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Abstract

Generative retrieval (Wang et al., 2022; Tay
et al., 2022) is a popular approach for end-to-
end document retrieval that directly generates
document identifiers given an input query. We
introduce summarization-based document IDs,
in which each document’s ID is composed of an
extractive summary or abstractive keyphrases
generated by a language model, rather than an
integer ID sequence or bags of n-grams as pro-
posed in past work. We find that abstractive,
content-based IDs (ACID) and an ID based on
the first 30 tokens are very effective in direct
comparisons with previous approaches to ID
creation. We show that using ACID improves
top-10 and top-20 recall by 15.6% and 14.4%
(relative) respectively versus the cluster-based
integer ID baseline on the MSMARCO 100k
retrieval task, and 9.8% and 9.9% respectively
on the Wikipedia-based NQ 100k retrieval task.
Our results demonstrate the effectiveness of
human-readable, natural-language IDs created
through summarization for generative retrieval.
We also observed that extractive IDs outper-
formed abstractive IDs on Wikipedia articles in
NQ but not the snippets in MSMARCO, which
suggests that document characteristics affect
generative retrieval performance.

1 Introduction

Wikipedia-based corpora have long been an im-
portant part of NLP research and form a natural
benchmark for studying new techniques in text-
based recommender and information retrieval sys-
tems. In this work, we examine how generative
retrieval behaves on short-form and long-form doc-
uments drawn from Wikipedia and non-Wikipedia
sources. We also propose a new type of document
ID for generative retrieval based on document sum-
marization, which demonstrably improves retrieval
performance across the tasks that we examined.

Large language models (LMs) are now widely
used across many NLP tasks, and extensions of

generative models to document retrieval tasks have
recently been proposed (Wang et al., 2022; Tay
et al., 2022), in contrast to vector-based approaches
like dense passage retrieval (DPR; Karpukhin et al.,
2020). DPR is a widely-used technique for training
document retrieval models, where queries and doc-
uments are mapped to dense vector representations
with a transformer encoder (e.g., BERT; Devlin
et al., 2019). By increasing the cosine similarity be-
tween positive query-document pairs and decreas-
ing it between negative pairs, DPR performs metric
learning over the space of queries and the set of
documents to be indexed.

Generative alternatives to document retrieval ad-
dress certain limitations of dense, vector-based ap-
proaches to retrieval. For example, query and doc-
ument representations are constructed separately in
DPR, which precludes complex query-document in-
teractions. Using a single dense vector to represent
an entire document limits the amount of informa-
tion that can be stored; indeed, Tay et al. (2022)
observed that increasing the number of parame-
ters in the encoder does not significantly enhance
DPR performance. Furthermore, the rich sequence
generation capabilities of language models (LMs)
cannot be used directly in dense retrieval. Tay et al.
(2022) and Wang et al. (2022) therefore proposed
a new direction called generative retrieval, where
LMs learn to directly map queries to an identifier
that is unique to each document. We illustrate the
differences in Figure 1.

Instead of retrieving documents based on cosine
similarity, generative retrieval uses an LM to pro-
duce a sequence of tokens encoding the relevant
document’s ID, conditional on the query. Decoding
constraints are applied to ensure that only docu-
ment IDs that exist in the corpus are generated. Tay
et al. (2022) and Wang et al. (2022) showed that
generative retrieval outperformed DPR on informa-
tion retrieval benchmarks like Natural Questions
(Kwiatkowski et al., 2019) and TriviaQA (Joshi

126



What was the score
in the World Cup

2022 final?

Language
Model (2022 World Cup, Second World Cup in Asia, ...)  

ACID (Generative Retrieval)

ID Lookup

What was the score
in the World Cup

2022 final?

DPR (Dense Retrieval)

Encoder

Cosine Similarity
in Embeddings

Figure 1: Generative retrieval vs. dense retrieval. In dense retrieval (right), both the query and the documents are
encoded into dense vectors (i.e., embeddings). Nearest-neighbor search is then applied to find the most relevant
documents. Generative retrieval (left) trains a language model to generate the relevant document ID conditional
on the query. The ID is tied to a unique document, allowing for direct lookup. We propose summarization-based
document IDs like ACID, which uses GPT-3.5 to create a sequence of abstractive keyphrases to serve as the
document ID.

et al., 2017), and subsequent publications have cor-
roborated their findings on other retrieval tasks like
multilingual retrieval (Zhuang et al., 2023).

State-of-the-art generative retrieval models rely
on document clustering to create document IDs, fol-
lowing the work of both Wang et al. (2022) and Tay
et al. (2022), and the resulting document ID is an
integer sequence corresponding to the clusters that
the document belongs to. However, generating ar-
bitrary sequences of integers is very different from
what LMs are designed to do, since LMs are pre-
trained to generate natural language. In addition to
negatively impacting LM generation performance,
cluster-based integer IDs are not human-readable
and require re-clustering if a substantial number of
new documents are added to the index.

To address the issues with cluster-based IDs,
we consider summarization-based document IDs,
which are human-readable, natural-language doc-
ument IDs. We propose ACID, an Abstractive,
Content-based ID assignment method for docu-
ments, alongside simpler IDs based on extractive
summarization. ACID uses a language model
(GPT-3.5 in our experiments) to generate a short
sequence of abstractive keyphrases from the docu-
ment’s contents to serve as the document ID, rather
than a hierarchical clustering ID or an arbitrary in-
teger sequence. We also consider creating content-
based IDs extractively: taking the first 30 tokens
of each document as its ID or choosing the top-30
keywords with respect to BM25 scores. We find
that ACID generally outperforms the cluster-based
IDs for generative retrieval (as well as the extrac-
tive methods) in direct comparisons on standard
retrieval benchmarks. We also observe that longer
extractive document IDs are helpful for retrieving
long documents, such as the Wikipedia articles in
the NQ benchmark, versus the shorter document

fragments from the MSMARCO dataset.
Finally, we examine the effect of hyperparam-

eters like model size and beam width on retrieval
performance, and compare how cluster-based IDs
and summarization-based IDs behave under differ-
ent settings.

The code for reproducing our results and the
keyword-augmented datasets can be found at ht
tps://github.com/lihaoxin2020/Summariz
ation-Based-Document-IDs-for-Generat
ive-Retrieval, and the data can be found at
https://huggingface.co/datasets/lihaoxin
2020/abstractive-content-based-IDs.

2 IDs for Generative Retrieval

Since generative retrieval is a comparatively new
approach for document retrieval, there is signifi-
cant variation in the literature on how language
models are trained to map queries to document IDs.
Tay et al. (2022) distinguish between the ‘indexing’
step (where the LM is trained to link spans from the
training, development, and test documents to their
document IDs) and the ‘finetuning’ step (where
the training query-document pairs are used to fine-
tune the LM for retrieval). Note that generative
retrieval models must index all documents, includ-
ing the development and test documents, in order
for the language model to be aware of their doc-
ument IDs at inference time. Additionally, Wang
et al. (2022) and Zhuang et al. (2023) perform data
augmentation in the indexing and finetuning steps
by introducing ‘synthetic’ queries, where a query
generation model (Nogueira et al., 2019) based on
T5 (Raffel et al., 2020) generates additional queries
for each document.

In the three subsections that follow, we elabo-
rate on each of the steps for generative retrieval.
Figure 2 depicts the steps needed to create our
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Document Text

List of engineering branches Engineering is the discipline and profession that applies scientific theories , mathematical methods ,
and empirical evidence to design , create , and analyze technological solutions cognizant of safety , human factors , physical
laws , regulations , practicality , and cost . In the contemporary era , engineering is generally considered to consist of the major
primary branches of chemical engineering , civil engineering , electrical engineering , and mechanical engineering. . .

Cluster-based Document ID

9, 5, 1, 9, 6, 1, 0, 4, 8, 1, 3, 1, 2, 9, 0

Summarization-based Document IDs

First k Tokens BM25 Scoring ACID

List of engineering branches Engineer-
ing is the discipline and profession that
applies scientific theories , mathemati-
cal...

teletraffic optomechanical nanoengineer-
ing subdiscipline eegs biotechnical bio-
process mechatronics metallics crazing...

(1) Major engineering branches: chem-
ical, civil, electrical, mechanical (2)
Chemical engineering: conversion of
raw materials with varied specialties (3)
Civil engineering: design. . .

Table 1: An example of a document, its cluster-based ID (where each level of the clustering has 10 clusters), and
its associated natural language, content-based IDs. ‘First k tokens’ sets the ID to be the document’s first k tokens.
BM25 scoring uses the top-k highest-scoring tokens from the document as the ID, where scores are based on Okapi
BM25. ACID uses an LM (e.g., GPT-3.5) to generate 5 keyphrases as the ID.

summarization-based document IDs, perform data
augmentation, index the documents with the LM,
and finetune the LM for generative retrieval.

2.1 Document ID Creation

In Table 1, we provide an example of a document
about engineering sub-disciplines and the cluster-
based and content-based IDs that would be derived
from it. From the example, it is clear why we would
expect ACID to outperform cluster IDs, since it is
straightforward for LMs to generate the keyphrase
sequence given an engineering-related query. The
cluster ID, on the other hand, resembles an integer
hash of the document (with some semantic infor-
mation carried over from the clustering).

Abstractive, Content-based IDs. We create
natural language IDs for every document to be in-
dexed by generating keyphrases. Tokens from the
document (up to the maximum context size of 4000
tokens) are used as part of a prompt to an LM to
generate 5 keyphrases. The keyphrases are a brief
abstractive summary of the topics in the document.
The keyphrases are concatenated together to form
the ACID for each document. We create IDs for
every document in the training, development, and
test sets.

We chose the GPT-3.5 API provided by OpenAI
to generate keyphrases, though any reasonable pre-
trained LM can be used instead. The prompt that
we used was:

Generate no more than 5 key phrases
describing the topics in this docu-

ment. Do not include things like the
Wikipedia terms and conditions, li-
censes, or references section in the
list: (document body here)

Extractive Summary IDs. We consider two
types of extractive summary IDs: a bag of uni-
grams selected based on BM25 scores, and the
first k tokens of the document. For many types of
documents (e.g., news articles, Wikipedia articles,
scientific papers), the first few sentences would
generally provide an overview of the contents of
the document, which motivates our choice of the
first k tokens as a kind of extractive document ID.

Cluster-based IDs. By way of comparison with
our proposed IDs, cluster-based IDs are integer se-
quences. An encoder creates an embedding vector
for each document in the dataset, and the docu-
ment embeddings are clustered using the k-means
algorithm. If the number of documents in a cluster
exceeds a predefined maximum, then subclusters
are created recursively, until all subclusters contain
fewer documents than the maximum. Each docu-
ment’s ID is a sequence of integers, corresponding
to the path to the document through the tree of
hierarchical clusters. The number of clusters at
each level and the maximum number of documents
in each cluster are hyperparameters. (For exam-
ple, the values reported by Wang et al., 2022, were
10 and 100 respectively, which we also use in our
experiments.)
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Figure 2: Data processing and model training. (a) Each document-query pair from the training corpus will be
converted into inputs and outputs for finetuning the pretrained transformer decoder, which serves as the generative
retrieval model. (b) GPT-3.5 is used to generate a sequence of keyphrases, which is used as the document ID. (c)
Given a user query or a synthetic query, the generative retrieval model learns to generate the ID of the relevant
document. We use a doc2query model to generate synthetic queries as additional inputs. Randomly sampled spans
of 64 tokens can also be used as inputs to ensure that the model associates the contents of each document with its ID.

2.2 Document Indexing and Supervised
Finetuning

We first index all of the documents in the training,
development, and test sets. For indexing purposes,
we consider input/output pairs of the form

• (synthetic query, document ID).

In other words, the LM is trained to generate the
relevant document ID, given a randomly selected
document span or a synthetic query, as part of the
indexing task. We use a T5-based query generation
model to provide synthetic queries given the body
of each document, which serves as a form of data
augmentation independent of the queries in the
training data. Note that, in our experiments, only
synthetic queries are used during the indexing step.
Although random document spans are used in other
generative retrieval papers, we did not observe an
improvement by doing so.

After document indexing, we finetune the model
on the retrieval training data:

• (user-generated query, document ID)

In other words, the LM is trained to generate the
document ID, given a real, user-generated query.

2.3 Retrieving Documents
At inference time, the LM generates a document
ID via beam search, given a user-generated query
from the test set. We use a constrained decoder
at inference time, which is constrained by a prefix
tree such that it can only generate document IDs
that exist in the corpus. Since each document ID

maps to a unique document, it is straightforward
to compute the proportion of queries for which
the model retrieved the correct document. Model
performance is measured based on the recall of
relevant documents retrieved within the top-1, top-
10, and top-20 results in our experiments.

3 Experiments

In the experiments below, we demonstrate that
summarization-based IDs outperform cluster-based
IDs on the NQ and MSMARCO retrieval bench-
marks. Simple extractive IDs, like using the first
30 tokens of the document or BM25-based key-
word selection, can outperform the cluster-based
approach in most cases. We also compare our
IDs with another keyword-based document ID
method that constructs IDs using learned relevance
scores (Zhang et al., 2024). We then show that
summarization-based IDs work well across a range
of language model sizes (as measured by the to-
tal number of parameters). Finally, we show that
widening the beam improves retrieval performance
meaningfully for ACID, whereas cluster-based IDs
benefit from beam width to a lesser degree (or not
at all, in the case of the widest beam widths).

The BM25-based IDs were created by ranking
all of the unique terms in each document by their
BM25 scores, and taking the top 30 terms as the
document ID. We used Anserini (Yang et al., 2017)
to compute BM25 scores for the documents in each
corpus. To avoid selecting very rare terms as part
of each document’s BM25-based document ID, we
required that each term either appear at least 2 times
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in the document itself, or appear at least 5 times in
the corpus.

We use the Natural Questions (NQ; Kwiatkowski
et al., 2019) and MSMARCO (Bajaj et al., 2016)
datasets. For each dataset, we finetune a pretrained
language model for retrieval on 1k, 10k, and 100k
random samples of the training split. Note that
MSMARCO and NQ do not disclose their test sets
publicly, and our results are reported on the pro-
vided development sets. Since we did not use the
entirety of the training data that was available for
NQ and MSMARCO, we created separate devel-
opment sets for them by taking a random sample
of each dataset’s training data. We provide the de-
tails of each corpus in Table 2. Document length
is highly variable, and we truncate all documents
after 4k tokens.

We use the Pythia LMs (Biderman et al., 2023)
to initialize the retrieval model in our experiments.
All of our models are trained on AWS g5 instances
equipped with Nvidia A10G GPUs. Models are
optimized using AdamW (Loshchilov and Hutter,
2017). We provide the model hyperparameters that
were used in the Appendix. The beam width for all
experiments is 20, unless stated otherwise.

In Table 2, we provide the basic statistics for the
NQ and MSMARCO datasets that we used. We
deduplicate documents based on the first 512 to-
kens of each document, and documents with ≥95%
token overlap are considered duplicates.

Note that there is a substantial difference in the
average document length between NQ and MS-
MARCO datasets. While NQ and MSMARCO
have queries of similar lengths, their document
lengths are very different, since NQ documents
are complete Wikipedia articles while MSMARCO
passages are a few sentences long, excerpted from
a longer document.

Ave. Query Ave. Doc.
# Pairs Length Length

NQ-100k 100,000
49.2 36,379.4NQ-Dev 1,968

NQ-Test 7,830

MSMARCO-100k 100,000
32.8 334.4MSMARCO-Dev 2,000

MSMARCO-Test 6,980

Table 2: Dataset characteristics. ‘# Pairs’ refers to the
number of query-document pairs. Average lengths refer
to the average length in characters.

4 Results

There is substantial variation in the reported results
on the NQ dataset among papers that use cluster-
based IDs for generative retrieval. In Tay et al.
(2022) and Wang et al. (2022), the top-1 recall
with the NQ 320k dataset were 27.4% and 65.86%
respectively, despite both groups using the same
T5-Base model initialization and cluster-based ID
approach. There are many possible explanations
for the discrepancy (e.g., use of synthetic queries,
computational budget, etc.), but at the time of writ-
ing, neither paper has made the code or processed
data publicly available, which makes replication
difficult. For this reason, we focus on internal com-
parisons rather than external ones, where we con-
trol the relevant experimental settings to ensure
that the comparisons are fair and the differences in
results are meaningful.

4.1 MSMARCO

We begin by examining the performance of our im-
plementations of various types of document IDs
on the MSMARCO task. We present the results
in Table 3, and all results are based on a 160M-
parameter pretrained Pythia LM. Across all training
set sizes, the ACIDs offer better retrieval perfor-
mance compared to the other ID generation tech-
niques, and summarization-based IDs clearly out-
perform the cluster integer IDs.

4.2 Natural Questions

In Table 4, we compare sparse and dense re-
trieval techniques against generative retrieval on
the NQ dataset. We used the 160M-parameter
Pythia LM as our base model to obtain the re-
sults in the table. Across the NQ 1k, 10k, and
100k tasks, summarization-based document IDs
generally outperform cluster-based integer IDs and
TSGen (Zhang et al., 2024). (TSGen learns a scor-
ing function that identifies relevant terms from the
document to use as the ID.) As we saw with MS-
MARCO, the simple approach of using the first
30 tokens from each document to create IDs also
outperforms the cluster-based approach.

We further improve the performance of the fine-
tuned 160M-parameter model by performing joint
decoding with the 12-billion parameter Pythia LM.
We provide 8 query-document ID pairs from the
training data to the 12B Pythia model for in-context
learning. For a given query, we use both the small
model and the large model (with the in-context
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MSMARCO 1k MSMARCO 10k MSMARCO 100k
Rec@1 @10 @20 Rec@1 @10 @20 Rec@1 @10 @20

Baseline

Cluster Integer IDs 41.1 59.5 64.2 42.4 62.3 67.1 46.8 68.8 73.4

Extractive Summarization IDs

BM25 Top-30 48.7 74.3 79.4 49.1 75.7 80.1 52.0 79.2 82.9
First 30 Tokens 49.0 73.0 77.8 48.7 72.8 77.9 51.8 76.0 79.6

Abstractive Summarization IDs

ACID 49.1 74.3 80.1 50.4 76.3 80.4 52.9 79.5 84.0

Table 3: Recall for MSMARCO. Recall refers to the percentage of queries in the evaluation set for which the
ground-truth document ID was produced in the top-1, top-10, and top-20 candidates from constrained beam search
decoding. MSMARCO 1k, 10k, and 100k refer to the number of training query-document pairs used to finetune the
LM.

NQ 1k NQ 10k NQ 100k
Rec@1 @10 @20 Rec@1 @10 @20 Rec@1 @10 @20

Baselines

BM25 20.9 53.8 62.7 20.9 53.8 62.7 20.9 53.8 62.7
Dense Passage Retrieval 25.8 62.6 70.9 32.8 74.9 82.6 35.5 78.7 86.1
Cluster Integer IDs 38.4 64.2 69.4 40.2 67.5 72.7 40.8 68.2 73.0
TSGen (Zhang et al., 2024) 28.8 67.1 73.6 29.2 67.6 74.4 30.3 71.8 78.3

Summarization-based IDs

BM25 Top-30 36.5 66.1 70.9 36.8 66.1 71.1 37.0 68.2 72.8
First 30 Tokens 41.9 66.0 69.9 43.3 67.6 71.6 47.7 71.2 74.4
ACID 39.2 69.2 74.0 40.5 70.7 75.2 40.9 74.9 80.2

Summarization-based IDs with Joint Decoding

First 30 Tokens w/ Joint Dec 49.1 78.7 82.6 49.7 79.2 83.1 55.3 83.0 86.4
ACID w/ Joint Dec 41.3 77.3 82.5 41.3 77.0 82.9 42.3 78.0 84.0

Table 4: Recall for Natural Questions. Recall refers to the percentage of queries in the evaluation set for which the
ground-truth document ID was produced in the top-1, top-10, and top-20 candidates from constrained beam search
decoding. NQ 1k, 10k, and 100k refer to the number of training query-document pairs used to finetune the LM.
‘Joint Dec’ refers to joint decoding with the small, task-specific 160M parameter LM and a large 12B parameter LM
with in-context learning.

examples) to generate the relevant document ID.
The output probabilities from the small and large
models are combined using a mixture weight of
α = 0.85 on the small model.

When we applied joint decoding, the extractive
summarization-based document ID that uses the
first 30 tokens outperformed all of the other tech-
niques that we examined.

We emphasize that this is one of the major ad-
vantages of using generative retrieval with natural-
language IDs: we can use a pretrained LLM with
in-context learning to significantly boost the per-
formance of a smaller finetuned LM. In contrast,
generative retrieval that uses integer IDs does not
benefit from joint decoding with an LLM, since
the integer ID sequences are far from the pretrain-
ing distribution and in-context learning provides

no benefit.
We observed that the top-1 recall with the first

30 tokens as the ID is quite high. This may be
due to the structure of the NQ documents, which
are Wikipedia articles. The first tokens of every
document are the title of the Wikipedia page, and
so the first 30 tokens represent a very effective ID
for retrieval purposes. Nonetheless, without joint
decoding, ACID outperforms the first 30 token IDs
at top-10 and top-20 recall.

4.3 Model Size

We examine whether the relative outperformance of
ACIDs versus cluster integer IDs on MSMARCO is
affected by the number of parameters in the genera-
tive model. Our default experiments in the previous
sections used 160M-parameter Pythia models, and
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Figure 3: Recall versus the number of parameters in the LM on the MSMARCO 100k dataset.

in Figure 3 we conduct experiments going up to
2.8B-parameter models.

We observe that ACIDs continue to outperform
cluster integer IDs, even as we vary the model
size. In general, increasing the size of the model
leads to an improvement in retrieval performance,
regardless of the ID type.

4.4 Beam Width

From Table 5, we see that larger beam widths gen-
erally improve recall on MSMARCO, though with
rapidly diminishing returns. The top-1 recall does
not benefit past a beam width of 8, and the recall
rapidly plateaus as beam width increases from 1
to 16. This is true for both cluster integer IDs and
ACID, though ACID does benefit more in absolute
terms than cluster IDs from a wider beam (when
comparing a beam width of 1 to a beam width of
16).

In the same table, we also examine the effect of
very wide beams on recall at 10 and 20 for the MS-
MARCO dataset. Some benefit is observed when
ACID is the document ID, but no improvement is
observed for cluster IDs.

As discussed previously, the cluster integer ID
is typically restricted to a small number of clusters
per level (the digits 0 through 9, for example), and
so a wide beam in excess of that number doesn’t
yield any improvements, whereas ACID does bene-
fit from wider beams, since it is a natural-language
ID with access to the full vocabulary of the LM.

4.5 ID Length

In Table 6, we present the change in recall on the
NQ and MSMARCO tasks depending on the length
of the document ID. We use the extractive docu-
ment ID based on the first 10, 20, 30, and 40 to-

kens. On MSMARCO 100k, we observe very little
change in top-k recall. On NQ 100k, we saw a
larger benefit with longer IDs, with the highest re-
call corresponding to the longest document ID. We
speculate that the differences in document length
between MSMARCO and NQ (∼334 tokens versus
∼36k tokens per document) means that longer IDs
tend to benefit the NQ retrieval task more.

5 Related Work

Tay et al. (2022) explore a number of techniques for
creating document IDs for generative retrieval, in-
cluding atomic document IDs, randomly assigned
integer IDs, and semantic IDs based on hierarchi-
cal clustering. The last technique was found to be
the most effective, where the document IDs with
were formed via hierarchical k-means clustering
on BERT-based document vectors. The main differ-
ence between that approach and ours is that, during
finetuning, their approach requires learning the “se-
mantics” of the cluster IDs, while ours uses natural
language phrases that are already in some sense fa-
miliar to the pretrained model. Wang et al. (2022)
also used IDs based on hierarchical clustering with
BERT embeddings and proposed the prefix-aware
weight-adaptor (PAWA) modification, where a sep-
arate decoder was trained to produce level-specific
linear projections to modify the ID decoder’s out-
puts at each timestep. The authors also incorpo-
rated synthetic queries from a doc2query model to
augment the user-generated queries in the dataset.
Pradeep et al. (2023) scale the cluster ID-based
approach to generative retrieval to millions of doc-
uments, and explore the impact of adding synthetic
queries for documents that do not have a query
sourced from a user.

The aforementioned papers used IDs that were
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Cluster IDs ACIDs
Rec@1 @10 @20 Rec@1 @10 @20

Beam width 1 47.6 – – 54.0 – –
2 48.7 – – 56.0 – –
4 49.0 – – 55.7 – –
8 48.8 – – 56.5 – –

16 49.0 71.0 – 56.6 84.1 –
20 49.0 71.1 75.6 55.0 83.4 87.2
30 49.0 70.9 75.6 56.4 84.1 88.3
40 49.0 70.9 75.6 56.5 84.1 88.3
50 49.0 70.9 75.6 56.5 84.1 88.4

Table 5: Recall of the 1B-parameter model versus beam width on the MSMARCO 100k dataset.

MSMARCO 100k NQ 100k
Rec@1 @10 @20 Rec@1 @10 @20

First 10 51.1 75.8 79.8 46.9 65.0 67.6
First 20 50.0 77.0 80.4 46.9 69.1 72.3
First 30 51.8 76.0 79.6 47.7 71.2 74.4
First 40 49.8 75.8 79.2 49.9 72.3 75.4

Table 6: Recall on MSMARCO and NQ 100k versus the
length of the document ID. Here, we use the extractive
summarization ID based on the first 10, 20, 30, or 40
tokens of each document.

not optimized for the retrieval task, but other work
has explored creating document IDs in a retrieval-
aware manner. In Sun et al. (2024), the document
IDs are treated as a sequence of fixed-length latent
discrete variables which are learned via a document
reconstruction loss and the generative retrieval loss.
However, the authors reported that this method
does experience collisions, as some documents are
assigned to the same latent integer ID sequence,
though the collision rate was not reported.

Bevilacqua et al. (2022) proposed a model that,
given a query, generates the n-grams that should ap-
pear in the relevant documents. All documents that
contain the generated n-grams are then retrieved
and reranked to produce the final search results.
(This is in contrast our approach, which seeks to as-
sociate a unique ID to each document for generative
retrieval.) The authors propose several methods for
reranking based on n-gram scores produced by the
LM. However, the n-gram generation and rerank-
ing approach does not always outperform the dense
retrieval baseline. Zhang et al. (2024) creates doc-
ument IDs by selecting terms from the document
based on relevance scores that are learned using a
contrastive loss and BERT embeddings.

In addition, there is a substantial body of work
that involves model-generated text and retrieval.
De Cao et al. (2020) generate the text representa-

tion of entities autoregressively instead of treating
entities as atomic labels in a (potentially very large)
vocabulary. Nogueira et al. (2019) use an encoder-
decoder model to generate synthetic queries for
each document in the index and concatenate them
together to improve retrieval performance. The ex-
panded documents are indexed using Anserini and
BM25. Synthetic queries from these ‘doc2query’
models are also used for data augmentation in gen-
erative retrieval. Mao et al. (2020) use pretrained
language models to expand queries with relevant
contexts (e.g., appending the title of a relevant
passage to the query, etc.) for retrieval and open-
domain question answering.

6 Conclusion

We have demonstrated that summarization-based
document IDs are highly effective for generative
retrieval. Our results show a clear improvement in
retrieval performance on the Natural Questions and
MSMARCO datasets versus both cluster-based in-
teger IDs and other keyword-based document IDs.
In direct comparisons, abstractive keyphrases work
well versus other types of IDs. Surprisingly, we
found that the first 30 tokens of a document also
works very well among the IDs we tried, but we
have not seen this fact documented in the genera-
tive retrieval literature. The choice of ID is clearly
a major factor in retrieval performance, and we ex-
pect that future work will explore other possibilities
for creating effective natural-language document
IDs.

We also observed that the extractive summariza-
tion approach (i.e., first-30 tokens as ID) outper-
forms the abstractive ACID approach for the long
Wikipedia articles in the NQ dataset but not for
the shorter snippets in the MSMARCO dataset.
Clearly, the characteristics of the documents that
are indexed affects generative retrieval, and in the
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case of Wikipedia documents, the initial sentences
tend to be an overview of the rest of the article. As
the field of generative retrieval continues to evolve,
optimizing document ID generation for specific
use cases and document collections may become
an important area of study.

Limitations

Due to constraints on our computational budget, the
largest dataset that we used contains 100k query-
document pairs, which is a subset of the full NQ or
MSMARCO datasets, and the largest model that we
trained was the 2.8-billion parameter Pythia model,
which is not the largest model in the Pythia model
family. We expect that the performance characteris-
tics of our method may change as the datasets and
models are scaled up to sizes that practitioners in
industry settings would typically use.
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