Blocks Architecture (BloArk): Efficient, Cost-Effective, and Incremental

Dataset Architecture for Wikipedia Revision History
Lingxi Li'! Zonghai Yao! Sunjae Kwon' Hong Yu!??*
'"Manning College of Information and Computer Sciences, University of Massachusetts Amherst
2Department of Medicine, University of Massachusetts Medical School
3Miner School of Computer and Information Sciences, University of Massachusetts Lowell
“Center for Healthcare Organization and Implementation Research, VA Bedford Health Care
{lingxili,zonghaiyao, sunjaekwon}@umass.edu, hong_yu@uml.edu

Abstract

Wikipedia (Wiki) is one of the most widely
used and publicly available resources for nat-
ural language processing (NLP) applications.
Wikipedia Revision History (WikiRevHist)'
shows the order in which edits were made
to any Wiki page since its first modification.
While the most up-to-date Wiki has been
widely used as a training source, WikiRevHist
can also be valuable resources for NLP ap-
plications. However, there are insufficient
tools available to process WikiRevHist without
having substantial computing resources, mak-
ing additional customization, and spending ex-
tra time adapting others’ works. Therefore,
we report Blocks Architecture (BloArk), an
efficiency-focused data processing architecture
that reduces running time, computing resource
requirements, and repeated works in processing
WikiRevHist dataset. BloArk consists of three
parts in its infrastructure: blocks, segments,
and warehouses. On top of that, we build the
core data processing pipeline: builder and mod-
ifier. The BloArk builder transforms the origi-
nal WikiRevHist dataset from XML syntax into
JSON Lines (JSONL) format for improving the
concurrent and storage efficiency. The BloArk
modifier takes previously-built warehouses to
operate incremental modifications for improv-
ing the utilization of existing databases and
reducing the cost of reusing others’ works. In
the end, BloArk can scale up easily in both pro-
cessing Wikipedia Revision History and incre-
mentally modifying existing dataset for down-
stream NLP use cases. The source code?, docu-
mentations®, and example usages* are publicly
available online and open-sourced under GPL-
2.0 license.

1https ://meta.wikimedia.org/wiki/Data_dumps
2GitHub: https://github.com/1ilingxi@1/bloark

SDocumentations: https://bloark.lingxi.li/
*Example usages: https://wikidata.lingxi.li/

1 Introduction

Wikipedia has played an important role in nat-
ural language processing (NLP) areas, such as
information extraction (Kwon et al., 2022; Tran
et al., 2014; Fisichella and Ceroni, 2021; Althoff
et al., 2015; Liu et al., 2020), rephrasing (Botha
et al., 2018; Martinez et al., 2024), and relationship
graphs (Gonzalez-Hevia and Gayo-Avello, 2022;
Piscopo et al., 2017; Schmelzeisen et al., 2021; Pel-
lissier Tanon et al., 2019). As most researchers em-
brace informative large language models (LLMs)
trained on the latest snapshot of Wikipedia (Naveed
et al., 2023), the value of the WikiRevHist dataset
has been underrated. WikiRevHist is valuable for
its nature of human editing records, which roots
the human reasoning on how to create and revise
documents in decades. However, existing methods
for pre-processing complex NLP data like Pandas
(Thiébaut et al., 2011; Pivarski et al., 2020) are
either requiring complicated setup or incompatible
with the scale of WikiRevHist. While researchers
have a lot of concurrent approaches to do batch pro-
cessing of Wikipedia XML data dumps (Thiébaut
et al., 2011), those approaches require complex
configurations and an extensive amount of com-
puting resources online (Rawat et al., 2019). In
addition, popular Python data processing libraries
like Pandas have difficulties working with nested
data structures (Pivarski et al., 2020) and do not
have multiprocessing out of the box, which takes
time to setup and overcome hardware bottlenecks.
And finally, none of the data processing libraries
provide an easy way to handle large-sized dataset,
such as checking unit data structures, extracting
metadata for faster queries, and limiting maxi-
mum disk space usage. This often results in the
overuse of shared disk space on computing clus-
ters and the failure of processing jobs. Therefore,
a high-performing, cost-effective, and convenient

102

Proceedings of the First Workshop on Advancing Natural Language Processing for Wikipedia, pages 102—111
November 16, 2024 ©2024 Association for Computational Linguistics

https://meta.wikimedia.org/wiki/Data_dumps
https://github.com/lilingxi01/bloark
https://bloark.lingxi.li/
https://wikidata.lingxi.li/

& DY
| J

f In-memory Object —— XML - JSON —>

Output File

Processed Object

J

Save one-by-one in the original order

Figure 1: Traditional single-process multi-thread Python script for processing WikiRevHist. It needs to have the
entire XML file decompressed into disk space before parsing, load revisions one-by-one, transform to JSON objects,

apply changes, then store to JSON files.

solution for handling downstream works on the
WikiRevHist dataset becomes significant.

To address this, we propose Blocks Architecture
(BloArk), a new dataset architecture designed for
processing WikiRevHist and building downstream
datasets conveniently. To the best of our knowl-
edge, this work is the first data architecture for pro-
cessing WikiRevHist in an efficient, cost-effective,
and incremental way.

To improve the computing resource utilization,
BloArk uses multiprocessing, which divides a
dataset building task into unit processing items and
applies onto CPU cores in parallel. Unlike tradi-
tional single-process Python scripts in processing
WikiRevHist as Figure 1, BloArk improves the pro-
cessing speed by distributing the load onto multiple
independent workers. From our experiment, pars-
ing 50 dump files that have a total compressed size
of 90 GB from the WikiRevHist took 12 hours 43
min using an Apple M1 chip with only one process,
while the same process took 5 hours 19 min with
four processes. As the extracted size of the entire
WikiRevHist dump is more than 30 TB, researchers
will spend days waiting for the process without us-
ing frameworks like Hadoop. Therefore, the ability
to do parallel processing is what we consider first
when designing this architecture.

To improve querying speed and dataset struc-
ture clarity, BloArk embeds metadata along with
each warehouse. For example, article title and tags
are saved in metadata to help filtering based on
related categories. The byte offsets for each article
in associated warehouse file are also saved to bring
article-level concurrency into data processing.

Furthermore, to reduce the cost of reusing pro-
cessed datasets, BloArk introduces a standardized
protocol for all datasets created by BloArk. Re-
searchers and prospective users can save a signifi-
cant amount of time spent on adapting the dataset
format of others’ works on WikiRevHist. Users
can easily access a preview of the dataset structure

and make incremental modifications without the
need for additional customization.

2 Similar Frameworks

While large-scale data analytics frameworks like
Hadoop and Spark are convenient to use, they do
not offer end-to-end toolkit such as data structure
preview and row-level modifier defined as a Python
function. While BloArk is not powerful and exten-
sible comparing with enterprise-level data frame-
works, BloArk is straightforward out-of-box, and
does not require any complicated setup to run.

Furthermore, researchers can benefit from both
BloArk and Spark. While Spark does not natively
support XML dumps, it does support JSONL for-
mats. Researchers can use BloArk to convert XML
to JSONL and modify the row-level data structure
through a straightforward definition. Subsequently,
researchers can analyze the data stored in BloArk
warehouses utilizing Spark.

3 Background
3.1 File Format

One of the most critical factors of efficiency is con-
currency. We decided to use JSONL as the base
file format for expanding the possibility of con-
currency. JSONL is similar to JSON (JavaScript
Object Notation) structure, which uses curly brack-
ets for embracing an object with key-value pairs.
JSON Lines (as known as JSONL format) have one
JSON at a line, where the root of the file represents
a list of objects. The benefit of using JSONL struc-
ture is that the processing of a file does not have
to be linear. It is possible only to read the third
object of a JSONL file without reading the first two
objects. File formats like JSON and XML require
linear parsing, which is not feasible for parallel
processing within a file.

In general cases, the parallel processing will stay
at the file level, such that one file would only be as-

103

Process 0 Huge Article / XML File
Process 1

Process 2

Process 3

) |
|
|
|

Huge Article / XML File
H ige Article / XML File

| |

Huge Article / XML File | |

H age Article / XML File
Huge Article / XML File

L__J

Figure 2: Understanding the congestion problem from a scheduling perspective. When we process huge articles
or XML files at the same time, we also need to keep their decompressed files simultaneously, which increases
the storage space bottleneck. Besides that, since large items take longer to process, disk space usage can easily
accumulate because large articles are more likely to collide than smaller articles.

signed to one process. In contrast, BloArk expands
the parallelism to article-level. When transforming
JSONL files, BloArk assigns the same JSONL file
into multiple processes, where each process knows
the starting and ending byte offset that corresponds
to an article. In this way, only certain bytes of data
is loaded for one process, which avoids memory
overhead and I/0 bottleneck.

3.2 Unit Independence

First, one XML file from the original WikiRevHist
dataset contains many articles that are independent
of each other, which could be sent to different pro-
cesses for improving running efficiency. However,
in the given flow, there are two steps that require a
linear processing: XML reading and JSONL writ-
ing. In the raw WikiRevHist dataset, the structure
of one XML file looks like this:

<mediawiki>
<siteinfo>...</siteinfo>
<!-- First article -->
<page>
<title>...</title>
<id>...</id>
<!-- First revision -->
<revision>
<id>...</id>
<parentid>...</parentid>
<timestamp>...</timestamp>
<text>...</text>
</revision>
<!-- Second revision -->
<revision>

</revision>
</page>
<!-- Second article -->
<page>
</page>
</mediawiki>

XML needs to be read line-by-line because each
object consists of a starting tag and an ending tag.
Without finding the ending tag, we cannot finalize
the current object and cannot start accepting the
next object. Besides that, we need to read XML
into objects at revision level instead of article level
because some articles with a few thousands of revi-
sions can easily exceed the memory limit. There-
fore, within one XML file, this reading process
is forced to be linear. Although there exists an
approach (Zhang, 2022) to parallelize the XML
parsing process for speeding up, this approach re-
quires chunking XML files and eventually loading
the entire XML file into memory, which is not fea-
sible for dataset having large individual files, such
as WikiRevHist.

The same situation happens in writing JSONL
file as well, where each line of a JSONL file is a
complete JSON object. Even though we have inde-
pendence between lines, we cannot write the next
line efficiently until the current line is completed.
There are also potential writing conflicts between
processes without locking, so it is best practice to
only allow one process to write a JSONL file.

Ultimately, most researchers end up utilizing
only one CPU per XML file, which leads to a po-
tential issue: the necessity for an excessive amount
of storage space on shared clusters to accommodate
decompressed XML files concurrently.

3.3 Unit Processing Item and Resource
Congestion

The unit processing item, such as all revisions of
one article, is an important factor in dealing with
large-sized datasets like WikiRevHist. Loading all
revisions of an article as a unit processing item

104

Revision 1

Revision 2

Revision 3

Virtual
Article Store
(Memory + Drive)

One at a time

Revision i

GC previous revision

XML -> JSON

Receiving a new article L
F Receiving new revision w

Process revision object

Append to warehouse

Requesting warehouse

Finalizing warehouse

Storing metadata and byte offset of
the previous article for indexing

Reserving this warehouse
exclusively for an upcoming
article

2

Warehouse 1

Warehouse 2

III<

Warehouse 3

Figure 3: BloArk execution diagram of the "building process" in a single-process perspective. BloArk reads each
XML file from top to bottom and at the third depth. When a revision is received, we store each revision as one
JSON object in the warehouse file (JSONL format) and store the metadata in a separate, uncompressed JSONL file.
When a new article is detected, we finalize the previous article and assign a new warehouse for storage.

can be oversized for the memory when the revision
size is large, especially in a concurrent scenario
where all processes share the same memory. For
instance, some articles that have 300K revisions
could easily take up to 60 GB of memory when we
are loading from a raw XML file, making changes,
and outputting to a JSON file.

In addition, due to the nature of Python multi-
processing, no exception will be thrown from the
child process if it runs out of memory, such as
when all revisions of a long article are loaded into
memory at once. The unhandling scenario like this
increases the engineering complexity and failure
rate especially on large datasets like WikiRevHist.
In our experiments, resource congestion problem as
described in Figure 2 can be observed frequently.

To resolve this, we define the unit processing
item to be per revision instead of per article, which
reduces the amount of data loaded into memory at
the same time, and improves the concurrency. We
will discuss this in detail in a later section.

3.4 Reusability

When conducting research using WikiRevHist, a
significant challenge arises. Researchers often en-
counter the need for extensive additional work to
adapt and utilize others’ works effectively. De-
compression and recompression processes were
configured repeatedly, and dataset structures varied.
To improve reusability and downstream research
collaborations, BloArk standardizes the data struc-
ture for revision-based dataset such as WikiRevHist
and embeds repeated works within a unified data
pipeline. Any dataset built from BloArk should be

Segment (Article)

Segment (Article)

>I Warehouse |

Segment (Article)

b

B B B R s 3 B B
o o =] o =] =] =] =]
s] &]]]]] a
% > > > > > > > >
[() [[[() Q [
slle(fe]||e|le|[=]]e]|]|2||
- x x x x x x x x
= [v] [v]] %] [v]]]]
sifeflefllel|lelleflo]] e
m [m o o o o m
Figure 4: BloArk’s data structure has three components:

blocks, segments, and warehouses. In the mapping to
WikiRevHist, a block represents a revision, a segment
consists of a metadata object and all revisions on a
timely basis, and a warehouse contains multiple seg-
ments (articles) until exceeding the size limit.

effortlessly imported, viewed, and updated with-
out the need of heavy engineering configurations.
Details of our approach will be described in the
"modifying process" below.

4 Architecture and Usage

One goal of this research is to build a highly
reusable architecture for supporting a wide range
of downstream research in exploring the poten-
tial value of WikiRevHist. Since Wikipedia XML
dumps are difficult to handle and expensive to pro-
cess (Thiébaut et al., 2011), BloArk transforms
the XML dumps into JSONL format before any
data processing for easier storage and handling.
This is called the "building process". This pro-

105

Revisions of Article 1

Revisions of Article 2

Wikipedia
Revision

Building
Process

History
(XML Dumps)

Revisions of Article 3

Downstream Dataset 1
Original
BloArk
Warehouses

Modifying

Downstream Dataset 2
Process

Downstream Dataset 3

Figure 5: BloArk’s data flow reduces the processing cost by making all downstream datasets on top of an original
processed BloArk warehouses, which transforms XML data into JSON format. Under this setting, the most

time-consuming process, the "building process"
month.

cess is used for overcoming the high cost of pro-
cessing XML files by only executing it once. Af-
ter the "building process", researchers can create
downstream datasets based on a modifier that tells
BloArk how to transform each unit processing item
in the dataset. This is called the "modifying pro-
cess".

4.1 Building Process

In the building process, we use parallel CPU cores
to decompress raw XML dumps of WikiRevHist
and transform revision objects from XML syntax
into JSON format before storing into the disk, as
illustrated in Figure 3. Due to the independence
reason mentioned in Section 3.2, the optimal ap-
proach is to process one XML file per CPU core,
which makes this step harder to scale.

As described in Figure 4, BloArk consists of
three parts: blocks, segments, and warehouses.
These three components are shared across two pro-
cesses. In the mapping to the WikiRevHist, a block
corresponds to a single revision, a segment repre-
sents an article comprising multiple revisions, and
a warehouse consists of a specified number of arti-
cles, defined by a size limit. Each block represents
an JSON object equivalent to the structure below:

"article_id": "...",
"revision_id": "...",
"timestamp”: "...",
"contributor”: {
"username”: "...",
"idll . n n
}’
"comment”: "...",
"format" .on n
R
"text": {
u@bytesu .on n
"#text" T n ’

}’

"shal”: "..."

, will only be executed once for an entire WikiRevHist dump of a

4.2 Modifying Process

After building the raw dataset from XML dumps
into BloArk warehouses, we can make batch
changes to the existing dataset. To configure the
modifying process, researchers need to define a
BloArk modifier that takes revision information
in each step, and outputs the target block that
should be stored. Article-level computations can
also be done through segment metadata, such as
word counts and article URL extractions. This step
is similar to MapReduce (Dean and Ghemawat,
2008), which applies batch changes to the dataset,
but BloArk modifier is simpler to define and easier
to use on smaller-sized machines. We will describe
the example usage and process setup in Section 5.
To avoid overflowing the memory in subprocesses,
BloArk loads blocks only when it is requested, and
discards the loaded variable once the modification
of a block has been done. For example, if we are
trying to extract link differences between adjacent
revisions from WikiRevHist while discarding all
irrelevant information, the modified block will be
structured like this:

n n

"article_id": "...",
"revision_id": "...",
P

"timestamp”: "...",
"added_urls": ["...", "...", "..."]1,
"removed_urls”: ["...", "...", "..."]

}

4.3 Parallelization

In order to deliver a similar performance as Hadoop
while keeping usability and convenience on smaller
machines, we specify the unit processing item for
all BloArk jobs. Unit processing item is the mini-
mum unit that its peer can be safely processed in
other CPU cores without duplicating efforts. In the
"building process”, a unit processing item is one
XML file. Even though articles are independent
from each other on Wikipedia, they are stored in

106

a way that has a linear dependency in the XML
dumps. For example, we cannot get the second
article in a certain way without going through the
first article. After building the warehouses, BloArk
stores the file offset for a segment, so it is fast and
convenient to locate the revisions of an article with-
out needing to go through the articles stored before
it. Therefore, in the "modifying process", it is pos-
sible to process articles from the same warehouse
across multiple CPU cores. This increases the com-
puting resource utilization when processing size is
small.

S Example Usages

In this section, we demonstrate the complete usage
of BloArk library from downloading the source
dataset, building original warehouses, to modi-
fying previously-built warehouses based on spe-
cific research needs. The complete data flow for
WikiRevHist downstream datasets is illustrated in
Figure 5.

Please note that Python snippets in this section
are simplified for demonstration purposes. They
are designed to be run in Jupyter Notebooks. Addi-
tional code and type verification might be needed
to run them directly as a Python script, such as:

_— __main
Your code snippet goes to here

if __name__ ==

5.1 Download the Source Data

Before building the original warehouses, the source
WikiRevHist data dump is required, such as En-
glish Wikipedia (enwiki)> hosted on Wikimedia
Foundation. It can be downloaded efficiently using
WikiDL library® and with a maximum of 3 pro-
cesses for a fair use of public resources’. The code
sample for downloading WikiRevHist is demon-
strated below. Downloading may require a signifi-
cant amount of time.

from wikidl import WikiDL

downloader = WikiDL(
Specify parallel downloading (max 3).
num_proc=3,
Update this to the latest dump date.
snapshot_date='20240801",
This means: Edit History Dump (EHD).
select_pattern='ehd',

5https://dumps.wikimedia.org/enwiki/

SWikiDL Docs: https://wikidl.lingxi.li/

"This 3-process limit is observed from Wikimedia gateway
rules. HTTP Error 503 will be returned if having more than 3
parallel downloads.

Process starts.

downloaded_files = downloader.start(
Save all compressed dumps into
output_dir="'./input"',

“/input ".
)

5.2 Build Original Warehouses from the
Source Data

The "building process" of BloArk should be applied
to transform original XML dumps of WikiRevHist
dataset into BloArk warehouses in JSONL format.
As described in Section 4, the "building process" is
required for any downstream dataset and expected
to only run once.

For better system reliability, it is recommended
to reserve at least 1 GB of memory per CPU in
this long-running job. This memory limit depends
on the largest size of an article. Memory overflow
is generally difficult to identify in Python, and it
leads to a CPU process that never joins back to the
main process. As the WikiRevHist is updated every
month, larger memory budget per CPU is recom-
mended to avoid losing long-running progress.

import bloark

builder = bloark.Builder(
Define the output location for warehouses.
output_dir="./warehouses"',
Use 8 processes (CPUs) in parallel.
num_proc=8,

)

Load all compressed XML dump file names.
It does not load files into memory yet.
builder.preload('./input")

Optional: if you want to test with the first 10
compressed XML dumps, use following line.
builder.files = builder.files[:10]

This command will take a long time.
builder.build()

5.3 Example Dataset: Clean Text and Links

All WikiRevHist contents use Wikitext, a markup
language for all Wikipedia documents. To extract
clean text that does not include any markup syntax
for better downstream training, we propose a new
dataset that can be easily built using BloArk. In
the "modifying process", we define the block-level
modifier function using Grimm package® and store
texts, links, and images as new blocks into new
warehouses.

Cleaned WikiRevHist data has been widely used
in training editing models, such as in modeling

8Grimm Package Docs: https://twiki.lingxi.li/
docs/grimm/get-started

107

https://dumps.wikimedia.org/enwiki/
https://wikidl.lingxi.li/
https://twiki.lingxi.li/docs/grimm/get-started
https://twiki.lingxi.li/docs/grimm/get-started

editing processes (Reid and Neubig, 2022) task.
BloArk can improve the efficiency of data prepa-
ration by simplifying the implementation and en-
hancing the processing speed.

import bloark
from grimm import clean_syntax

class CleanModifier(bloark.ModifierProfile):
def block(
self, content: dict, metadata: dict
):
text_content = content['text']['#text']
output = clean_syntax(text_content)
text, ext_urls, int_urls, imgs = output

new_content = {
"revision_id": content['revision_id']
"clean_text": text,
"external_links": ext_urls,
ws . w. s
internal_links"”: int_urls,
"images": imgs,
3

return new_content, metadata

modifier = bloark.Modifier(
output_dir="./output’,
num_proc=8,

)

Load original warehouses.
modifier.preload('./warehouses")

Tips: you can add more than one profile.
modifier.add_profile(CleanModifier())

This command will take a long time.
modifier.start()

The original input of this process shapes as de-
scribed in Section 4.1. After running the "modify-
ing process", outputted blocks in new warehouses
will be structured like this:

{
"revision_id": "...",
"clean_text": "...",
"external_links"”: ["...", "...", "..."],
"internal_links": ["...", "...", "..."],
"images": ["...", "...", "..."]

}

5.4 Example Dataset: 6-Month Snapshots

One way to modify original warehouses is by filter-
ing, such as keeping only revisions that meet spe-
cific criteria. This can also help reduce the size of
the dataset and the cost of future processing. In the
past, significant efforts have focused on generating
the next revision of an article based on previous re-
vision histories. In those NLP tasks, WikiRevHist
can conveniently provide article snapshots every
six months within the past decade. Therefore, we
propose a new dataset based on BloArk that has

revision snapshots of an article for every 6 month.
The block-level structure of this dataset should re-
main the same as described in Section 4.1, but have
less blocks.

There are two benefits. First, it is easier to ob-
serve apparent changes in snapshots every 6 months
than continuous editing histories. When using all
editing revisions to train the model, some revisions
might not help generalize the pattern of changes
for the actual event, as those are simply replacing
some unnecessary words or fine-tuning paragraphs.
Second, WikiRevHist data hosting platforms like
Wikimedia Foundation does not keep latest revision
data dumps that are older than 3 months, which
makes it very hard to find the snapshot at a specific
time frame from the internet without accessing the
full revision history.

The following is a simplified example code for
modifying this dataset from original warehouses.

from datetime import datetime, timedelta
import bloark

class SnapshotModifier(bloark.ModifierProfile):
last_date: datetime = None

def block(
self, content: dict, metadata: dict
):
timestamp = content['timestamp']
curr_date = datetime \
.fromisoformat(timestamp)

if self.last_date and curr_date < (
self.last_date + timedelta(days=180)
):
“None ™ for not saving this block.
“metadata” is still needed.
return None, metadata

self.last_date = curr_date
return content, metadata

modifier = bloark.Modifier(
output_dir="./output’,
num_proc=8,

)

modifier.preload('./warehouses"')
modifier.add_profile(SnapshotModifier())
modifier.start()

5.5 [Example Dataset: 6-Month Edit
Summaries

In the task of summarizing human edits, we need
a dataset that contains the edit differences and a
generated summary on those differences. Original
WikiRevHist dump kept all revisions, which is too
frequent for this dataset and is not cost-effective to
have a large amount of generation works. There-
fore, we propose a new dataset based on BloArk to

108

extract the summary of edits from each article in a
6-month time frame. For every adjacent revisions
in an article, we compare their text, get a list of
differences, and use LLM to generate a summary.

With the incremental modification by BloArk,
the creation process of this dataset could be based
on the 6-month snapshot dataset mentioned in Sec-
tion 5.4. It saves time on re-filtering revisions from
the source, and it is convenient to reuse works that
had already been done by BloArk.

import bloark

class SummaryModifier(bloark.ModifierProfile):
last_text: str = None

def block(
self, content: dict, metadata: dict
):
if not last_text:
last_text = curr_text
return None, metadata

curr_text = content['text']['#text']

TODO: Implement this function.
changes = diff_function(...)

TODO: Implement this function.
summary = summarize_changes(...)

last_text = curr_text
new_data = {

"changes”: changes,

"summary"”: summary,

"timestamp”: content['timestamp'],
}

return new_data, metadata

modifier = bloark.Modifier(
output_dir="./output’,
num_proc=8,

)

Load the previously-built snapshot dataset.
This saves the time to filter from source.
modifier.preload('./6-month-snapshots')
modifier.add_profile(SummaryModifier())
modifier.start()

The modified block will have differences for
every 6 month, and be structured as below. The
actual format of edit differences will be based on
the implementation of difference function.

{
"changes": [
{ "type": "add”, "content”: "..." 3},
{ "type": "remove”, "content": "..." },
:lr
"summary"”: "...",
"timestamp”: "..."
}

6 Limitations and Future Works

First, current BloArk does not have a way to in-
crementally sync changes when the source XML
dumps are updated. WikiRevHist dumps update
once a month. Therefore, users need to rebuild
from the source every month in order to get the
most up-to-date dataset. In the future, the "building
process” of BloArk can be expanded with a feature
to extract differences between two XML dumps
and update previously-built warehouses from the
differences.

Second, raw WikiRevHist XML dumps store
each revision in full text. To improve storage effi-
ciency, users can extract differences between adja-
cent revisions using libraries like difflib or ergod-
iff, and only store the differences. This extraction
process can be achieved with a BloArk modifier
applied after the "building process".

Third, current BloArk does not support the sepa-
ration of blocks. This can be improved by design-
ing a new API for modifiers, which allows return-
ing multiple blocks instead of requiring one-on-one
mapping. This future work can be widely used on
tasks like expanding a single revision into multiple
knowledge entries where each block is a tuple for
knowledge graph.

Lastly, this work currently lacks a benchmark or
evaluation. Establishing an empirical benchmark
to evaluate the efficiency of data processing frame-
works on WikiRevHist would be beneficial for com-
paring the performance and usability among similar
frameworks. Additionally, it would serve as a mea-
suring guideline for future research in this area.

7 Conclusion

In this work, we introduce BloArk, an efficient,
cost-effective, and incremental dataset architecture
for processing WikiRevHist. BloArk provides two
different processes, the "building process" and the
"modifying process", for resolving two main issues:
high cost of handling XML dumps, and inconve-
nience of querying and modifying existing datasets
built upon XML dumps. Since all datasets built by
BloArk can be easily imported and modified fur-
ther, the cost of doing research on WikiRevHist will
be decreased. With BloArk, prospective users can
save their time when exploring the potential value
of WikiRevHist and other downstream datasets.

109

References

Tim Althoff, Xin Luna Dong, Kevin Murphy, Safa Alai,
Van Dang, and Wei Zhang. 2015. Timemachine:
Timeline generation for knowledge-base entities. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-

ing, pages 19-28.

Jan A Botha, Manaal Faruqui, John Alex, Jason
Baldridge, and Dipanjan Das. 2018. Learning to
split and rephrase from wikipedia edit history. arXiv
preprint arXiv: 1808.09468.

Jeffrey Dean and Sanjay Ghemawat. 2008. Mapreduce:
simplified data processing on large clusters. Commu-
nications of the ACM, 51(1):107-113.

Marco Fisichella and Andrea Ceroni. 2021. Event detec-
tion in wikipedia edit history improved by documents
web based automatic assessment. Big Data and Cog-
nitive Computing, 5(3):34.

Alejandro Gonzalez-Hevia and Daniel Gayo-Avello.
2022. Leveraging wikidata’s edit history in knowl-
edge graph refinement tasks. arXiv preprint
arXiv:2210.15495.

Sunjae Kwon, Zonghai Yao, Harmon S Jordan, David A
Levy, Brian Corner, and Hong Yu. 2022. Medjex:
A medical jargon extraction model with wiki’s hy-
perlink span and contextualized masked language
model score. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing.
Conference on Empirical Methods in Natural Lan-
guage Processing, volume 2022, page 11733. NIH
Public Access.

Yinan Liu, Wei Shen, Zonghai Yao, Jianyong Wang,
Zhenglu Yang, and Xiaojie Yuan. 2020. Named en-
tity location prediction combining twitter and web.
IEEE Transactions on Knowledge and Data Engi-
neering, 33(11):3618-3633.

Antonio David Ponce Martinez, Thierry Etchegoyhen,
Jesus Javier Calleja Perez, and Harritxu Gete. 2024.
Split and rephrase with large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 11588-11607.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad
Saqib, Saeed Anwar, Muhammad Usman, Naveed
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A
comprehensive overview of large language models.
arXiv preprint arXiv:2307.06435.

Thomas Pellissier Tanon, Camille Bourgaux, and Fabian
Suchanek. 2019. Learning how to correct a knowl-
edge base from the edit history. In The World Wide
Web Conference, pages 1465-1475.

Alessandro Piscopo, Chris Phethean, and Elena Simperl.
2017. What makes a good collaborative knowledge
graph: group composition and quality in wikidata.
In Social Informatics: 9th International Conference,

Soclnfo 2017, Oxford, UK, September 13-15, 2017,
Proceedings, Part I 9, pages 305-322. Springer.

Jim Pivarski, David Lange, and Peter Elmer. 2020.
Nested data structures in array frameworks. In Jour-
nal of Physics: Conference Series, volume 1525,
page 012053. IOP Publishing.

Charu Rawat, Arnab Sarkar, Sameer Singh, Rafael Al-
varado, and Lane Rasberry. 2019. Automatic detec-
tion of online abuse and analysis of problematic users
in wikipedia. In 2019 Systems and Information En-
gineering Design Symposium (SIEDS), pages 1-6.
IEEE.

Machel Reid and Graham Neubig. 2022.
ing to model editing processes.
arXiv:2205.12374.

Learn-
arXiv preprint

Lukas Schmelzeisen, Corina Dima, and Steffen Staab.
2021. Wikidated 1.0: An evolving knowledge graph
dataset of wikidata’s revision history. arXiv preprint
arXiv:2112.05003.

Dominique Thiébaut, Yang Li, Diana Jaunzeikare,
Alexandra Cheng, Ellysha Raelen Recto, Gillian
Riggs, Xia Ting Zhao, Tonje Stolpestad, and Cam
Le T Nguyen. 2011. Processing wikipedia dumps-a
case-study comparing the xgrid and mapreduce ap-
proaches. In CLOSER, pages 391-396. Citeseer.

Tuan Tran, Andrea Ceroni, Mihai Georgescu,
Kaweh Djafari Naini, and Marco Fisichella. 2014.
Wikipevent: Leveraging wikipedia edit history for
event detection. In International Conference on
Web Information Systems Engineering, pages 90-108.
Springer.

Yunsong Zhang. 2022. A parallel xml parsing algorithm
based on nem-xml. In 2022 8th Annual International
Conference on Network and Information Systems for
Computers (ICNISC), pages 437-439. IEEE.

A Distribution and Maintenance

* Will the source code of BloArk be open

sourced on public platforms? Will it be
published?
Yes. BloArk is open sourced on GitHub under
GPL-2.0 license. Everyone is welcomed to
submit issues/pull requests (PRs) on BloArk’s
GitHub public repository. BloArk package is
published on PyPI and free to download for
everyone using Python package manager.

When will the source code be distributed?
The source code is immediately available on
our GitHub public repository.

Who will be supporting/maintaining the
BloArk?
Lingxi Li will maintain the BloArk code base

110

on GitHub and publish version changes to
PyPI periodically. Bug reports can be opened
on GitHub issues and Lingxi Li will address
them by severity.

* How can the owner/curator/manager of

the dataset architecture be contacted (e.g.,

email address)?
Lingxi Li, the creator/maintainer of BloArk,
can be contacted at: research@lingxi.li.

¢ Will downstream datasets be distributed
publicly?
No. BloArk is a data processing architecture
that can be used to build datasets. It is not
a dataset. Downstream datasets will be built,
distributed, and owned by prospective users.

¢ Will original warehouses be distributed to

third parties outside of the entity (e.g., com-

pany, institution, organization) on behalf of
which the dataset was created?
Yes, but for sample access only. Users can

use BloArk package and example code pro-
vided above to replicate the "building pro-

cess" and build original warehouses on their
own resources. We may consider releasing
one version of original warehouses built from
WikiRevHist XML dumps to Hugging Face
for public sample access.

¢ Is there an erratum?

BloArk has changelogs recorded in its offi-

cial website’. This information will also be
available on GitHub publishes.

» Will BloArk be updated (e.g., bug fixes, per-

formance improvements, feature requests)?
Lingxi Li will fix severe bugs and monitor
GitHub issues for bug reports and questions.

Feature requests and performance improve-
ments will be made by maintainers’ decisions.

Since BloArk is open sourced, everyone can
contribute to the code base, and Lingxi Li will
review the contribution to ensure the quality
and safety of BloArk.

¢ Has BloArk been used for any tasks al-

ready?
BloArk has already been used in tasks given
in example datasets described in Section 5.

*https://bloark.lingxi.li/resources/changelog

111

* Will older versions of BloArk continue to
be hosted?
All previous versions of BloArk package
will always be available to download through
Python package manager from PyPI.

* If others want to extend/augment/build
on/contribute to this dataset architecture,
is there a mechanism for them to do so?
Yes. BloArk’s GitHub repository is public and
opened to everyone for contributions through
PR. Lingxi Li will review submitted code to
ensure quality and safety of BloArk package.

* Will BloArk be distributed under a copy-

right or other intellectual property (IP) li-
cense, and/or under applicable terms of use
(ToU)?
BloArk is open sourced under GPL-2.0 li-
cense. The copyright of WikiRevHist dataset
belongs to its original license from Wikipedia.
All downstream datasets will not have owner-
ship connection to BloArk.

https://bloark.lingxi.li/resources/changelog

