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Abstract

Pre-trained language models consider the con-
text of neighboring words and documents but
lack any author context of the human generat-
ing the text. However, language depends on
the author’s states, traits, social, situational,
and environmental attributes, collectively re-
ferred to as human context (Soni et al., 2024).
Human-centered natural language processing
requires incorporating human context into lan-
guage models. Currently, two methods ex-
ist: pre-training with 1) group-wise attributes
(e.g., over-45-year-olds) or 2) individual traits.
Group attributes are simple but coarse — not all
45-year-olds write the same way — while indi-
vidual traits allow for more personalized repre-
sentations, but require more complex modeling
and data. It is unclear which approach benefits
what tasks. We compare pre-training models
with human context via 1) group attributes, 2)
individual users, and 3) a combined approach
on five user- and document-level tasks. Our
results show that there is no best approach, but
that human-centered language modeling holds
avenues for different methods.

1 Introduction
Language is a fundamental form of human ex-
pression that varies between people. Pre-trained
Language Models (PLMs) account for the textual
context of neighboring words and documents but
lack the human context of the author “generating"
the language. However, language is highly de-
pendent on the human context (Soni et al., 2024),
i.e., an author’s changing states (Fleeson, 2001;
Mehl and Pennebaker, 2003), traits, social, situ-
ational, and environmental attributes. For exam-
ple, a person’s language differs when hiking (sit-
uation/environment) versus when feeling dejected
(state) over a breakup (situation). It is essential to
model the additional human context to better un-
derstand human language with PLMs (Soni et al.,
2024). Two strands of human-centered Natural

Figure 1: Pre-training a language model with no human
context, with socio-demographic group attribute, with
individual traits, and with both group and individual
traits.

Language Processing (NLP) emerged to model the
people behind the language. The first focuses on
the group context, building on the sociolinguistic
notion of specific socio-demographic attributes in-
fluencing the language of a particular group. These
socio-demographic attributes include age, gender
(Volkova et al., 2013; Hovy, 2015), location (Kulka-
rni et al., 2016; Garimella et al., 2017), personality
(Schwartz et al., 2013; Lynn et al., 2017), and more.
The second approach focuses on building person-
alized language models that target individualistic
contexts (King and Cook, 2020; Delasalles et al.,
2019), and latent attributes inferred from an indi-
vidual’s historical language (Matero et al., 2021;
Soni et al., 2022) to better model the user.

While these two strands have advanced human-
centered NLP, we still do not understand their rel-
ative strengths, complementarity, and impact on
different tasks (Soni et al., 2024). People are not
defined by their group memberships alone (Or-
likowski et al., 2023), and individual traits might
not be generalizable enough across groups. Further,
cross-cultural psychology research (Hofstede and
Bond, 1984) notes the importance of both individ-
ualism and collectivism and Soni et al. suggest a
flexible interplay of these concepts when including
human context in PLMs. We might expect models
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informed by both group and individual features to
perform better, but no data exists on this. In this
work, we empirically evaluate these hypotheses and
compare the effects of including different types of
human context in PLMs (i.e., groups context (col-
lectivism), individualistic aspects (individualism),
and a combination of both) on specific tasks. We
answer the following broader research questions:
(RQ1): How can we incorporate group and indi-
vidual human context into pre-training?
(RQ2): How does pre-training with different hu-
man contexts affect downstream performance for
different tasks?

Recent works trained PLMs with socio-
demographic group context (Hung et al., 2023),
and individual context (Soni et al., 2022). However,
no empirical studies compare the impacts of differ-
ent types of human contexts included in language
modeling. We compare the downstream tasks’ per-
formance of models from these works with that
of a new PLM trained with group and individual
contexts. We test all systems on five downstream
tasks from these works to ensure a variety of tasks
and prediction properties at three levels: 1) user
level, with historical language from authors (age es-
timation and personality assessment), 2) document-
level, with historical language from some authors
(stance detection), 3) document-level, without his-
torical language from authors (topic detection and
age category classification).

Note that because we focus on empirically com-
paring pre-training with different types of human
context, we cannot compare to the larger lan-
guage models like GPT4, which are not yet pre-
trained/trainable with human context but are envi-
sioned to become large human language models in
the future (Soni et al., 2024). Recent studies have
explored methodologies like user-adapters (Zhong
et al., 2021) and user-centric prompting (Li et al.,
2023) to include human context into the larger lan-
guage models. In contrast, we focus specifically on
comparing the impact of pre-training LMs with dif-
ferent human contexts, as Soni et al. (2024) argue
that pre-training will allow for modeling a richer
human context by explicitly handling the multi-
level structure of documents connected to people,
as opposed to specific and limited benefits of user-
centric prompting and fine-tuning (Salemi et al.,
2023; Choi et al., 2023).

PLMs pre-trained on individual and group fea-
tures enhance performance on two user-level re-
gression tasks that use multiple user documents:

age estimation and personality assessment. In con-
trast, PLMs pre-trained on individual human con-
text alone improve performance on document-level
classification tasks like stance and topic detection.
Our findings suggest user-level tasks focusing on
individual people are best modeled as a mix of both
group attributes and unique characteristics. How-
ever, document-level tasks that are more personal,
like stance detection, are best addressed by mod-
eling the individual context alone. Adding group
attributes degrades performance.

By their very nature, models of this kind touch
upon sensitive user information. For this reason,
we adopt a responsible release strategy, making
only the code for the comparisons publicly avail-
able, along with the exact splits of the TrustPilot
and Stance datasets used1. We build on top of the
publicly available code from Soni et al. (2022) and
Hung et al. (2023). We acquired the models and
data from the authors of the respective works in
a secure manner. For more information about the
models and data, see Sections 4 and 5. For a dis-
cussion of the ethical implications of the models
and data, see the Ethical Considerations section.

Contributions. (1) We empirically compare
three pre-training strategies for language models
with human context: individual traits, group socio-
demographic features, and a combination of both.
(2) We evaluate each pre-training strategy on five
downstream tasks: two multi-document user-level
regression (personality-openness evaluation and
age estimation) and three single document-level
classification tasks (stance detection, topic detec-
tion, and age category classification).
(3) We find that the two user-level regression tasks
perform better with PLMs pre-trained with indi-
vidual and group human contexts. Conversely,
the three single document-level tasks perform bet-
ter with PLMs pre-trained with individual context
alone. Further, pre-training with group and indi-
vidual contexts reduces performance for document-
level tasks.

2 Related Work

Socio-demographic and latent human factors.
Much work in human-centered NLP has focused
on identifying and evaluating inclusion of human
context in our models. Initial studies show benefits
of grouping people by socio-demographic factors

1https://github.com/soni-
n/HumanContextLanguageModels_Comparison
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like age or gender (Volkova et al., 2013; Hovy,
2015) and geographical region (Bamman et al.,
2014; Garimella et al., 2017) to capture the varia-
tion in language usage and meaning among differ-
ent groups, and improving text classification tasks
like sentiment analysis. Additionally, adapting to
socio-demographic user factors (Lynn et al., 2017),
social networks (Huang et al., 2014; Radfar et al.,
2020), and social media attributes (Bamman and
Smith, 2015) have been effective to enhance the
performance in tasks like sarcasm detection, and
toxic language detection. Some studies go beyond
modeling explicit groups, to learn individual rep-
resentations latently Jaech and Ostendorf (2018);
Delasalles et al. (2019) or via historical language
Matero et al. (2021).

Pre-traing with human context. With respect to
pre-trained LMs, recent studies have used adapter-
based methodology (Li et al., 2021; Zhong et al.,
2021) to include individual human contexts for
downstream tasks. More recently, large language
models have used user-centric prompting (Li et al.,
2023) to include human context and evaluate on
personalized and social tasks, resulting in mediocre
performance (Salemi et al., 2023; Choi et al., 2023).
However, few studies have explored including hu-
man context within the pre-training regime of LMs.
Hung et al. (2023) generalize the task-specific
EMPATH-BERT (Guda et al., 2021) to create a
PLM injected with demographic group information
using a dynamic multi-task learning setup. Ad-
ditionally, Soni et al. (2022) pre-train a LM with
individual human context derived from user’s his-
torical language. Our study aims at comparing the
impacts of pre-training LMs with individual, or
group, or combined individual plus group human
context.

3 Integrating Human Context in PLMs

For our comparison, we use three systems repre-
senting the three paradigms of pre-training with
human context (Figure 1). We want to tease apart
the contributions of different types of human con-
text: 1) grouping people, 2) modeling individual
users, and 3) modeling both group and individual
human contexts. As noted earlier, we focus on re-
cent approaches for pre-training language models
with additional human context.

Pre-training with group context. We build on a
model from Hung et al. (2023) that explores demo-
graphic adaptation in transformer-based PLMs. It

is a bidirectional auto-encoder-based PLM inject-
ing demographic knowledge in a multi-task learn-
ing setup where they train for masked language
modeling (MLM) and classify the gender or age
of an author. They use the Trustpilot dataset 2

of multilingual reviews with demographic labels
(Hovy, 2015), and evaluate on multiple text clas-
sification tasks, including demographic attribute
classification, sentiment analysis, and topic detec-
tion. For our comparison study, we use the US-
English subset of the Trustpilot data for two tasks:
topic detection (TD) across two age categories, and
age attribute classification (AC) (more details in
section 5). Additionally, we use a monolingual
BERT pre-trained with age specialization on the
Blogs authorship corpus (Schler et al., 2006). This
choice allows us to eliminate a domain influence
(i.e., Trustpilot reviews), given that the other PLMs
under comparison lack this specialization.

Pre-training with individual human context.
Soni et al. (2022) introduced human language mod-
eling (HuLM) in PLMs, which is regular language
modeling given an additional context of the individ-
ual generating the language. This additional con-
text is a dynamic vector derived from the authors’
historical texts motivated by the idea of capturing
the changing human states expressed in language.
It also adds coherence to texts generated by the
same author. They introduce Human-aware Recur-
rent Transformer (HaRT), an autoregressive PLM
to evaluate the effect of individual human context
on language modeling and multiple user-level and
document-level downstream tasks. We build on
HaRT and use two user-level tasks, age estimation
and personality (openness) assessment, and on a
document-level task, stance detection, for our com-
parisons study.

Pre-training with both group and individual
human context. We train a PLM to integrate
both individual and group human context by in-
troducing a multi-task learning setup into HaRT
that incorporates group features. This approach
facilitates training a PLM with both group and in-
dividual context. We evaluate the model on two
multi-document user-level regression tasks: age
estimation and personality assessment, and three
single document-level classification tasks: stance
detection, topic detection, and age group classi-
fication. Importantly, the only difference in this
multi-task learning setup compared to HaRT is the

2https://www.trustpilot.com/
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inclusion of a demographic attribute prediction dur-
ing pre-training, similar to how Hung et al. (2023)
adapted traditional PLMs for group context.

4 Models

4.1 Pre-training with individual human
context

HaRT. Soni et al. (2022) use a 12-layered au-
toregressive GPT-2 based architecture with a mod-
ified self-attention computation at layer 2. This
modification to the query vector now includes the
individual human context via a dynamic user-state
vector.

Q IN
i = W T

q [H
(IN−1 )
i ;Ui−1 ]

where IN is the insert layer (layer 2), Qi is the
query vector under computation, Hi is the hidden
states vector, and Ui−1 is the user-state vector de-
rived from the previous block of language seen
from the user. All the text from a user is processed
in the same forward pass with recurrent processing
of blocks of fixed-length (1024) tokens chunked
after temporally ordering the social media posts by
created time. The user state is recurrently updated
using the hidden states from layer 11 and computed
as follows:

Ui = tanh(WUUi−1 +WHH(E))

where, E is the extract layer (layer 11), Ui is the
updated user-state vector, Ui−1 is the user-state vec-
tor from the previous block, and HE is the hidden
states vector from layer 11. This formulation of
updating the user-state vector extends the previ-
ous user-state vector information with the current
language block’s information.

HULM Pre-training Task. HaRT is pre-trained
for the human language modeling (HULM) task
defined as predicting the next token given the pre-
vious tokens while conditioning on previous user
state U1:t−1 (Soni et al., 2022) .

Pr(Wt|Ut−1) =
n∏

i=1

Pr(wt,i|wt,1:i−1,U1:t−1)

This is translated into a pre-training objective to
maximize:

∏

a∈Users

|Ba|∏

t=1

|B(a)
t |∏

i=1

Pr(wt,i|wt,1:i−1, B
(a)
1:t−1)

where, wt,i is the ith token in the tth block (B(a)
t )

for user a. The tokens from the previous blocks
are represented using HaRT’s recurrently updated
user-state vector. Soni et al. use cross-entropy loss
for the HULM objective.

4.2 Pre-training with group human context

BERTDS and BERTage-MLM. Hung et al. (2023) ex-
plore socio-demographic adapted BERT models to
inject group human context into PLMs. We use
two models: one specialized for age (demographic
attribute) under the multi-task learning setup, and
the other adapted to the age corpora through stan-
dard masked language modeling. We denote these
as BERTDS and BERTage-MLM, respectively.

Multi-Task Learning. Hung et al. (2023) train
for both domain adaptation using the masked lan-
guage modeling (Lmlm) loss and for classifying de-
mographic category using the binary cross-entropy
loss (Ldem). Both losses must be combined to
simultaneously learn multiple objectives. To ac-
count for the homoscedastic uncertainty (Kendall
et al., 2018) of both losses, they adopt a dynamic
multi-task learning (MTL) objective for training
with group human context. Homoscedastic uncer-
tainty is a task-dependent weighting to derive a
multi-task loss function that can optimally learn
the weights and balance the impact of multiple loss
functions and their different scales. The tasks are
dynamically weighted using the variance of the
task-specific loss (σ2

t ) over training instances of
the task t ∈ {mlm, dem}:

L̃t =
1

2σ2
t

Lt + log σt

Hung et al. minimize the sum of both the uncer-
tainty adjusted losses: L̃mlm + L̃dem.

4.3 Pre-training with both individual and
group human context

GRIT. We train HaRT under a multi-task learn-
ing setup for both the individual context — through
the HuLM pre-training task (see Section 4.1) —
and the group features — via a regression task to
predict a (continuous) socio-demographic attribute
of the author. We call the model as GRoup and
Individual HaRT (GRIT). The model uses the user-
state vectors (see Section 4.1) to predict the socio-
demographic attribute of the author:

Pr(attribute|U)
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We chunk a user’s language history into blocks
and process them in a single forward pass. Each
block of text from a user results in a user-state vec-
tor. We use the average of the user-state vectors
from each non-padded block of texts from an au-
thor to compute their final user-state representation.
This representation is layer-normed and linearly
transformed before making a continuous-valued
prediction for the specific attribute.

We pre-train one model for the continuous at-
tribute age (GRITage) and one for the continuous
attribute personality type openness (GRITope). The
models train on a regression loss for the attribute
prediction regression tasks using mean squared er-
ror loss (Lmse), and a classification loss for the
HULM task using cross-entropy loss (Lce). We
must combine both losses to jointly learn the two
objectives and account for the homoscedastic un-
certainty (Kendall et al., 2018) of the losses. Since
we combine a regression and a classification loss,
we train the model to learn to balance the loss
for a continuous and discrete output as derived in
Kendall et al. (2018) and compute our joint objec-
tive as follows:

1

σ2
ce

Lce +
1

2σ2
mse

Lmse + log σce + log σmse

where, σ2
ce and σ2

mse are the variances of the task-
specific losses over the training instances of the
respective tasks.

To add numerical stability, we adjust the loss
calculation to use log of the variance:

exp−ηce Lce +
1

2
(exp−ηmse Lmse + ηce + ηmse)

where ηx = log σ2
x for x ∈ {mse, ce}. We let σce

and σmse be learnable parameters for the model. In
practice, we do not halve the ηce term in the above
equation since we found it to perform better with
our multi-task learning experiments.

Pre-training Data and Training. We use the
same Facebook posts dataset (Park et al., 2015) and
training, validation, and test splits as those used by
Soni et al. (2022). For both GRITage and GRITope,
we use the demographic and personality scores,
respectively, obtained from consenting Facebook
users (Kosinski et al., 2013). This data is identical
to that used by HaRT for the age estimation and
personality assessment tasks. During training, we
use a learning rate of 5e-5 in the multi-tasking
training setup, employing the homoscedastic loss

computation method described earlier. Following
the experimental settings for HaRT, each training
instance is capped to 4 blocks of 1024 tokens each.
We use a train batch size of 1 per device and an
evaluation batch size of 20 per device, trained over
2 GPUs for 8 epochs. Further details can be found
in Appendix A.1.

4.4 Fine-Tuning

We utilize the results of fine-tuned BERTDS and
BERTage-MLM from Hung et al. (2023), as well as fine-
tuned HaRT models from Soni et al. (2022) where
available. We fine-tune both GRIT models for all
downstream tasks, and HaRT for 2 document-level
tasks. Additionally, we use the Optuna framework
(Akiba et al., 2019) for hyperparameter search,
closely following the experimental settings in Soni
et al. (2022). Details can be found in Appendix
A.2.

4.5 Transfer Learning

We experiment with fine-tuning GRITage in a multi-
task learning setup for both the HULM task and
predicting personality (openness). Similarly, we
fine-tune GRITope to predict age while also training
for the HULM task. We observe that this form of
transfer learning yields the best performance for the
user-level regression tasks (refer to Section 6.1).

5 Experiments
Our study’s goal is to compare the downstream
performance of models pre-trained with human
contexts in three forms: socio-demographic group
factors, individual traits, and combined. To this
end, we evaluate performances of the models de-
fined in Section 4 on two multi-document user-level
regression tasks: predicting age and a personality
score (openness), and on three single document-
level classification tasks: stance detection, topic
detection, and age classification. We also compare
against GPT-2HLC from Soni et al. (2022) as a PLM
adapted to the social media domain but devoid of
human context. All experiments were run using
Optuna trials (Akiba et al., 2019) to search for the
best hyperparameters and reduce the effects of ran-
domness. More details are provided in Appendix
A.2

5.1 User Level Regression Tasks

We consider two user-level social scientific tasks:
age estimation, and personality (openness) assess-
ment, which require predicting continuous out-
comes (real-valued age, or openness score) for a
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user given multiple documents written by them.
We use the same data splits as used by Soni et al.
(2022) for our comparison study.

Since GRITage is pre-trained using age estimation
as one of the tasks, we use directly evaluate it on
the held-out test set. This allows for direct compar-
ison with HaRT fine-tuned for the age estimation
task. Furthermore, we can potentially attribute per-
formance differences to the training with combined
group and individual context, as GRITage incorpo-
rates the group feature into HaRT’s architecture.
Similarly, GRITope is evaluated on the held-out test
set for personality assessment. Moreover, we evalu-
ate GRITage and GRITope for the tasks of personality
assessment and age estimation, respectively, using
the transfer learning mechanism described in Sec-
tion 4.5. We report and compare pearson r for age
estimation and disattenuated pearson r for person-
ality assessment.

5.2 Document-Level Classification Tasks

We compare different models for stance detec-
tion vs. topic detection and age classification tasks.
These tasks classify a single input document (tweet
message or a review) that a user writes into label
categories. For stance detection, we also utilize the
historical messages of a user where available, as in
Soni et al. (2022). However, we do not have the
user information or any user historical language
available for the other two tasks, so we evaluate
solely based on the single document input.

All models process the input document(s) and
feed the layer-normed last non-padded token repre-
sentation to the classification layer to classify the
document into label categories. Only GRIT and
HaRT incorporate user information and the histori-
cal language available for the stance detection task.
However, GPT-2HLC, and both BERTDS and BERTage-

MLM lack this hierarchical structure and can only
use the input document without access to historical
data for making predictions. We compare the re-
sults from Soni et al. (2022) and Hung et al. (2023)
wherever applicable and fine-tune all the parame-
ters of the respective pre-trained models and the
classification heads for other task-model combina-
tions using the standard cross-entropy loss.

Stance Detection Given a single annotated tweet,
this task predicts a user’s stance as in favor of,
against, or neutral towards one of the five targets:
atheism, climate change as a real concern, fem-
inism, Hillary Clinton, and legalization of abor-

tion. We fine-tune GRITage and GRITope for each
target separately, and use the results from Soni et al.
(2022) for GPT-2HLC and HaRT. We report the aver-
age of weighted F1 scores3 with three labels across
all five targets. We use the train/dev/test split pro-
vided by Soni et al. (2022) over the SemEval 2016
dataset (Mohammad et al., 2016). HaRT and GRIT
models maintain the temporal accuracy by using
only the messages posted earlier than the labeled
messages from the extended dataset (Lynn et al.,
2019) as a user’s historical language.

Topic Detection We use the US subset of the
TrustPilot reviews dataset (Hovy, 2015) from two
age groups: below 35 or above 45 4. Given a sin-
gle review, the task is to predict the review topics
from five categories: Flights, Online marketplace,
Fitness & Nutrition, Electronics, and Hotels. To
maintain consistency, we adopt the same train, de-
velopment, and test set splits as Hung et al. (2023)
to ensure a stratified demographically-conditioned
label distribution. We fine-tune GPT-2HLC, HaRT,
GRITage, and GRITope using these data splits to
predict the topic for a given review, and report
macro-F1 scores3. We also compare to results from
BERTage-MLM and BERTDS (Hung et al., 2023).

Demographic Attribute Classification We use
the same subset of the TrustPilot dataset as for topic
detection and the same train, development, and
test splits from Hung et al. (2023). Given a single
review, this task predicts the age group binary label
(<35 years old or >45 years old). Age categories
are equally represented in each set. We fine-tune
GPT-2HLC, HaRT, GRITage and GRITope using the
provided splits to predict if the review is written
by someone below 35 years or above 45 years,
and report macro-F1 scores3. We also compare to
results from BERTage-MLM and BERTDS (Hung et al.,
2023).

5.3 Human Language Modeling

To compare the effects of individual and group fac-
tors on language modeling performance, we evalu-
ate on the test set from the pre-trained data splits.
We report and compare perplexity scores from the
pre-trained GPT-2 (GPT-2frozen), GPT-2HLC, HaRT,
GRITage and GRITope for the human language mod-
eling task.

3We use this metric to maintain consistency with previous
works under comparison (Soni et al., 2022; Hung et al., 2023).

4As suggested by Hovy (2015), this split of the age
ranges results in roughly equally-sized data sets and is non-
contiguous, avoiding fuzzy boundaries.
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Model Human
Context

Age (r) OPE
(rdis)

GPT-2HLC None 0.839 0.521
HaRT Individual 0.868 0.619
GRITage Ind + Grp 0.890 0.658
GRITope Ind + Grp 0.884 0.643

Table 1: Pearson r for age, disattenuated Pearson r
for openness. Pre-training with individual plus group
context show benefits in estimating age and assessing
personality (openness). Bold = best in column. We find
no statistical difference between GRITage and GRITope

for the task of age estimation. All other results show
statistical significance p < 0.05 using paired t-test.

6 Results and Discussion

We report results for all the tasks here, discussing
their respective impacts from pre-training LMs
with individual human context, group context, and
both individual and group context.

6.1 Comparisons Study

User-Level Regression Tasks. Table 1 shows the
results of the two user-level regression tasks. We
find that GRIT models outperform others for both
age estimation and personality assessment tasks.
Additionally, upon comparing the transfer learn-
ing (Section 4.5) outcomes of GRITage for open-
ness and GRITope for age to those of the HaRT and
GPT-2HLC models, we consistently observe supe-
rior performance with the GRIT models, further
substantiating their efficacy.

Note that while GPT-2HLC is a PLM that is
adapted to the social-media domain, it lacks hu-
man context. HaRT incorporates individual human
context in pre-training, and GRIT extends this by
integrating both group and individual human con-
texts in pre-training (Figure 1). As shown in Table
1, there are gains observed from GPT-2HLC (no hu-
man context) to HaRT (individual human context),
and further to GRIT (individual + group human
context). This suggests that pre-training PLMs
with individual and group human context can bene-
fit multi-document user-level regression tasks, such
as those we considered. Importantly, the only dif-
ference between HaRT and GRIT models lies in
the integration of the demographic attribute predic-
tion (group context). Both models are pre-trained
and evaluated on precisely the same data, allowing
performance differences to be attributed to the addi-
tional group context combined with individualistic
human context.

Document-Level Classification Tasks. Table 2
shows the results for the 3 document-level classifi-
cation tasks: stance detection, topic detection (TD)
for 2 age groups (<35 and >45), and demographic
attribute (age) group classification (AC). We see
that task fine-tuned HaRT (individual human con-
text) models perform better on all tasks.

HaRT models inherently include an additional
context of the individual user and do not treat all in-
puts as if written by the same user. The considered
stance detection task primarily relates to personal
opinions and preferences, rather than group-level
ones, making HaRT well-suited for incorporating
such personalization due to its pre-training with
individual human context. While a group context
may also influence a person’s stance to some ex-
tent, empirical observations show that the combi-
nation of individual and group contexts negatively
impacts performance. Additionally, models pre-
trained with group context (BERTDS) perform well
in group-based tasks such as topic detection and
age classification. However, models pre-trained on
both individual and group human context (GRIT)
do not appear to enhance results in group-based,
and personal stance detection tasks resulting in
slightly worse performance.

Further, it is important to note that the individ-
ual human context (HaRT) derived for some of
the users using their historical tweets, where avail-
able, in the stance detection dataset provides a
richer human context as we see greater gains in the
performance of HaRT over GPT-2HLC. Conversely,
when historical language is not available for certain
datasets (topic detection and attribute classifica-
tion), HaRT does not perform worse than GPT-2HLC

and may even achieve marginal gains due to the
inherent human context in the model. However,
we leave the evaluation of the impact of historical
language on human context for future work.

Perplexity. We also compare the language mod-
eling capability of the various models. Table 3
reports perplexity on the held-out test set. The
frozen GPT-2 performs poorly compared to the so-
cial media domain adapted GPT-2HLC, while HaRT
model with individual human context perform the
best. In contrast, GRIT models with both individual
and group human context exhibit a slightly lower
perplexity than HaRT. An individual’s language is
inherently personal, yet it can also be influenced
by their group context to some extent, thereby af-
fecting the perplexity results in language modeling
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Model Human
Context

Stance
(F1wtd)

TD (<35)
(F1mac)

TD (>45)
(F1mac)

AC
(F1mac)

GPT-2HLC None 68.60 69.77 65.43 63.93
BERTage-MLM Group - 68.40 64.60 61.90
BERTDS Group - 69.30 65.00 64.10
HaRT Individual 71.10 69.84 65.65 64.33
GRITage Ind + Grp 70.82 69.21 64.52 62.56
GRITope Ind + Grp 70.07 66.53 64.84 61.18

Table 2: Weighted F1 for stance detection, macro-F1 for topic detection (TD), and age classification (AC) on
TrustPilot reviews. Pre-training with individual context appear to benefit all tasks. Bold = best in column;
McNemar’s test comparing classifiers does not show statistical significance between the best performing model
(HaRT) and the best baseline with no individual context (GPT-2HLC).

Model Human
Context

Test (ppl)

GPT-2frozen None 114.82
GPT-2HLC None 36.39
HaRT Individual 28.24
GRITage Ind + Grp 31.77
GRITope Ind + Grp 30.32

Table 3: Comparing perplexity on language modeling
for models trained with individual and group contexts.

Age
bucket

#Users HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
<18 1113 0.223 0.394 0.393
18-21 1387 0.230 0.278 0.276
21-30 1557 0.512 0.531 0.519
30-45 695 0.485 0.530 0.520
45+ 248 0.106 0.205 0.180

Table 4: Pearson r for age over five age buckets us-
ing different types of human contexts for error analysis.
Bold indicates best in row. We find no statistical differ-
ence between GRITage and GRITope for buckets 21-30
and 30-45. All other results show statistical significance
p < 0.05 using paired t-test.

tasks. However, GRIT models pre-trained with
both individual and group context yield slightly
worse perplexity measures. Additionally, we ob-
serve similar trends in perplexity gains from GPT-
2HLC (no human context) to HaRT (individual con-
text) or GRIT (individual plus group context) as
also demonstrated in Soni et al. (2022).

6.2 Error Analysis and Disparity

We conduct an error analysis based on a socio-
demographic group attribute (age groups), specifi-
cally focusing on age and openness prediction tasks.

Task\Model HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
Age (r) 0.215 0.181 0.185
OPE (rdis) 0.075 0.090 0.072

Table 5: Mean error disparity for age estimation and
openness personality assessment over five age buckets.
Bold indicates best in column (lower is better).

We measure the performance of GRIT and HaRT in
terms of error disparity (Shah et al., 2020) — a sys-
tematic difference in error based on demographics
as exemplified by the “Wall Street Journal Effect”
(Hovy and Søgaard, 2015). We analyze both the
prediction outcomes and error disparity in age and
openness prediction for both models: HaRT, which
considers individual context, and GRIT, which in-
corporates both individual and group context.

First, we split the task test dataset into differ-
ent buckets based on the age groups (specifically,
<18, 18-21, 21-30, 30-45, and >45 years old) of
the users in the test set, and then we compare the
performance of our models across these buckets.
Results from Table 4 indicate that pre-training with
individual and group contexts together performs
better for estimating age across all the age groups,
which implies it makes fewer errors as a function
of the socio-demographic attribute age. We see
similar trends for assessing openness personality
(see Appendix Tables 6 and 8), suggesting that the
group attribute prediction may act as a regularizer
for models pre-trained with both individual and
group contexts, thus aiding the models to make
fewer errors across all age buckets.

To further confirm, we compute the mean error
disparity (MED) as the sum of the differences
in the performance metric (Pearson correlation for
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age, and disattenuated Pearson correlation for open-
ness) across each pair of age buckets, which is
then averaged by the number of pairs (Shah et al.,
2020). A lower averaged sum of differences im-
plies fewer errors as a function of the age groups.
Lower MED scores for models pre-trained with
individual and group context in Table 5 support our
previous error analysis.

7 Conclusion

NLP benefits from modeling latent human context,
such as socio-demographic group features or in-
dividual traits. A recent development has been
to incorporate this additional human context into
the pre-training regimen of LMs. However, hu-
mans exhibit varying degrees of group and indi-
vidual characteristics. Understanding the impacts
of pre-training with different types of human con-
text will advance the integration of human context
into our base LLMs (?). To assess the impacts,
we compare three types of PLMs pre-trained with
socio-demographic group attributes, individual hu-
man contexts, and combined group and individual
traits, across five user- and document-level tasks.
Our findings indicate that pre-training with both
individual and group human context improves the
two user-level regression tasks: age and personality
prediction. Pre-training with individual human con-
text enhances the performance of the three single-
document classification tasks, including stance and
topic detection. Interestingly, inclusion of both
individual and group attributes results in reduced
performance on the text classification tasks. Mean-
while, pre-training solely on group context aids in
group-based document classification tasks, albeit
suboptimally. These results represent a promising
step towards modeling human context and offer
valuable insights for the NLP community to in-
vestigate additional strategies for improving mod-
els with task-dependent human context during pre-
training.

Limitations

The purpose of our study is to compare the impacts
of modeling socio-demographic group attributes
and modeling individual user traits, and we use rel-
evant models to represent each of the approaches.
There are likely to be other ways to model these
approaches and the models we use are only one
of the ways. Additionally, these models in them-
selves have limitations like the blocks mechanism
to process all the text from author induces compute

requirements resulting in a capping of the number
of blocks used for training. While it is also unclear
how many blocks are sufficient to capture the hu-
man context, and if it is helpful to use the earliest
language or the most recently used language in the
capped number of blocks.
Secondly, some of the datasets (TrustPilot) used do
not have appropriate user identification or histori-
cal language to create an individual human context.
Lastly, as noted earlier, models and data that touch
upon sensitive user information require an ex-
tremely responsible usage and limit researchers
to make them publicly available.

Ethical Considerations

Models that incorporate socio-demographic infor-
mation need to be considered with special scrutiny.
On the one hand, they have the potential to pro-
duce fairer and more inclusive results, because they
can account for human language variation. On
the other hand, they risk revealing identifying or
sensitive information, which can lead to profiling
and stereotyping. These may present opportuni-
ties for unintended malicious exploitations. For
example, models that improve demographic groups
prediction or psychological assessments could be
used for targeting content for individuals without
their awareness or consent. Such models may also
risk release of private information of the research
participant if trained on private data unchecked
for exposing identifying information. For this rea-
son, we take a conservative release strategy. While
we support open research and reproducibility, data
and privacy protection take precedence. Thus, we
will only be releasing the code for our compari-
son study and the data that does not contain sensi-
tive information i.e., stance detection datasets and
TrustPilot datasets for topic detection and attribute
classification. This is also in accordance with the
DUA we have received from the authors of the pa-
pers/models that we employ in our work.
Our comparison study aims to guide and further
speed the growing body of human-centered AI re-
search. The models under comparison aim to en-
able applicability in the interdisciplinary studies
of the human condition leading to helpful tools
for psychological health. However, at this point
these models are not intended for use in practice
and should be evaluated for failures. All user-level
tasks presented here were reviewed and approved
or exempted by an academic institutional review
board (IRB). Our studies are limited to US-English
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due to comparability reasons. However, similar
effects are likely to hold for other languages, and
should be evaluated in future work.
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A Appendix

A.1 Pre-training GRIT

Pre-training data. We use a subset of the pre-
training data for HaRT, consisting of the demo-
graphics and personality information. This subset
contains the Facebook posts from Park et al. (2015)
as used by Soni et al.. Our dataset is consistent with
the inclusion criteria for HaRT to ensure moderate
language history for each user: we include English
posts from users with at least 50 total posts and at
least 1000 words. This dataset consists of just over
63,000 unique users, which we split into a training
dataset consisting of messages from 56,930 users,
a development dataset that consists of messages
from 1836 users that were not part of the training
set, and a test set of messages from a separate set
of 4438 users that are neither in training nor the
development set. To evaluate the human attribute
prediction in GRITope, we use a subset of the test
set consisting of messages from 1745 users to ac-
commodate for questionnaire reliability. We use
the Facebook posts for the HULM task and the
demographic and personality scores of consenting
Facebook users (Kosinski et al., 2013) for the hu-
man attribute prediction task.

Training. We use HaRT’s pre-trained weights as
the base weights for GRIT and randomly initialize
the newly introduced weights for human attribute
prediction. GRIT is trained on our pre-training
dataset using the 5e-5 learning rate after experi-
menting with a few learning rates, including that
used for HaRT’s pre-training. Following HaRT,
and due to computing limitations, each training in-
stance is capped to 8 blocks of 1024 tokens each,

Age
bucket

#Users HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
<18 503 0.627 0.644 0.618
18-21 560 0.557 0.608 0.592
21-30 563 0.715 0.741 0.738
30-45 249 0.594 0.669 0.667
45+ 68 0.567 0.546 0.599

Table 6: Disattenuated pearson r for openness over five
age buckets using different types of human contexts for
error analysis. Bold indicates best in row.

Age
bucket

#Users HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
<18 1113 4.07 2.52 2.82
18-21 1387 6.52 4.00 3.89
21-30 1557 17.82 12.64 13.11
30-45 695 48.59 39.79 40.43
45+ 248 114.92 121.66 134.72

Table 7: Mean squared error for age over five age buck-
ets using different types of human contexts for error
analysis. Bold indicates best in row (lower error is bet-
ter).

Age
bucket

#Users HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
<18 503 0.423 0.410 0.429
18-21 560 0.496 0.487 0.506
21-30 563 0.429 0.380 0.381
30-45 249 0.578 0.489 0.489
45+ 68 0.584 0.501 0.467

Table 8: Mean squared error for openness over five
age buckets using different types of human contexts for
error analysis. Bold indicates best in row (lower error is
better).
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with train batch size as 1 per device and evalua-
tion batch size as 20 per device, trained over 2
GPUs for eight epochs. We explored multiple joint
losses before resorting to the homoscedastic loss
computation. Since HaRT caps to 4 train blocks
for user-level downstream tasks, we also pre-train
GRITage and GRITope with four training blocks.

A.2 Experimental Settings

We closely follow the experimental settings from
Soni et al. (2022) and similarly use Optuna frame-
work (Akiba et al., 2019) for hyperparameter
search. We search for learning rates between 5e-6
and 5e-4, and between 1e-7 and 1e-5 for different
tasks. We will make our best found hyperparameter
values publicly available with our code and results
in the github repository. All experiments are run on
NVIDIA RTX A6000 GPUs of 48GB. Pre-training
takes approx 14 hours for 1 epoch and fine-tuning
takes approx 1-4 hours depending on the task.
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