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Abstract

In the realm of conversational empathy and
emotion prediction, emotions are frequently
categorized into multiple levels. This study
seeks to enhance the performance of emotion
prediction models by incorporating the Pear-
son correlation coefficient as a regularization
term within the loss function. This regular-
ization approach ensures closer alignment be-
tween predicted and actual emotion levels, mit-
igating extreme predictions and resulting in
smoother and more consistent outputs. Such
outputs are essential for capturing the subtle
transitions between continuous emotion levels.
Through experimental comparisons between
models with and without Pearson regulariza-
tion, our findings demonstrate that integrating
the Pearson correlation coefficient significantly
boosts model performance, yielding higher cor-
relation scores and more accurate predictions.
Our system officially ranked 9th at the Track
2: CONV-turn. The code for our model can be
found at Link 1.

1 Introduction

Accurately predicting emotions is crucial for creat-
ing responsive and empathetic conversational sys-
tems. Emotions are typically classified into multi-
ple levels, reflecting their nuanced and continuous
nature. Many existing approaches focus on min-
imizing prediction errors but often overlook the
linear relationship between predicted and actual
emotion levels, resulting in extreme and unstable
predictions (Acheampong et al., 2021; Zhou et al.,
2024; Creanga and Dinu, 2024).

To address this, we propose enhancing emotion
prediction models by incorporating the Pearson cor-
relation coefficient as a regularization term in the
loss function. The Pearson correlation measures
the linear correlation between predicted and actual

1https://github.com/gongziruo/Empathy-and-Emotion-
Prediction-in-Conversations-Turns-CONV-turn

emotion levels. By including this metric, our ap-
proach aims to generate predictions that minimize
absolute error while maintaining high correlation
with actual emotions. Theoretical analysis con-
firms the differentiability and convergence of the
proposed loss function, ensuring a stable and reli-
able optimization process.

Additionally, we introduce Consistent-Mixup
data augmentation(CMDA) and boosting tech-
niques to further improve model performance.
CMDA creates new training samples by combin-
ing data from different classes, enhancing the
model’s ability to generalize. Boosting leverages
the strengths of multiple models, such as BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019)
and DeBERTa (He et al., 2020), by combining their
predictions based on individual accuracies, thereby
improving overall accuracy.

We conducted experiments to validate our ap-
proach, comparing models trained with and without
Pearson regularization, and those enhanced with
CMDA and boosting. Results show that incorporat-
ing the Pearson correlation coefficient significantly
improves performance, yielding higher correlation
scores and more accurate emotion predictions. Fur-
thermore, combining CMDA and boosting tech-
niques leads to even greater improvements in model
effectiveness.

2 Related Work

Recent research has explored various fine-tuning
strategies for Transformer-based models like BERT,
RoBERTa, and DeBERTa to enhance downstream
performance. Sun et al. (2019) demonstrated signif-
icant improvements with techniques such as layer-
wise learning rate decay and data augmentation.
Mosbach et al. (2020) provided insights into sta-
ble fine-tuning through learning rate schedules and
early stopping. Additionally, Dong et al. (2019)
proposed a unified pre-training framework for lan-
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guage understanding and generation, while Gao
et al. (2023) introduced progressive module train-
ing to incrementally fine-tune models, enhancing
performance and stability.

In dialogue systems, Transformer models have
been effectively applied to emotion prediction
(Acheampong et al., 2021; Vazquez-Rodriguez
et al., 2022). Tu et al. (2022) improved emotion
recognition by leveraging context-aware embed-
dings and fine-tuning on emotion-labeled dialogue
datasets. The WASSA 2023 shared task further
explored empathy, emotion, and personality detec-
tion in conversations and reactions to news articles,
highlighting the challenges and advancements in
this domain (Barriere et al., 2023; Giorgi et al.,
2024).

While Pearson correlation regularization re-
mains underexplored, other methods like adversar-
ial training (Liu et al., 2020) have been examined
to enhance model robustness by adding input per-
turbations. These studies underscore the evolving
fine-tuning methodologies for Transformer models,
showcasing strategies such as layer-wise learning
rate decay, context-aware embeddings, adversarial
training, and progressive module training to en-
hance performance and stability in NLP tasks.

3 Methodology

3.1 Pearson Coefficient as Regularization
Term

To incorporate the negative Pearson coefficient as
a regularization term in the loss function, the total
loss can be expressed as:

Ltotal = Lcom + λ(1− ρ(ŷ,y)), (1)

where λ is the regularization coefficient, and
ρ(ŷ,y) represents the Pearson correlation between
predictions ŷ and true labels y.

The combined loss Lcom is defined as:

Lcom = aLCE +β


− 1

N

N∑

i=1

C∑

j=1

Pyij log(pij)


 .

(2)
In this equation, LCE stands for Cross-Entropy

Loss, a is the weight of LCE, Pyij indicates the
penalty for misclassifying class yi as class j, pij
is the predicted probability for class j, N is the
number of samples, and C represents the number
of classes. Each value in the penalty matrix P is
non-negative, with higher penalties assigned for

misclassifications between labels that are numeri-
cally farther apart.

3.1.1 Differentiability
The Pearson correlation coefficient between two
variables ŷ = (ŷ1, . . . , ŷn) and y = (y1, . . . , yn)
is defined as:

ρ(ŷ,y) =

∑n
i=1(ŷi − ¯̂y)(yi − ȳ)√∑n

i=1(ŷi − ¯̂y)2
√∑n

i=1(yi − ȳ)2
,

where ¯̂y and ȳ are the sample means of ŷ and y,
respectively.

To derive the gradient of the Pearson corre-
lation coefficient, we apply the quotient rule.
Let u =

∑n
i=1(ŷi − x̄)(yi − ȳ) and v =√∑n

i=1(ŷi − ¯̂y)2
√∑n

i=1(yi − ȳ)2. Then, the
partial derivative of ρ(ŷ,y) with respect to ŷi is
given by:

∂ρ(ŷ,y)

∂ŷi
=

v ∂u
∂ŷi

− u ∂v
∂ŷi

v2
. (3)

The partial derivatives of u and v with respect to
ŷi are:

∂u

∂ŷi
=

1

n
(yi − ȳ), (4)

∂v

∂ŷi
=

σy
nσŷ

(ŷi − ¯̂y), (5)

where σŷ and σy are the sample standard deviations
of ŷ and y, respectively.

Substituting these partial derivatives into the quo-
tient rule and simplifying, we obtain the final ex-
pression for the partial derivative of the Pearson
correlation coefficient with respect to ŷi:

∂ρ(ŷ,y)

∂ŷi
=

1

nσŷσy

(
(yi − ȳ)− ρ(ŷ,y) · (ŷi − ¯̂y)

)
.

Similarly, the partial derivative with respect to yi
is given by:

∂ρ(ŷ,y)

∂yi
=

1

nσŷσy

(
(ŷi − ¯̂y)− ρ(ŷ,y) · (yi − ȳ)

)
.

3.1.2 Convergence Analysis
Consider the total loss function Ltotal which in-
cludes the Pearson correlation coefficient as a regu-
larization term, as shown in Equation (1).

The Pearson correlation coefficient ρ(ŷ,y) is a
smooth function, composed of means, covariances,
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and standard deviations. Consequently, the regular-
ization term λ(1− ρ(ŷ,y)) is also smooth.

Since ρ(ŷ,y) is bounded within [−1, 1], the reg-
ularization term is bounded as well:

0 ≤ λ(1− ρ(ŷ,y)) ≤ 2λ. (6)

This boundedness ensures the regularization
term does not overshadow the combined loss term
Lcom, allowing it to guide the optimization pro-
cess effectively. Both Lcom and the regularization
term are smooth and differentiable, making Ltotal
smooth and differentiable.

In gradient descent, a smooth and differentiable
loss function typically ensures convergence to a
local optimum with an appropriate learning rate.

The gradients of Ltotal with respect to ŷ and y
are:

∂Ltotal

∂ŷi
=

∂Lcom

∂ŷi
− λ

nσŷσy
((yi − ȳ)

−ρ(ŷ,y) · (ŷi − ¯̂y)
)
, (7)

∂Ltotal

∂yi
=

∂Lcom

∂yi
− λ

nσŷσy

(
(ŷi − ¯̂y)

−ρ(ŷ,y) · (yi − ȳ)) . (8)

The gradient descent update rules for ŷ and y
are:

ŷ
(t+1)
i = ŷ

(t)
i − η

∂Ltotal

∂ŷi
, (9)

y
(t+1)
i = y

(t)
i − η

∂Ltotal

∂yi
, (10)

where η is the learning rate and t denotes the itera-
tion.

Given the smoothness and differentiability of the
total loss function, and with an appropriate learning
rate, the gradient descent algorithm is expected to
converge to a local optimum, minimizing the total
loss Ltotal.

In conclusion, the inclusion of the Pearson corre-
lation coefficient as a regularization term maintains
the smoothness and differentiability of Ltotal. This
ensures the gradient descent algorithm converges
to a local optimum, minimizing Ltotal.

3.2 Consistent-Mixup Data Augmentation

To enhance the robustness of emotion and empa-
thy prediction models, we employed a Consistent-
Mixup data augmentation (CMDA) technique. Tra-
ditional Mixup methods, which interpolate between

pairs of inputs and their labels, can lead to inaccura-
cies in multi-label tasks like emotion and empathy
prediction due to label complexity.

Our approach ensures that only samples with
the same label are mixed, maintaining label consis-
tency and preventing erroneous data. Given input
sequences x with labels y, the data augmentation
process is:

x̃ = γxi + (1− γ)xj , (11)

where yi = yj and γ ∼ Beta(α, α). The Beta
distribution, denoted as Beta(α, α), is a continu-
ous probability distribution defined on the interval
[0, 1] and parameterized by two positive shape pa-
rameters α. Setting both parameters to α ensures a
symmetric distribution, which results in a balanced
interpolation between inputs. This preserves the
integrity of the labels, enhancing the quality of the
augmented data and improving model performance
and generalization.

Data Model Emotion Emotional Empathy
set Type Polarity
Dev BERT (S) 0.620 0.697 0.567

BERT (P) 0.625 0.705 0.597
RoBERTa (S) 0.637 0.705 0.592
RoBERTa (P) 0.648 0.724 0.595
DeBERTa (S) 0.620 0.720 0.599
DeBERTa (P) 0.648 0.725 0.607
Boosting (S) 0.653 0.744 0.616
Boosting (P) 0.667 0.757 0.625
Boosting (PC) 0.659 0.765 0.658

Test Boosting (PC) 0.581 0.644 0.561

Table 1: Performance comparison of various models on
Emotion, Emotional Polarity, and Empathy tasks on the
development dataset (Dev) and test dataset (Test). (S)
indicates the standard model, (P) indicates the model
with added Pearson loss, and (PC) represents the model
with Pearson loss and CMDA. The test results are re-
ported for the Boosting (PC) model.

3.3 Experimental Setup

To validate the effectiveness of incorporating the
Pearson correlation coefficient as a regularization
term in emotion prediction models, we conducted a
series of experiments using several state-of-the-art
language models: BERT, RoBERTa, and DeBERTa.
These models were chosen for their robust perfor-
mance in various natural language understanding
tasks. Additionally, we applied CMDA and boost-
ing techniques to combine these models, aiming to
enhance performance by leveraging their comple-
mentary strengths.
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3.4 Datasets and Data Preprocessing
We used the Track 2 (CONV-turn) dataset, which
contains 11,166 training items, 990 develop items,
and around 2,300 test items, each with a dialogue
text and three corresponding labels: emotional
intensity, emotional polarity, and empathy. The
length of each dialogue text ranges from 2 char-
acters to 128 characters. The values of emotional
intensity and empathy range from 0-5, and the val-
ues of emotional polarity range from 0-3. The data
is preprocessed by identifying redundant columns
and merging the redundant column contents into
the correct columns to ensure that the final data
is aligned with the corresponding features, and no
data is lost in this process(Omitaomu et al., 2022).

3.5 Models and Training
Baseline Models: We implemented baseline ver-
sions of BERT, RoBERTa, and DeBERTa without
Pearson regularization. These models were trained
using the loss function (Lcom).

Enhanced Models: For the enhanced versions,
we added the Pearson correlation coefficient as a
regularization term to the loss function. For a given
predicted sentiment level ŷ and actual sentiment
level y is defined as:

Loss = Lcom(ŷ, y)− λ · (1− Pearson(ŷ, y)),

where λ is a hyperparameter that controls the
weight of the Pearson regularization term.

Training process: All models were trained us-
ing the Adam optimizer with a learning rate of
1e−5. To enhance the models, we incorporated data
augmentation. Specifically, we employed CMDA
ensuring the mixed labels remained consistent.
Additionally, we adopted a boosting strategy by
training three different models(BERT, RoBERTa,
DeBERTa) and aggregating their outputs using a
weighted average method to form the final predic-
tion. This ensemble approach aimed to leverage
the strengths of each individual model and improve
overall performance.

3.6 Experimental Results
The evaluation metric used in this study is the Pear-
son Correlation Coefficient, which evaluates the
linear correlation between the predicted and actual
sentiment levels, reflecting the consistency of the
predictions.

The study evaluates sentiment prediction models
using the Pearson Correlation Coefficient to mea-
sure the linear correlation between predicted and

actual sentiment levels. Table 1 shows that using
Pearson correlation as a regularizer significantly
enhances performance across all tested configu-
rations. Enhanced models (BERT, RoBERTa, and
DeBERTa with Pearson regularization) consistently
outperform their baselines in Emotion, Emotional
Polarity, and Empathy tasks.

Furthermore, Boosting models demonstrate ad-
ditional improvements. The Boosting (Standard)
model, which combines the results of the indi-
vidual standard models using weighted averages,
shows better performance than the individual mod-
els. The Boosting (Pearson) model, which similarly
combines the Pearson-regularized models, achieves
even higher scores. The best performance is from
the Boosting (Pearson, CMDA) model, with top
scores in Emotional Polarity (0.765) and Empa-
thy (0.658). The Boosting (Pearson) model excels
in Emotion (0.667), underscoring the benefits of
Pearson correlation regularization.

The test set results also highlight the robustness
of the models. The Boosting (Pearson, CMDA)
model achieved scores of 0.581, 0.644, and 0.561
in Emotion, Emotional Polarity, and Empathy re-
spectively. It is important to note that these scores
are significantly higher than the official results of
-0.027, -0.020, and -0.043 respectively. The dis-
crepancy arose because an early version of the
model was submitted by mistake, leading to the
lower scores. The updated results presented here
reflect the true performance of the final, optimized
models.

4 Conclusion

We proposed an enhanced approach for emotion
prediction by incorporating the Pearson correlation
coefficient as a regularization term in the loss func-
tion, ensuring closer alignment between predicted
and actual emotion levels. This method, along with
CMDA and boosting techniques, significantly im-
proved model performance, yielding higher correla-
tion scores and more accurate predictions. Our find-
ings underscore the potential of correlation-based
regularization and advanced training techniques in
enhancing Transformer-based models for emotion
prediction tasks.

Limitations

Due to time constraints, we submitted an earlier
version of our results, leading to a lower score of
-0.03 on TRACK CONV-turn. Here, we present
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the best results to accurately represent our system’s
performance, as shown in table 1. Relying solely
on the Pearson correlation coefficient may not fully
demonstrate our approach’s effectiveness. A 1-3%
increase in the Pearson coefficient, though modest,
shows consistent improvement. For a more compre-
hensive evaluation, we will include other metrics,
such as the F1 score, in future work. These addi-
tional metrics will further validate our approach.
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