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Abstract

Sentiment analysis serves as a pivotal compo-
nent in Natural Language Processing (NLP).
Advancements in multilingual pre-trained mod-
els such as XLM-R (Conneau et al., 2020) and
mT5 (Xue et al., 2021) have contributed to
the increasing interest in cross-lingual senti-
ment analysis. The recent emergence in Large
Language Models (LLM) has significantly ad-
vanced general NLP tasks, however, the capa-
bility of such LLMs in cross-lingual sentiment
analysis has not been fully studied. This work
undertakes an empirical analysis to compare the
cross-lingual transfer capability of public Small
Multilingual Language Models (SMLM) like
XLM-R, against English-centric LLMs such
as Llama-3 (AI@Meta, 2024), in the context
of sentiment analysis across English, Spanish,
French and Chinese. Our findings reveal that
among public models, SMLMs exhibit superior
zero-shot cross-lingual performance relative to
LLMs. However, in few-shot cross-lingual set-
tings, public LLMs demonstrate an enhanced
adaptive potential. In addition, we observe
that proprietary GPT-3.5 1 and GPT-4 (Ope-
nAI et al., 2024) lead in zero-shot cross-lingual
capability, but are outpaced by public models
in few-shot scenarios.

1 Introduction

Sentiment analysis has received considerable atten-
tion over the years in the field of Natural Language
Processing (NLP) due to its profound value in both
academic research and industry applications. Tra-
ditionally, studies in sentiment analysis had been
mostly focused on high-resource languages such
as English due to a deficit of annotated data in
other low-resource languages, but recent research
has emerged to address this issue by leveraging ma-
chine translation to augment data resources (Araújo
et al., 2020) (Joshi et al., 2020).

1https://platform.openai.com/docs/models/
gpt-3-5-turbo

Besides the research efforts in producing mul-
tilingual datasets for sentiment analysis, multilin-
gual model architectures have become increasingly
popular since the introduction of multilingual pre-
trained language models such as mBERT (Devlin
et al., 2019), XLM-R (Conneau et al., 2020) and
mT5 (Xue et al., 2021) and BLOOM (BigScience
Workshop, 2022). Such multilingual pre-trained
language models exploit the power of large-scale
unsupervised textual data from a mixture of many
languages, facilitating zero-shot and few-shot cross-
lingual transfer from a source to a target language
on different downstream NLP tasks, albeit with
varying performance outcomes (Lauscher et al.,
2020).

More recently, Large Language Models (LLM)
such as GPT-3 (Brown et al., 2020), Llama-2 (Tou-
vron et al., 2023) and Llama-3 (AI@Meta, 2024)
have collected immense attention for their unparal-
leled performance in text generation. (Zhang et al.,
2023) shows the strong capability of LLMs with
few-shot in-context learning in public English sen-
timent analysis tasks. Although most of the LLMs
are pre-trained using corpora with a dominant pres-
ence of English, some research has found interest-
ing multilinguality in both public and proprietary
LLMs (Qin et al., 2024) (Zhu et al., 2023). Despite
these developments, to the best of our knowledge,
the capability of cross-lingual transfer in these
LLMs has not been fully studied for sentiment anal-
ysis tasks, and it is still unclear how LLMs stand
in comparison to existing multilingual pre-trained
models in the cross-lingual transfer paradigm.

In this work, we examine a variety of pre-trained
models and conduct a comprehensive study on
the cross-lingual transfer capability in utterance-
level sentiment analysis tasks with human speech
transcript. We classify our candidate public pre-
trained models into two categories: Small Multilin-
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gual Language Models (SMLM)2 such as XLM-R
and mT5, and more recent Large Language Mod-
els (LLM)3 primarily focused on English such
as Llama-3 (AI@Meta, 2024) and Mistral (Jiang
et al., 2023). In addition, we also include bench-
marking with proprietary LLMs such as GPT-4
(OpenAI et al., 2024), which is widely consid-
ered as the best LLM in terms of general capa-
bility. To avoid potential data contamination intro-
duced in the pre-training process of recent LLMs
(Sainz et al., 2023), we curate and annotate pro-
prietary sentiment datasets from in-house human
conversation transcripts, and assess cross-lingual
sentiment analysis from English to three target lan-
guages: Spanish, French and Chinese. Our evalu-
ation results show that with the same supervised
fine-tuning, SMLMs demonstrate superior zero-
shot cross-lingual transfer capability even with
much fewer model parameters. However, public
LLMs exhibit rapid improvement in few-shot cross-
lingual transfer scenarios and can surpass the per-
formance of SMLMs when additional samples in
the target language are provided. Our contributions
of this research can be summarized in the following
dimensions:

1. We provide a comprehensive comparison on
fine-tuning-based cross-lingual transfer capa-
bility across a spectrum of public pre-trained
language models, with up to 8 billion param-
eters in the sentiment analysis task on three
human languages.

2. Our empirical findings show that some
SMLMs (XLM-R, mT5) beat much larger
public LLMs in zero-shot cross-lingual trans-
fer. Nevertheless, larger LLMs surpass
SMLMs and demonstrate stronger adaptation
capability with few-shot fine-tuning in the tar-
get language. The best-performing SMLMs
still show comparable performance to LLMs
when more samples from the target language
are provided.

3. We demonstrate that although proprietary
GPT-3.5 and GPT-4 present the strongest per-
formance in zero-shot cross-lingual sentiment
analysis, with supervised fine-tuning, several
public pre-trained language models can out-

2We select SMLMs with fewer than 4B parameters in this
work.

3We select LLMs with at least 7B parameters in this work.

perform GPT-3.5 and GPT-4 in sentiment anal-
ysis tasks with few-shot cross-lingual transfer.

2 Background

2.1 Cross-lingual Sentiment Analysis
Sentiment analysis, as an important subfield of Nat-
ural Language Processing, concentrates on detect-
ing and categorizing emotions and opinions in the
text. Although the research predominantly focused
on the English language initially, subsequent efforts
have expanded to support cross-lingual sentiment
analysis. This approach aims at leveraging one or
several linguistically-rich source languages to en-
hance task performance in low-resource languages
(Xu et al., 2022). Early methods such as (Shanahan
et al., 2005) used Machine Translation for cross-
lingual sentiment analysis, which became the main-
stream methodology in the following years. Other
studies focused on bridging the dataset disparities
between source and target languages (Zhang et al.,
2016), as well as generating parallel corpora for
sentiment analysis tasks (Lu et al., 2011) (Meng
et al., 2012).

The success of pre-trained models like BERT
(Devlin et al., 2019) has spurred adaptations for
multilingual and cross-lingual applications, notably
mBERT and XLM-R, which utilize a transformer
encoder architecture and demonstrate strong ca-
pability in cross-lingual language understanding.
These models are pre-trained with extensive mul-
tilingual corpora and subsequently fine-tuned for
specific downstream tasks, thereby significantly
enhancing sentiment analysis tasks across diverse
languages (Barbieri et al., 2022). (Xue et al., 2021)
introduced mT5, which features a transformer
encoder-decoder architecture and is pre-trained
across over 101 languages, has shown superior per-
formance in classification tasks such as XNLI (Con-
neau et al., 2018) and surpassed both mBERT and
XLM-R. More recently, advancements in unsuper-
vised corpora and computational resources have fa-
cilitated the emergence of LLMs with a transformer
decoder-only architecture, which have exhibited ex-
ceptional performance in various NLP tasks (Tou-
vron et al., 2023) (Jiang et al., 2023) (Brown et al.,
2020). Despite these advancements, such LLMs are
predominantly English-centric, and their multilin-
gual capabilities remain somewhat ambiguous due
to limited disclosure of training data specifics. Fur-
thermore, the capabilities of cross-lingual transfer
in these LLMs have yet to be thoroughly studied.
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Figure 1: Diagram of zero- and few- shot cross-lingual sentiment analysis from English (EN) to French (FR) under Supervised
Fine-tuning (left) and In-context learning (right).

2.2 Sentiment Analysis in Conversational
Transcripts

Our work is situated within the context of human
conversational transcript data; in our case, these
transcript data are obtained from our internal com-
pany call centers, consisting of human-to-human
conversations that mainly occur between a cus-
tomer and a customer support agent.

Analyzing such transcript data can be challeng-
ing to work with, even for English NLP mod-
els: conversational data contain mainly artifacts
of spoken language, such as filler words, dysflu-
encies, and transcription errors by the automated
speech recognition (ASR) model (Fu et al., 2022).
Adding additional complexity by moving away
from English-only data into other languages pro-
vides an opportunity to further test the limits of
pre-trained language models: switching from one
language to another does not always lend itself to a
simple, one-to-one translation of each word – espe-
cially in describing or expressing abstract concepts
like sentiment.

This complexity in cross-lingual sentiment anal-
ysis also comes from the need of considering both
cultural and linguistic differences. For instance,
one of our main observations on sentiment classifi-
cation in real human conversation in Spanish was
that Spanish speakers seem to focus on describing
their complaint or situation instead of directly ex-
pressing their emotions. For example, they would
rather say "Esta es la quinta vez que los llamo"

("This is the fifth time I’m calling you guys") in-
stead of speaking up and expressing how frustrated
they are with a simple and straightforward adjec-
tive, such as "Estoy frustrado" ("I am frustrated").
Whereas the statistical models will easily detect
"frustrado" and label it as negative sentiment, the
abstract description that the speaker chooses in or-
der to express their frustration in the first example
will still present a challenge.

3 Methodology

3.1 Supervised Fine-tuning

The objective of this work is to explore the cross-
lingual transfer capability of pre-trained models
within the context of a sentiment analysis task. To
this end, we employ Supervised Fine-tuning (SFT)
on publicly available pre-trained models using an-
notated proprietary sentiment datasets (detailed in
Section 4.1). Each model is fine-tuned to catego-
rize sentiments as Positive, Negative, or Neutral
based on the input provided. Given the diversity
in pre-training objectives among different models,
we implement two distinct fine-tuning approaches
illustrated in Figure 1, which are tailored to the
architecture of the pre-trained models:

• Classification-based fine-tuning: applicable
to transformer encoder-only models such as
mBERT and XLM-R, we add a classification
layer on top of the pre-trained models and fine-
tune the model to directly predict a sentiment
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English (EN) Spanish (ES) French (FR) Chinese (ZH)

Neutral

We’re busy, we can’t
complain, we’re fine.

Estamos ocupados, no
podemos quejarnos, es-
tamos bien.

Nous sommes occupés,
nous ne pouvons pas
nous plaindre, nous al-
lons bien.

我们很忙，我们没什
么要抱怨的，没事。

There, I don’t know
why.

Ahí, no sé por qué. Là, je ne sais pas
pourquoi.

这个，我不知道为什
么。

Positive

I love the first one so
I’m excited for this one,
thanks.

Me encanta el primero,
así que estoy emo-
cionado por este,
gracias.

J’adore le premier alors
je suis excité pour celui-
ci, merci.

我很喜欢第一个，对
此我感到很兴奋，谢
谢。

This is great, so pro-
fessional, I’m sure the
client was very im-
pressed.

Esto es genial, muy pro-
fesional, estoy seguro
de que el cliente quedó
muy impresionado.

C’est génial, tellement
professionnel, je suis
sûr que le client était
très impressionné.

很好这非常专业，我
相信客户一定印象非
常深刻。

Negative

I think he’s really pissed
at me today.

Creo que hoy está muy
enojado conmigo.

Je pense qu’il est vrai-
ment très énervé contre
moi aujourd’hui.

我感觉他今天对我一
定非常生气。

Yes but I’m worried
about being charged
twice now.

Sí, pero ahora me pre-
ocupa que me cobren
dos veces.

Oui mais je suis inquiet
d’être facturé deux fois
maintenant.

是的，但我对于被
收两次费用感到很担
心。

Table 1: Examples of our proprietary sentiment datasets.

class.

• Instruction-based fine-tuning: used for
transformer encoder-decoder (e.g. mT5) and
decoder-only (e.g. Llama-3) structures, we
construct an instruction to prompt the model
to generate a text output corresponding to a
sentiment class. The specific prompt format
is detailed in Appendix A.1.

To comprehensively evaluate the cross-lingual
transfer capabilities of these pre-trained models
through fine-tuning, we target both zero- and few-
shot cross-lingual transfer from a source to a tar-
get language. In Zero-shot Cross-lingual Transfer
setting, the model is fine-tuned exclusively with an
annotated dataset in the source language and subse-
quently tasked with making predictions in a target
language. Note that for generative tasks, merely
input language alteration is applied while the in-
struction component remains constant. Few-shot
Cross-lingual Transfer extends the zero-shot frame-
work by additionally incorporating N labeled exam-
ples from the target language into the fine-tuning
process, alongside the source language dataset. The
format of the prompt used remains consistent with
zero-shot for generative tasks, detailed in Appendix
A.1.

3.2 In-context Learning
Recent advancements have highlighted in-context
learning as a viable alternative to the traditional
fine-tuning approach for generative models (Dong
et al., 2023). Due to the access limitation and our

data privacy policy, we are not able to fine-tune pro-
prietary LLMs using our proprietary datasets. Con-
sequently, we employ in-context learning through
the prompt to simulate an experiment setting as
conducting SFT on public models. Nonetheless,
the inherent limitation regarding the context length
in various close source LLMs poses a challenge;
these models may not accommodate as many exam-
ples within a prompt as is feasible for SFT in open
source counterparts. Figure 1 shows an illustrative
diagram of in-context learning for this sentiment
analysis task.

To assess cross-lingual transfer capabilities as
Section 3.1 through in-context learning, we con-
struct in-context examples with different sources of
languages accordingly. Specifically, for Zero-shot
Cross-lingual Transfer, the prompts include exam-
ples solely from the source language. In contrast,
for Few-shot Cross-lingual Transfer, additional sup-
plementary examples in the target language are also
applied. Prompts with in-context examples we use
to evaluate proprietary LLMs are attached in Ap-
pendix A.2.

4 Experiment

In this section, we first present a detailed descrip-
tion of our internal proprietary sentiment datasets
which are used for fine-tuning and evaluation.
Then, we provide necessary introductions to a di-
verse array of public pre-trained models we will
study for this work. Finally, we show the hardware
and software resources employed in conducting the
experiment.
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Model type Name Architecture # of param. Claimed language support

SMLM

mBERT encoder 110M 104 langs
XLM-R-base encoder 250M 100 langs
XLM-R-large encoder 560M 100 langs

mT5-base encoder-decoder 580M 101 langs
mT5-large encoder-decoder 1.2B 101 langs

mT5-xl encoder-decoder 3.7B 101 langs

English-centric LLM

Mistral-7B decoder 7B Unclear
Falcon-7B decoder 7B Mainly EN, DE, ES, FR
Llama2-7B decoder 7B Intended for EN
Llama3-8B decoder 8B Intended for EN

Table 2: List of public pre-trained models evaluated in our experiments.

4.1 Dataset

The proprietary datasets used in this study are
utterance-level sentiment data for four languages:
English, Spanish, French, Chinese (Table 1). Ut-
terance boundaries are generated by our in-house
ASR system when a short pause or speaker change
is detected in the audio stream. We randomly sam-
pled English and Spanish utterances from the real
conversational transcript from our call center ap-
plications and each instance is labeled as Positive,
Negative or Neutral by human annotators. The
annotation was done via a third-party vendor, al-
lowing us to configure our ontology and direct the
annotators to select the appropriate category for the
sentiment detected in each utterance according to
guidelines we developed. Our guidelines include
definitions for each sentiment as well as a broad
list of examples (a gold dataset manually annotated
by our internal team). Inter-annotator agreement is
calculated automatically by our annotation vendor,
and a high agreement threshold is applied to ensure
the quality of the annotation results.4

Constrained by resources, we are not able to
sample and annotate French and Chinese datasets
under the same setting. Instead, we leverage ma-
chine translation (through GPT-4, detailed in Ap-
pendix A.3) to create parallel French and Chinese
datasets based on the annotated English counterpart.
All machine-translated datasets were reviewed by
speakers of the target language to ensure that the
translations were comparable to the original En-
glish. There were some minor issues identified in
the machine-translated data during review: namely,
occasionally GPT-4 refuses to translate a sample,
producing a refusal in the target language instead,
or it produced a commentary on the English tran-
script in the target language in lieu of translating
it directly. These samples were identified and re-
moved, and the remaining samples were deemed

4https://docs.labelbox.com/docs/consensus

to be accurate translations by the speakers of the
target languages.

As our objective is to study the cross-lingual sen-
timent analysis from English to target languages,
we assemble English data with a much larger size,
while Spanish, French and Chinese with a limited
amount sufficient only to support few-shot learn-
ing and testing purposes. A summary of the total
amount of data used for the following experiment
is as follows:

- English: 30,000 instances for fine-tuning,
3,000 for development.

- Spanish: 600 instances for fine-tuning and
3,000 for testing.

- French: 600 instances for fine-tuning and
3,000 for testing.

- Chinese: 600 instances for fine-tuning and
3,000 for testing.

where we ensure sentiment labels are uniformly
distributed across all sets.

Table 1 shows exemplary cases of our propri-
etary datasets in different languages, providing in-
sight into domain-specific textual characteristics.
It is worth mentioning that these examples have
no identifying information and are intended for il-
lustrative purposes only. The use of internal call
transcript data ensures that all model evaluations
are immune from unintended data contamination of
the pre-trained models, which could otherwise lead
to an overestimation of their performance (Sainz
et al., 2023).

4.2 Selected pre-trained Models

In this work, we investigate a variety of public
pre-trained language models, with a range of sizes
and architectures. For SMLM, we have selected
models from mBERT, XLM-R and mT5 model
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Public SMLM Public LLM Proprietary LLM
Supervised Fine-tuning Supervised Fine-tuning In-context Learning

mBERT XLM-
R-base

XLM-
R-large

mT5-
base

mT5-
large

mT5-xl Mistral Falcon Llama-
2

Llama-
3

GPT-
3.5

GPT-4

110M 250M 560M 580M 1.2B 3.7B 7B 7B 7B 8B - -

ES 47.1 54.4 58.7 60.2 63.4 60.0 44.8 55.3 60.1 57.9 75.6 74.8
FR 45.3 71.8 76.8 75.4 79.7 73.8 48.4 70.7 74.5 77.4 80.3 79.3
ZH 54.2 72.3 76.9 74.8 77.3 71.5 40.4 71.9 64.9 73.3 82.3 80.2
Avg 48.9 66.2 70.8 70.1 73.5 68.4 44.5 66.0 66.5 69.5 79.4 78.1

Table 3: F1 score comparison in zero-shot cross-lingual transfer on our proprietary sentiment analysis datasets. ES: Spanish,
FR: French, ZH: Chinese. Top-3 average F1 scores are marked in bold.

Figure 2: Average F1 score performance comparison (across ES, FR and ZH) under N-shot settings. GPT-3.5 is not included in
this 600-shot due to the context length limit.

families with up to 3.7 billion parameters. All mod-
els in our SMLM selection are known for their
support for over 100 human languages and have
demonstrated efficacy in tasks that require multilin-
gual and cross-lingual capabilities, as evidenced
by references (Doddapaneni et al., 2021) (Xue
et al., 2021). For English-centric LLMs, the de-
tails are little disclosed regarding the specific hu-
man languages incorporated during the pre-training
phase. Therefore, we include the most prominent
and widely recognized models from Llama family
and Mistral with 7 to 8 billion parameters sizes. In
additional, Falcon-7B is also added to our analy-
sis as it explicitly claims proficiency in German,
Spanish and French in addition to English. The
specifics of all the pre-trained models utilized in
our experiments are detailed in Table 2.

4.3 Experiment Setup
The fine-tuning and inference processes for our
model are conducted using the Huggingface frame-
work (Wolf et al., 2020) on a single-node Linux sys-
tem equipped with eight Nvidia A100 80G GPUs.

For experiments on proprietary LLMs, we use
“gpt-3.5-turbo-0125” endpoint for GPT-
3.5 and “gpt-4-1106-preview” endpoint for
GPT-4.

In order to ensure deterministic output from gen-
erative models, temperature is set as 0 for all public
and proprietary models in our experiments.

5 Results

To facilitate a comprehensive comparison between
SMLMs and LLMs on cross-lingual sentiment anal-
ysis, we follow the zero-shot and few-shot cross-
lingual fine-tuning methodologies described in 3.1
and evaluate the model performance respectively.
The F1 score (micro) is employed as the accuracy
evaluation metric in the following sentiment analy-
sis experiments.

5.1 Zero-shot Cross-lingual Transfer

We first fine-tune public pre-trained models in zero-
shot cross-lingual transfer setting through SFT as
detailed in Section 3.1, exposed to only the English
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fine-tuning dataset described in 4.1. Note that we
leverage in-context learning for proprietary LLMs
as discussed in Section 3.2. However, due to con-
straints on context length, these proprietary LLMs
are not exposed to the entirety of the English fine-
tuning set; instead, they are prompted with a set of
300 examples, carefully balanced across different
classes for this experiment.

Evaluation results are presented in Table 3. It is
clear that both GPT-3.5 and GPT-4 exhibit signifi-
cant advantages over fine-tuned public models on
target languages in zero-shot. Surprisingly, among
the public models, several SMLMs such as XLM-
R-large (560M), mT5-base (580M) and mT5-large
(1.2B), show better zero-shot cross-lingual trans-
fer capability compared to the considerably larger
Mistral-7B, Falcon-7B, Llama2-7B and Llama3-
7B models. In particular, mT5-large surpasses all
other open source candidates by a substantial mar-
gin across all testing languages despite having only
1.2 billion parameters.

5.2 Few-shot Cross-lingual Transfer

We then fine-tune and evaluate public models un-
der the few-shot cross-lingual transfer setting de-
scribed in Section 3, where we randomly select
N training samples in the target language and use
them in fine-tuning in conjunction with the English
fine-tuning data. In order to better investigate the
adaptability of the models, we vary N among {60,
150, 600}, thereby conducting 60-shot, 150-shot
and 600-shot experiments respectively. The selec-
tion of these three values provides a wide spectrum
for comparative analysis, also ensures a sufficient
representation while maintaining resource-efficient.
For proprietary LLMs, an additional N samples in
target language are appended to the prompt during
in-context learning to establish a similar few-shot
cross-lingual setup.

The evaluation results of average F1 scores
across three target languages (ES, FR and ZH) are
presented in Figure 2, under the settings of 60-shot,
150-shot and 600-shot. Detailed F1 scores per lan-
guage are also provided in Appendix A.4. Our
observations and findings can be summarized as
follows:

i Among public pre-trained models, despite their
underperformance relative to SMLMs in zero-
shot cross-lingual transfer as evidenced in Ta-
ble 3, English-centric LLMs present strong
adaptation capability in few-shot cross-lingual

sentiment analysis. Notably, all public LLMs
exhibit significant relative improvements com-
pared to their zero-shot performance. It is
worth pointing out that with 60-shot and 150-
shot, LLMs such as Falcon-7B, Llama2-7B
and Llama3-8B surpass the performance of all
SMLMs by a considerable margin. The only
exception is Mistral-7B, which is still outper-
formed by several SMLMs with few-shot.

ii With an increased volume of training data in
the target language, specifically under 600-shot
condition, mT5-xl with 3.7B parameters has
a comparable performance to the much larger
Falcon-7B, Llama2-7B and Llama3-8B mod-
els.

iii Contrary to their dominance in the zero-shot
cross-lingual setting, GPT-4 and GPT-3.5 ex-
hibit very limited improvement in few-shot
cross-lingual sentiment analysis with in-context
examples. Several public models are capable of
surpassing these prominent proprietary LLMs
following fine-tuning.

6 Conclusion

In this study, we explore the capabilities of cross-
lingual sentiment analysis across a variety of pre-
trained language models. We show that smaller
XLM-R-large (560M), mT5-base (580M) and mT5-
large (1.2B) have superior zero-shot cross-lingual
transfer capabilities compared to the consider-
ably larger Mistral-7B, Falcon-7B, Llama2-7B and
Llama3-8B models. This highlights the efficiency
and potential of Small Multilingual Language Mod-
els (SMLM) for sentiment analysis in low-resource
languages. On the other hand, our findings reveal
that the larger English-centric LLMs like Falcon-
7B and Llama2-7B can quickly adapt and show
much improved performance with a few-shot cross-
lingual setup, which indicates their robustness in
learning from limited data from the target language.
Moreover, proprietary LLMs such as GPT-3.5 and
GPT-4 exhibit the strongest zero-shot performance
in cross-lingual sentiment analysis tasks, however,
in scenarios involving few-shot learning, several
fine-tuned public pre-trained models are able to
surpass these proprietary giants.

7 Limitation

Although our findings in this study appear to
be consistent in all target languages tested, due
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to the limitation of our resources, it is still un-
clear how the models would behave in other low-
resource languages with even less appearance dur-
ing pre-training. In addition, due to the incom-
parable model sizes, we are not able to draw any
conclusions on whether model architecture differ-
ence (transformer encoder-only, decoder-only and
encoder-decoder) could play a role in cross-lingual
sentiment analysis capabilities. Further research
could be extended in these directions.
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A Appendix

A.1 Prompt Format for Supervised
Fine-tuning

We employ the following prompt format in
supervised fine-tuning for public generative
models:

Below is an utterance extracted from

the transcript of a business call, iden-

tify the speaker’s sentiment in this

utterance. The sentiment should be one

of the following:

"Positive": The speaker expresses fa-

vorable emotions and mental states, for

example, euphoria and joy, happiness,

excitement, fascination, satisfaction,

pride, gratitude, relief, surprise, etc.

"Negative": The speaker expresses unfa-

vorable emotions and mental states, for

example, disgust, sadness, disappoint-

ment, worry, insecurity, annoyance, fury,

anger, fear, depression, frustration,

etc.

"Neutral": Statement in which the

speaker does not express emotions, but

in which a fact is simply stated and no

explicit emotions or feelings are con-

veyed.

What is the sentiment in the following

utterance? Only respond with the senti-

ment without explanation:

### Input: {utterance text}

### Output:

A.2 Prompt Format for In-context Learning
The following prompt with in-context examples is
used for calling proprietary LLM APIs:

Below is an utterance extracted from

the transcript of a business call, iden-

tify the speaker’s sentiment in this

utterance. The sentiment should be one

of the following:

"Positive": The speaker expresses fa-

vorable emotions and mental states, for

example, euphoria and joy, happiness,

excitement, fascination, satisfaction,

pride, gratitude, relief, surprise, etc.

"Negative": The speaker expresses unfa-

vorable emotions and mental states, for

example, disgust, sadness, disappoint-

ment, worry, insecurity, annoyance, fury,

anger, fear, depression, frustration,

etc.

"Neutral": Statement in which the

speaker does not express emotions, but

in which a fact is simply stated and no

explicit emotions or feelings are con-

veyed.

Here are some examples:

### Input: {utterance text 1}

### Output: {sentiment label 1}

150

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.1007/s41019-022-00187-3
https://doi.org/10.1007/s41019-022-00187-3
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.1016/j.knosys.2016.06.004
https://doi.org/10.1016/j.knosys.2016.06.004
https://doi.org/10.1016/j.knosys.2016.06.004
https://arxiv.org/abs/2305.15005
https://arxiv.org/abs/2305.15005
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675


### Input: {utterance text 2}

### Output: {sentiment label 2}

### Input: {utterance text 3}

### Output: {sentiment label 3}

...

What is the sentiment in the follow-

ing utterance? Only respond with the

sentiment without explanation:

### Input: {utterance text}

### Output:

A.3 Machine translation details
The machine translation process described in
Section 4.1 utilizes GPT-4 endpoint “gpt-4-
1106-preview”. The prompt used for machine
translation is as follows:
Below is a transcribed utterance from

human conversations, translate it from

English to {TARGET_LANG}:

### Input: {English utterance}

### Output:

TARGET_LANG refers to the target languages
in our machine translation process, i.e. French and
Chinese.

A.4 Per-language Evaluation Tables for
Few-shot Cross-lingual

Supplementary to Section 5.2, detailed per lan-
guage evaluation results on few-shot cross-lingual
are listed in Table 4, Table 5, and Table 6
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Public SMLM Public LLM Proprietary LLM
Supervised Fine-tuning Supervised Fine-tuning In-context Learning

mBERT XLM-
R-base

XLM-
R-large

mT5-
base

mT5-
large

mT5-xl Mistral Falcon Llama-
2

Llama-
3

GPT-
3.5

GPT-4

110M 250M 560M 580M 1.2B 3.7B 7B 7B 7B 8B - -

ES 71.0 62.7 67.1 59.7 65.3 73.2 73.1 76.8 77.7 77.6 76.0 76.8
FR 69.3 79.7 82.7 76.1 83.7 83.8 76.1 82.3 84.7 85.2 81.6 80.3
ZH 73.7 80.0 81.7 78.0 80.8 80.7 74.9 84.0 81.2 83.5 80.1 80.4
Avg 71.3 74.1 77.2 71.3 76.6 79.2 74.7 81.0 81.2 82.1 79.2 79.2

Table 4: F1 score comparison in 60-shot cross-lingual transfer on our proprietary sentiment analysis datasets. ES: Spanish, FR:
French, ZH: Chinese. Top-3 average F1 scores are marked in bold.

Public SMLM Public LLM Proprietary LLM
Supervised Fine-tuning Supervised Fine-tuning In-context Learning

mBERT XLM-
R-base

XLM-
R-large

mT5-
base

mT5-
large

mT5-xl Mistral Falcon Llama-
2

Llama-
3

GPT-
3.5

GPT-4

110M 250M 560M 580M 1.2B 3.7B 7B 7B 7B 8B - -

ES 71.9 71.6 71.8 60.5 69.4 74.7 71.1 76.8 79.7 77.6 76.3 74.5
FR 71.3 82.0 82.9 78.0 83.3 83.0 76.0 86.1 84.2 82.9 81.9 78.7
ZH 76.8 82.7 84.1 78.4 81.7 83.6 78.7 84.5 85.6 85.2 81.7 82.6
Avg 73.3 78.8 79.6 72.3 78.1 80.4 75.3 82.5 83.2 81.9 80.0 78.6

Table 5: F1 score comparison in 150-shot cross-lingual transfer on our proprietary sentiment analysis datasets. ES: Spanish, FR:
French, ZH: Chinese. Top-3 average F1 scores are marked in bold.

Public SMLM Public LLM Proprietary LLM
Supervised Fine-tuning Supervised Fine-tuning In-context Learning

mBERT XLM-
R-base

XLM-
R-large

mT5-
base

mT5-
large

mT5-xl Mistral Falcon Llama-
2

Llama-
3

GPT-
3.5

GPT-4

110M 250M 560M 580M 1.2B 3.7B 7B 7B 7B 8B - -

ES 74.0 74.0 77.4 64.4 77.9 77.6 76.3 79.0 79.0 76.6 - 73.9
FR 76.1 83.7 83.8 79.9 86.2 87.4 83.6 86.6 86.8 86.1 - 78.8
ZH 81.8 85.8 86.4 80.9 83.8 88.6 87.8 88.3 88.0 89.3 - 81.4
Avg 77.3 81.2 82.5 75.1 82.6 84.5 82.6 84.7 84.6 84.0 - 78.0

Table 6: F1 score comparison in 600-shot cross-lingual transfer on our proprietary sentiment analysis datasets. ES: Spanish, FR:
French, ZH: Chinese. Top-3 average F1 scores are marked in bold. GPT-3.5 is not included in this evaluation due to the context
length limit.
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