transla-
tion model developed to support many lan-
guages, mainly low-resource languages. Ini-
tially, the model was trained using diverse, mul-
tilingual data that includes various underrep-
resented languages. This comprehensive pre-
training allows NLLB to effectively handle trans-
lation tasks across many languages that typi-
cally lack sufficient data. For our experiments
we used facebook/nllb-200-distilled-600M
checkpoint for building our MT systems. Our
training configuration is as follows: batch size:
4, 8; max sequence length: 128
tokens; training steps: 10,000, 20,000,
40,000; learning rate: 0.0001; optimiser:
Adafactor; weight decay and gradient
clipping applied; and model saved every
1000 steps.

4.3 Llama
Llama is an auto-regressive language model that
pretrained and fine-tuned in different sizes of data.
We used unsloth/llama-3-8b-bnb-4bit check-
point for building our MT systems. Our training pa-
rameters we set are as follows: max seq length:

2048 tokens, batch size: 2 per device,
gradient accumulation steps: 4, learning
rate: 2e-4, mixed precision training
enabled: (fp16 or bf16), learning rate
scheduler: linear with 5-step warmup,
maximum training steps: 500, optimiser:
adamw-8bit, logging steps: 1, seed: 3407.

5 Methodology

In this section, we discuss our methodologies.

5.1 mBART50

We used mBART for building three different MT
systems for German-to-English. More specifically,
mBART was fine-tuned on three distinct datasets:
WMT-20,7 WMT-22,8 and WMT-249. For French-
to-English we used two datasets from WMT: WMT-
22 and WMT-24. we detailed the datasets and
hyperparameters setups in Section 3 and 4, respec-
tively.

We performed data preprocessing the original
data such as normalisation by removing special
characters, removing duplicates and performing
lowercase conversions. The source and target sen-
tences were then tokenized using a predefined tok-
enizer.

In order to handle data during train-
ing and evaluation, a collator named as
DataCollatorForSeq2Seq10 is instantiated
with the tokenizer and pretrained model checkpoint
from Transformers library. This collator is de-
signed to dynamically pad inputs to the maximum
length within a batch, ensuring efficient processing.
The Seq2SeqTrainer is then instantiated with the
pretrained model checkpoint, training arguments,
tokenized datasets, evaluation function, data colla-
tor, and tokenizer. This setup ensures a structured
and efficient fine-tuning process, evaluating the
model’s performance at each epoch.

Fine-tuning is performed using the
Seq2SeqTrainer class from the Transform-
ers library. The training arguments are specified
through Seq2SeqTrainingArguments, where
parameters such as the output directory, batch
sizes for training and evaluation and the number of
training epochs were defined in Section 4.

7https://www.statmt.org/wmt20/chat-task.html
8https://wmt-chat-task.github.io
9https://www2.statmt.org/wmt24/chat-task.html

10https://huggingface.co/docs/transformers/en/
main_classes/data_collator
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5.2 NLLB

We built four MT systems for English-to-German
and two MT systems for English-to-French con-
sidering NLLB as the baselines. We evaluated our
MT systems on the development and blind test sets.
The MT training setups are detailed below. Our
first MT systems involves fine-tuning the baseline
NLLB model on the original data. For our second
MT system we used normalised data (i.e. removing
special characters and duplicates, and lowercasing)
for fine tuning to observe any impact of data clean-
ing on performance.

We build two additional MT systems for for
English–German. We back-translated monolingual
data in order to create a synthetic bilingual data.
For this, we mined monolingual data from OPUS
11. The domain of the monolingual data is customer
support. We combined the generated synthetic data
with the original data for fine-tuning. The first and
second MT systems were fine-tuned on the com-
bined data, and this gave us the third and fourth
MT systems, respectively.

For training we handled out-of-memory errors
by dynamically creating training batches, i.e. the
Adafactor (Shazeer and Stern, 2018) optimizer is
employed instead of AdamW (Loshchilov and Hut-
ter, 2017) to save GPU memory. Weight decay and
gradient clipping (Loshchilov and Hutter, 2017)
were applied to stabilize the training. Training
batches were created by randomly choosing the
translation direction (source to target or reverse)
and sampling sentence pairs. To enhance robust-
ness against memory issues, a function was imple-
mented to release memory, with parameters set to
different batch-sizes, maximum sentence length,
and different training-steps. For the German-to-
English and French-to-English tasks the best per-
forming models were found to be the ones with
40,000 and 10,000 training steps, respectively. The
model is saved every 1,000 steps, allowing for in-
terruptions to adjust parameters or evaluate transla-
tions. Training typically runs for a short period of
time, which is sufficient for a language similar to
those already known by NLLB.

Post-training evaluation involves testing transla-
tion quality using parameters like num−beams =
4, which affects accuracy, speed, and memory con-
sumption, and parameters a and b, which control

11https://opus.nlpl.eu/ELRC-4992-Customer_
Support_MT/de&en/v1/ELRC-4992-Customer_Support_
MT

the maximum length of a generated text. The num-
ber of beams (or beam size) controls how many
alternative sequences are kept during the search.
This means that the model keeps the top 4 transla-
tions at each step during decoding.

5.3 Llama
We also used LLaMA for English-to-German and
English-to-French. We built two MT systems for
each of the translation tasks. This time, we fo-
cused on a specific learning technique, i.e. few-
shot in-context learning. For this, we constructed
a sentence retrieval system based on dense vec-
tor embeddings. Initially, sentence embeddings
were generated using SentenceTransformer. More
specifically, we used all-MiniLM-L6-v2 12 for our
task. This model was applied to the source sen-
tences of the dataset, transforming them into high-
dimensional vector representations. These embed-
dings were then indexed using FAISS (Facebook
AI Similarity Search) (Douze et al., 2024)13, cre-
ating a searchable database of vectors. In other
words, in order to create in-context learning exam-
ples, we encode the source test sentence using the
pre-trained SentenceTransformer model. The re-
sulting embedding is then used to query the FAISS
index, which retrieves the most semantically simi-
lar sentences from the training dataset (note that we
set k = 3). For constructing prompts, we retrieve
the source sentences, their corresponding target
sentences, and the associated language labels from
the training dataset using the indices returned by
FAISS. These sentences are then iteratively com-
bined to construct three-shot prompts. Figure 1
shows the structure of a prompt. As can be seen
from Figure 1, the prompt consists of initial instruc-
tion followed by three components: an instruction,
an input, and a response. The instruction guides the
task of translating from English-to-German/French
or German/French-to-English. The language in an
instruction is set dynamically based on labels pro-
vided with the sentence in our dataset. The input
provides context, and the response is the desired
output.

For the fine-tuning process tokenizer was instan-
tiated using the FastLanguageModel class with
parameters tailored to support efficient training
on large sequences. The model is loaded from
the unsloth/llama-3-8b-bnb-4bit pre-trained

12https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

13https://github.com/facebookresearch/faiss
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checkpoint. Subsequently, the model was further
configured with get−peft−model, which applies
Parameter-Efficient Fine-Tuning (PEFT) (Xu et al.,
2023) techniques.

The fine tuning process was managed
by SFTTrainer, which was integrated into
TrainingArguments from the Transformers
library. The training configurations were discussed
in Section 4. Throughout the training, logging
was performed at every step and the training
process was seeded with a fixed value to ensure
reproducibility. This training approach leveraged
the state-of-the-art techniques to enable fine-tuning
LLMs on extensive datasets while minimizing the
computational overhead. The same parameters
were tuned for both language-pairs.

The construction of a prompt for inference is
identical to those constructed for training. The
prompt instructs the model to translate a chat ab-
stract from one language (source) to another (tar-
get). The instruction is specifically tailored to the
languages involved in the translation, which are
specified in the input-row. The source text is in-
cluded in the prompt, while the output field is left
blank, allowing the model to generate the transla-
tion. The prompt is tokenized using the pre-trained
tokenizer, and the inputs are formatted as tensors
compatible with PyTorch, with the computation
offloaded to a GPU. The tokenized inputs are then
passed to the model’s generate method, which
performs the translation. The generated output is
then decoded from the tokenized format back into
a human-readable string using the batch-decode
method.

6 Results

This section describes the results obtained. Table 2
shows the performance of our MT systems on the
validation sets. Tables 3 and 4 show the results
obtained on the blind test set provided by the task
organisers.

As mentioned in Section 5, we normalised the
original data by removing special characters and du-
plicate sentences and lowercasing to see the impact
of data cleaning on performance. We see from Ta-
ble 2 that the MT models fine-tuned on normalised
data are better than those fine-tuned on original
data for the German-to-English translation task.
This clearly shows us the effectiveness of data nor-
malisation. Our primary submission for German-
to-English was based on fine-tuned Llama with

Below is an instruction that
describes a task , paired with
an input that provides further
context. Write a response

that appropriately completes
the request.

Instruction:
Translate this chat from German

to English:
Input:
German 1: <German sentence 1>
English 1: <English sentence 1>
German 2: <German sentence 2>
English 2: <English sentence 2>
German 3: <German sentence 3>
English 3: <English sentence 3>
German 4: <German sentence 4>
English 4:
Response:
<English sentence 4>

Figure 1: The structure of a generated prompt.

few-shot prompting. For this setup, we obtained
42.08 BLEU, 66.84 chrF and 85.25 COMET points
on the validation set (cf. row 12 of Table 2). We
also submitted two contrastive systems, i.e. NLLB
and mBART50 fine-tuned on augmented data. The
performance fine-tuned NLLB and mBART50 are
shown in rows 9 and 3 of Table 2, respectively. Our
constrastive submission 1 was based on NLLB. For
this setup, we obtained 48.21 BLEU, 70.31 chrF
and 84.60 COMET points on the validation set (cf.
row 9 of Table 2). Our constrastive submission 2
was based on mBART50. For this setup, we ob-
tained 47.73 BLEU, 69.17 chrF and 84.09 COMET
points on the validation set (cf. row 3 of Table 2).

As for primary submission of the French-to-
English task, we considered NLLB as our base-
line and its performance is reported in row 19 of
Table 2). We see from the table that this setup
provided us 54.79 BLEU, 73.88 chrF, and 85.5
COMET points on the validation set. As in the
German-to-English-task, we also submitted two
contrastive systems for the French-to-English task.
We fine-tuned Llama-3-8B and mBART50 follow-
ing the few-shots prompt generation strategies de-
scribed in Section 5. Our constrastive submission
1 was based on fine-tuned Llama-3-8B. For this
setup, we obtained 38.23 BLEU, 66.54 chrF and
89.08 COMET points on the validation set (cf. row
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Model BLEU chrF COMET

German-English

mBART50 WMT20 53.27 72.43 86.042
mBART50 WMT22 32.50 55.66 76.94
mBART50 WMT24 47.73 69.17 84.096
NLLB WMT24 SrcNorm → TgtNorm 35.54 61.37 82.93
NLLB WMT24 TgtNorm → SrcNorm 46.08 68.75 83.73
NLLB WMT24 Src → Tgt 20.43 50.81 77.69
NLLB WMT24 Tgt → Src 16.10 51.44 76.16
NLLB WMT24 + BT SrcNorm → TgtNorm 39.62 64.02 84.30
NLLB WMT24 + BT TgtNorm → SrcNorm 48.21 70.31 84.60
NLLB WMT24 + BT Src → Tgt 23.32 53.10 79.05
NLLB WMT24 + BT Tgt → Src 17.33 52.50 77.10
LLaMA WMT24 FS SrcNorm → TgtNorm 42.08 66.84 85.25
LLaMA WMT24 FS TgtNorm → SrcNorm 20.05 52.90 83.03
LLaMA WMT24 FS Src → Tgt 20.07 57.60 85.71
LLaMA WMT24 FS Tgt → Src 35.54 59.79 87.66

French-English

mBART50 WMT22 43.51 64.64 80.27
mBART50 WMT24 53.15 72.68 84.55
NLLB WMT24 SrcNorm → TgtNorm 46.24 68.78 85.42
NLLB WMT24 TgtNorm → SrcNorm 54.79 73.88 85.50
NLLB WMT24 Src → Tgt 31.45 59.69 80.65
NLLB WMT24 Tgt → Src 34.07 63.20 79.80
LLaMA WMT24 FS SrcNorm → TgtNorm 31.11 60.02 85.90
LLaMA WMT24 FS TgtNorm → SrcNorm 5.64 30.87 80.42
LLaMA WMT24 FS Src → Tgt 38.23 66.54 89.08
LLaMA WMT24 FS Tgt → Src 24.71 58.38 82.91

Table 2: Performance of our MT systems on the validation set. SrcNorm and TgtNorm stand for Source and Target
normalised, respectively. BT stands for back-translation and FS stands for Few-Shot.

Tag Precision Recall F1

French-English

formality 90.2 78.8 84.1
lexical cohesion 46.4 42.5 44.3
pronouns 90.8 72 80.3
verb form 62.9 56.8 59.7

Table 3: Official results for the French-English transla-
tion task (blind set).

24 of Table 2). Our constrastive submission 2 was
based on mBART50. For this setup, we obtained
53.15 BLEU, 72.67 chrF and 84.55 COMET points
on the validation set (cf. row 17 of Table 2).

Our primary submission of the German-to-
English task was based on Llama. As can be seen

from Table 4, we obtained 55.0 BLEU, 72.1 chrF,
90.8 COMET and 0.167827 CONTEXT-COMET-
QE (Rei et al., 2020b) points on the WMT 2024
blind test sets. Our primary submission of French-
to-English was based on NLLB. For this setup we
obtained 31.3 BLEU, 60.9 chrF, 82.4 COMET and
-0.23095 CONTEXT-COMET-QE points. Our best-
performing system of the German-to-English task
is Llama with few-shot learning. We secured the
top place for German-to-English in this competi-
tion. Table 3 shows our precision for pronouns
in the French-to-English system. Our submission
for the French-to-English translation task is in fact
the best-performing system in terms of pronoun
translatiosn.
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Model COMET ChrF BLEU COMET-QE

German-English

LlaMa WMT24 FS 90.8 72.1 55.0 0.16

French-English

NLLB WMT24 82.4 60.9 31.3 -0.23

Table 4: Official results. Performance of our MT systems on the blind set (primary submissions).

7 Conclusion

This paper described our submissions to the WMT
2024 Chat Translation Task for German-to-English
and French-to-English language pairs. We applied
several training and fine-tuning strategies such as
standard fine-tuning and fine-tuning with few-shot
prompting. We investigated our approaches using
three different LLMs: NLLB, Llama and mBART.
This allowed us to make a comparative analysis
between different architectures and strategies. One
of the key findings of our investigation is that the
performance of the MT systems on translating con-
versational messages can be improved with knowl-
edge transfer. We also found that our MT systems
exhibit robustness on this difficult-to-translate do-
main.

For future investigations, given the shortage of
conversational data, we plan to focus on exploring
the use of advanced data augmentation techniques.
We also intend to further investigate to what extent
synthetic data can be beneficial in chat translation
scenarios.
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