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Abstract

This paper describes the system developed by
the HITSZ-HLT team for WASSA-2024 Shared
Task 2, which addresses two closely linked sub-
tasks: Cross-lingual Emotion Detection and
Binary Trigger Word Detection in tweets. The
main goal of Shared Task 2 is to simultaneously
identify the emotions expressed and detect the
trigger words across multiple languages. To
achieve this, we introduce a Language-agnostic
Multi Task Learning (LaMTL) framework that
integrates emotion prediction and emotion trig-
ger word detection tasks. By fostering syn-
ergistic interactions between task-specific and
task-agnostic representations, the LaMTL aims
to mutually enhance emotional cues, ultimately
improving the performance of both tasks. Addi-
tionally, we leverage large-scale language mod-
els to translate the training dataset into multiple
languages, thereby fostering the formation of
language-agnostic representations within the
model, significantly enhancing the model’s abil-
ity to transfer and perform well across multi-
lingual data. Experimental results demonstrate
the effectiveness of our framework across both
tasks, with a particular highlight on its success
in achieving second place in sub-task 2.

1 Introduction

Sentiment Analysis is an important task in Natu-
ral Language Processing (NLP), aiming to identify
and assess the sentiment polarity in texts (Cambria,
2016). With the rapid development of social media
and the Internet, sentiment analysis has become
increasingly important in various fields such as
customer service (Zvarevashe and Olugbara, 2018)
and finance (Xing et al., 2020). Despite notable
strides in sentiment analysis research (Jiang et al.,
2023; Tu et al., 2023; Zhang et al., 2023; Hartmann
et al., 2023; Zhong et al., 2023), challenges per-
sist, particularly concerning foreign language texts
where annotated data may be scarce.

*Corresponding author.

Cross-lingual Sentiment Analysis (CLSA) (Liu,
2012) mitigates these challenges by utilizing re-
sources from one or more source languages to
assist in sentiment analysis for low-resource lan-
guages (Esuli et al., 2020). This approach ad-
dresses the lack of annotated corpora for many
non-English languages, making it a crucial research
area in NLP. The fundamental strategy entails the
transfer and adaptation of knowledge across vari-
ous linguistic contexts (Zhao et al., 2024). Building
on the foundational principles of CLSA, our study
further explores how these methodologies can be
practically implemented to enhance model perfor-
mance across diverse linguistic settings.

The main challenge in Shared Task 2 (Maladry
et al., 2024) involves two key aspects: (1) Enhanc-
ing the model’s capability to transfer knowledge
to languages not present in the training data. (2)
Developing strategies to effectively utilize com-
plementarities between dual tasks given the lim-
ited availability of annotated data. To address the
aforementioned challenges, we have developed a
Language-agnostic Multi Task Learning (LaMTL)
framework that effectively navigates cross-lingual
obstacles while simultaneously bridging shared
emotional cues across dual tasks.

Specifically, we utilize ChatGPT' as a sophis-
ticated tool for translation. By refining prompts,
we translate the original tweets into Dutch, Rus-
sian, Spanish, and French, striving to maintain the
original style as accurately as possible. By align-
ing the representations of identical tweets across
different languages (Feng et al., 2022), we aim to
develop a language-agnostic representation. Due
to the complementary relationship between emo-
tions and trigger words within tweets, we have de-
signed a novel multi-task framework that includes
both task-agnostic and task-specific encoders. The
task-agnostic encoder captures task-invariant fea-

"https://chat.openai.com/
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tures, facilitating the identification of underlying
commonalities and related characteristics across
tasks, while the task-specific encoder learns fea-
tures unique to each task. To ensure comprehensive
training, we incorporated multiple loss functions,
including reconstruction loss and task prediction
loss. This approach aims to improve the accuracy
and robustness of multi-task learning by leveraging
both shared and task-specific features, ultimately
enhancing the framework’s performance on various
tasks.

Additionally, we conducted a rigorous evalua-
tion of our approach utilizing the EXALT dataset?,
which substantiated its effectiveness. This compre-
hensive validation process led to our achievement
of an esteemed second place in a highly competitive
arena, as documented on the official leaderboard?.

2 Related Evaluation Tasks

In recent years, CLSA has gained widespread at-
tention. In 2013, NLP&CC organized a cross-
language evaluation by releasing annotated English
data from Amazon user reviews and unannotated
Chinese reviews. This initiative facilitated the de-
velopment of methods for cross-lingual sentiment
analysis. SemEval-2017 Task 4 (Rosenthal et al.,
2017) focused on multilingual sentiment analysis
of Twitter posts. This task utilized product ratings
from platforms such as Amazon, TripAdvisor, and
Yelp, and included five subtasks for both Arabic
and English. SemEval-2020 Task 9 (Patwa et al.,
2020) concentrated on sentiment analysis of code-
mixed tweets in Hinglish and Spanglish, providing
annotated corpora and attracting 89 submissions.
The top models achieved F1 scores of 75.0% for
Hinglish and 80.6% for Spanglish. SemEval-2022
Task 10 (Barnes et al., 2022) introduced the first
shared task on Structured Sentiment Analysis. Par-
ticipants were required to predict sentiment graphs
composed of a holder, target, expression, and po-
larity across seven datasets in five languages.

3 Methodology

In this section, we offer a comprehensive introduc-
tion to each component of the proposed LaMTL
framework, illustrated in Fig. 1.

“https://huggingface.co/datasets/pranaydeeps/EXALT-v1
3https://1t3.ugent.be/exalt

3.1 Feature Extraction

We first employ ChatGPT to translate each English
tweet x§ from the training dataset D into xzb, where
Y € {d,r,s, f} corresponds to Dutch, Russian,
Spanish, and French, respectively. Subsequently,
we utilize a multilingual pretrained model as the
foundational encoder to extract feature representa-
tions from the tweets across various languages.
Specifically, for a tweet x; = {51, S2,...,SA; }»
where N; denotes the number of words of x;, the
corresponding sequence of tokens resulting from
the application of subword tokenization techniques
such as WordPiece and Byte Pair Encoding (BPE)
is denoted by {w1, wa, . . ., w/\Afi}' N signifies the
number of tokens corresponding to x;. The out-
put of the last layer is denoted as h® € RNixdn

P .
and h¥ € RN *dn_ For each word sj, its repre-
sentation h; € R? is obtained by averaging the
representations of its corresponding tokens.

3.2 Cross-Lingual Semantic Alignment

The Cross-Lingual Semantic Alignment (SA) Mod-
ule aims to align semantic representations across
language barriers. To achieve this, we employ the
Mean Squared Error (MSE) as a reconstruction
loss function. This function aims to minimize the
semantic distance between translated non-English
tweets and their English counterparts. It promotes
the convergence of the feature vectors h? of the
translated tweets toward the feature vectors h® of
the original English tweets, ensuring consistent
semantic representation across languages. The re-
construction loss L. can be represented as,

Lyec = > MSE(h, h?), (1)
"

where he and @ denote the [CLS] representation
or the average of all tokens for h® and h?.

3.3 Multi-Task Fusion

To effectively encapsulate the pertinent emotional
cues in diverse tasks, we developed the Multi-Task
Fusion (MTF) Module. This module integrates a
task-invariant encoder alongside two task-specific
encoders, each comprising a stacked structure of L
transformer encoder layers. In MTF, each tweet x;
is processed by three distinct encoders. The first
encoder, Eg, is task-invariant and designed to learn
a generalized representation across multiple tasks
by positioning the learned features within a com-
mon subspace. The other two encoders, E. and E;,
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Figure 1: The proposed LaMTL framework. The graphical symbols directly correspond to the equations presented

within the paper.

are task-specific. E. is dedicated to emotion de-
tection, focusing on the subtle emotional nuances
embedded within the tweets. In contrast, E; spe-
cializes in emotion trigger detection, identifying
key triggers that indicate the presence or absence
of specific emotional conditions. The process can
be represented as:

hs = Es(hea @8)7 (2)
h77 = Eﬁ(he> @77)777 € {e¢t}' (3)

The encoder E; shares parameters ©; across the
two tasks, while E,, utilizes distinct parameters O,
for each task.

Finally, we concatenate the task-invariant repre-
sentations hg with the task-specific representation
h,, and use a Multi-Layer Perceptron (MLP) with
softmax for classification. Formally,

HTI =h, hna )
’P77 = softmaX(MLPn (Hn))v o)
51 = argmax(P,). ©

where @ denotes the concatenation operation. No-
tably, we utilize ¥, as the prediction results for the
task n.

3.4 Model Training

We utilize cross-entropy loss for the classification
of the Cross-lingual Emotion Detection and Binary
Trigger Word Detection tasks, denoted as £, and
L, respectively. The computation process can be
described as follows:

Ny Cy

£y = 33 v P

jlkl

i) (D

where N denotes the number of samples, C' rep-
resents the number of classes for task 7, Py, (k]
denotes the probability distribution for instance j
over class k, and y,, ;)3 is a binary indicator that
equals 1 if class k is the correct classification for
instance j in task 7, and O otherwise. Specifically,
C is set to 6 for task = e and to 2 for task n = ¢.
For samples in the dataset containing two types of
labels, we compute L. and £;. For samples with
only one type of label, we compute the loss spe-
cific to the corresponding task. To facilitate better-
mixed learning, we apply a shuffling strategy to the
dataset.

By combining the reconstruction loss and task-
specific loss, our final loss function can be ex-
pressed as,

E:£e+£t+/\rec£rec+)\”®”%7 (®)

where L. and L; denote the classification loss for
Cross-lingual Emotion Detection and Binary Trig-
ger Word Detection, while A represents the L2 reg-
ularization weight, and © signifies the set of all
trainable parameters.

4 Experiments

4.1 Baselines

To demonstrate the efficacy of our approach, we
fine-tuned multilingual pre-trained models using
the official codebase*, including Multilingual-
BERT (Devlin et al., 2019), LaBSE (Feng et al.,
2022), and Multilingual-E5-Large (Wang et al.,
2024). Furthermore, due to the robust multilin-
gual capabilities of LLM, we conducted experi-
ments using various configurations. Specifically,

“https://github.com/pranaydeeps/WASSA24_EXALT
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Methods Emotion Binary Triggers

EXALT-Baseline ® 44.76 23.49
Multilingual-BERT*®  34.40 23.57
LaBSE* 48.41 32.49
Multilingual-E5-large ®*  51.70 25.68
LLaMA2 + LoRAMOoE ¢ 49.03 57.05
LLaMA3 + LoRA ¢ 54.40 57.62
GPT4 (Zero-shot)© 52.57 -
LaMTL? 56.88 60.95

Table 1: Comparison of F1 score (%) conducted for the
EXALT datasets. The results are presented such that the
highest performance is denoted in bold, and the second
highest performance is underlined. # indicates results
obtained from Codalab, *® indicates our re-implemented
using the official codebase, < indicates the results of our
implementation on the validation set, and ! indicates the
results of our implementation on the test set.

Methods Emotion  Binary Triggers
LaMTL? 56.88 60.95
w/o SAT 54.85 58.47

- wlo MTFY 5490 59.84

Table 2: F1 score (%) for Ablation results.

we fine-tuned LLaMA-2 (Touvron et al., 2023) in
conjunction with LORAMOE (Dou et al., 2024)
and LLaMA-3 (Al@Meta, 2024) with LoRA (Hu
et al., 2022). Additionally, we performed zero-shot
emotion detection experiments on GPT-4 (Achiam
et al., 2023), and the designed prompt template can
be found in Appendix A.

In ablation studies, ‘w/o SA’ denotes the removal
of the SA module, and ‘w/o MTF’ indicates the
removal of the MTF module.

4.2 Experimental Settings

In our experimental settings, we utilize a learning
rate of le-4 with the AdamW optimizer to optimize
the model parameters. We configured gradient ac-
cumulation to 4 and batch size to 8. In this study,
we employ XLM-RoBERTa-Large (Conneau et al.,
2020) as the backbone model. We configured the
encoder in the MTF module as a single-layer trans-
former encoder. Additionally, the \,... parameter
was strategically set to 0.05. The word embedding
dimension dy, is 1024, and the maximum sequence
length is 512. All experiments were conducted on
a single RTX 4090 GPU, using BF16 precision to
optimize both speed and computational efficiency.

Team Binary Triggers
CTcloud 61.58
HITSZ-HLT 60.95
UWB 59.19
NLP_Newcomer 57.85
NYCU-NLP 56.36

Table 3: Top-5 F1 score (%) for Binary Trigger Word
Detection. The results are presented such that the high-
est performance is denoted in bold, and the second high-
est performance is underlined.

4.3 Evaluation Metrics

We use the official metrics for evaluation. For the
Cross-lingual Emotion Detection task, we use the
Macro-averaged F1 score as the evaluation metric.
For the Binary Trigger Word Detection task, we
utilize the Token F1 score as the evaluation metric.

4.4 Experimental Results and Analysis

Comparative Results: Table 1 presents a compar-
ative analysis of our LaMTL model against vari-
ous cross-lingual baseline models and LLMs. Our
LaMTL model consistently outperforms the base-
lines across both sub-tasks, demonstrating superior
performance. In addition, LLMs also exhibit re-
markable performance and will be a primary focus
of our future research.

Ablation Studies: We conducted ablation experi-
ments for our framework. According to the results
shown in Table 2, the LaMTL model achieved F1
scores of 56.88% on the Emotion task and 60.95%
on the Binary Triggers task. Removing the Cross-
lingual Semantic Alignment (SA) module resulted
in F1 score decreases of 2.03 and 2.48 percent-
age points for the Emotion and Binary Triggers
tasks, respectively, indicating the importance of
cross-linguistic feature semantic alignment, espe-
cially for the Binary Triggers Word Detection task.
Similarly, removing the Multi-Task Fusion (MTF)
module led to F1 score decreases of 1.98 and 1.11
percentage points for the Emotion and Binary Trig-
gers tasks, respectively.

Leaderboard Results: Table 3 presents the per-
formance of the top five teams in Binary Trigger
Word Detection task. Our method achieves second
place on the leaderboard.

5 Conclusions

In this paper, we propose a language-agnostic multi-
task learning approach to address the challenge of
interpretability in cross-lingual sentiment analysis.
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Firstly, we designed a reconstruction loss to mit-
igate cross-lingual discrepancies. Secondly, we
implemented a multi-task learning framework to
share sentiment cues between two tasks, thereby en-
hancing performance in both tasks. Through these
methods, our model effectively enhances cross-
lingual capabilities and facilitates the sharing of
emotional cues between multiple tasks, thereby
achieving competitive performance.

6 Limitations

Although our LaMTL framework has demonstrated
significant efficacy in cross-lingual sentiment de-
tection and binary trigger word detection, there are
several limitations that need to be addressed in fu-
ture work. The use of large-scale language models
for translation introduces potential biases and inac-
curacies, especially for less common or informal
texts in tweets. These translation inconsistencies
can affect the quality of language-agnostic repre-
sentations. While our framework has achieved com-
mendable results, real-world applications might
present additional challenges, such as subtle nu-
ances specific to certain domains and the evolving
use of language, which were not extensively ex-
plored in this study. Addressing these limitations
in future research is crucial for enhancing the appli-
cability and performance of cross-lingual sentiment
analysis models.
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A Prompt Template for Emotion
Detection

To employ GPT-4 for Cross-lingual Emotion De-
tection tasks, we have designed an effective prompt
template, as illustrated in Figure 2.

( R

Assuming the role of a tweet analyst, please analyze a tweet now.
Tweet: {}

Requirement:

Emotion: Identify the primary emotion from the following options:
['Anger’, "Fear’, "Joy’, "Love’, "Neutral’, "Sadness"].

Explantation: provide an explanation in English for the identified emotion.
Please format your response in JSON as shown below:

{

"Emotion": "<insert identified emotion here>",

"Explanation”: "<provide explanation for the identified emotion here>"

Figure 2: The designed prompt template for GPT-4.
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