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Abstract

We present XARELLO: a generator of adver-
sarial examples for testing the robustness of
text classifiers based on reinforcement learning.
Our solution is adaptive, it learns from previ-
ous successes and failures in order to better ad-
just to the vulnerabilities of the attacked model.
This reflects the behaviour of a persistent and
experienced attacker, which are common in the
misinformation-spreading environment. We
evaluate our approach using several victim clas-
sifiers and credibility-assessment tasks, show-
ing it generates better-quality examples with
less queries, and is especially effective against
the modern LLMs. We also perform a quali-
tative analysis to understand the language pat-
terns in the misinformation text that play a role
in the attacks.

1 Introduction

Nowadays, an ever-increasing proportion of the
text we read online is published by anonymous
or unfamiliar authors, e.g. in online news outlets,
blogs, social media portals, instant messaging, and
communication agents. This puts a great burden on
the entities hosting such platforms, having to filter
the user-generated data to remove or de-prioritise
content considered inflammatory, misleading, un-
pleasant or simply illegal. A large part of this
work is performed manually by moderators, but
the use of automatic machine-learning (ML) clas-
sifiers is becoming more common (Singhal et al.,
2022). This scenario necessitates testing the ro-
bustness of the deployed models, i.e. their ability
to deliver correct results even when their input is
manipulated, e.g. by a fake news spreader.

The robustness is usually tested by analysing
input examples and checking what kind of modifi-
cations made to them confuse the victim classifier
to change its output. For example, let us assume
the following statement is correctly identified by
a classifier as misleading: Drinking orange juice

causes DEATH!. However, if the same classifiers
return a different result when causes is replaced
with provokes or cuases, this weakness can be used
by attackers. Discovering such adversarial exam-
ples (AE) is the best way to understand the vulnera-
bilities of the common methods before they can be
exploited by attackers. A plethora of approaches
for AE generation for text classifiers has been pro-
posed (Zhang et al., 2020) and tested, including in
misinformation detection (Przybyła et al., 2023).

The AE techniques explored so far are usually
based on making incremental changes to an individ-
ual example (e.g. word replacements), and testing
the victim’s response to the modifications, until
it returns a desired response (Zhang et al., 2020).
This simple procedure is repeated for each example
independently. Here we consider a different ap-
proach, where an attacker is adaptive and it learns
from successes and failures from each attack at-
tempt. Thus, the attacker can observe and exploit
the weaknesses of the victim, i.e. modifications
that are particularly likely to flip the classification
decision. This corresponds to the real-world cir-
cumstances of misinformation spreaders that are
established large-scale enterprises, e.g. Russia’s
Internet Research Agency (DiResta et al., 2019),
able to gather significant expertise regarding the
weaknesses of the moderation on major platforms.

To understand the effectiveness of such attacks,
we propose XARELLO (eXploring Adversarial ex-
amples using REinforcement Learning Optimisa-
tion), a method for learning weaknesses of a target
classifier to improve quality of the proposed modifi-
cations. XARELLO is built upon the reinforcement
learning framework, which allows it to gather expe-
rience in the adaptation phase and then use it in the
attack phase. Using the framework for testing AE
solutions in several misinformation detection tasks
for English (Przybyła et al., 2023), we show that
our solution indeed manages to adapt over time
and deliver performance beating the state of the
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Figure 1: Conceptual schema of the XARELLO elements in the adaptation and attack phase.

art, both in terms of the more subtle modifications
and lower number of attempts necessary. The vic-
tims, against which our attacker is tested, include
a state-of-the-art LLM (GEMMA), which surpris-
ingly appears the most vulnerable to the adaptive
attack. We also qualitatively analyse the generated
examples to better understand the techniques our
models learn during the adaptation. The code for
XARELLO is openly available to encourage re-
search into AEs as well as building more robust
classifiers1.

2 Related work

The challenge of discovering AEs began in im-
age classification research (Szegedy et al., 2013),
where neural networks were discovered to change
predictions after noise was added to the input. Gen-
eralising this approach to text is not trivial due to
its discrete nature and the lack of ‘imperceptible
noise’ equivalent, but several approaches emerged
(Zhang et al., 2020). Typically, they rely on an
iterative procedure of replacing fragments of input
text with words that are similar in terms of meaning
(Ren et al., 2019; Garg and Ramakrishnan, 2020;
Li et al., 2020; Alzantot et al., 2018), in terms of
visual appearance, or using character replacements
(Gao et al., 2018). Recent work has been improv-
ing this paradigm (Liu et al., 2023) or abandoning
it in favour of sentence-to-sentence paraphrasing,
e.g. using auto-encoders (Li et al., 2023).

Misinformation detection is a scenario with a
high probability of adversarial action. Several
studies have been performed to assess the robust-

1https://github.com/piotrmp/xarello

ness of the two most-popular tasks: Fact-checking,
usually using manually crafted rules (Zhou et al.,
2019; Thorne et al., 2019; Hidey et al., 2020); and
fake news detection (Jin et al., 2020; Ali et al.,
2021; Brown et al., 2020; Smith et al., 2021). We
also need to mention the novel threat of machine-
generated text used for misinformation, and the
models for its detection (Crothers et al., 2023) be-
ing vulnerable to attacks (Su et al., 2023).

In order to perform an evaluation of XARELLO
in various scenarios, we rely on the previous sys-
tematic study of adversarial robustness in the cred-
ibility assessment context (Przybyła et al., 2023),
taking into account four misinformation-detection
tasks and two victim classifiers. This will allow us
to compare our solution to the eight AE generators
evaluated there.

Finally, a few attempts have already been made
to use reinforcement learning (RL) in the context of
AE generation. Our solution has certain similarities
with that of Vijayaraghavan and Roy (2019), who
also apply RL to find the most successful word sub-
stitutions, but in a less challenging setup: attacking
a CNN network performing sentiment analysis and
news classification. Other work involving RL in-
clude that of Li et al. (2021) and Chen et al. (2023).
However, our study is the first to perform adaptive
AE generation for the misinformation text, where a
victim vulnerability model is first explicitly learned
and then deployed for a more efficient attack.

3 Methods

XARELLO modifies given text not only based on
the current input (original content), but also tak-
ing into account the outcome of previous attempts
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made against the same victim classifier. The whole
process has two phases: adaptation and attack.

Figure 1 shows a schema of our solution. We
map the problem of generating AEs (section 3.1)
to the reinforcement learning paradigm through
the XARELLO environment (section 3.2). During
adaptation, a XARELLO agent (section 3.3) learns
to perform actions (token replacements) that max-
imise its reward (change in the victim’s prediction).
The core of the model is a neural network estimat-
ing the outcome of making modifications to the
input text. During the attack, the learned model,
encoding information about the vulnerabilities of
the victim, can be used to generate a multitude of
adversarial examples, undergoing evaluation.

3.1 Preliminaries
We focus on binary text classification task using
pairs (xi, yi), where xi is a text fragment and yi
is a binary label denoting credibility of the text
(section 4.3). The victim of the attack is a classi-
fier f , which, for a given example xi, provides a
binary output label f(xi) ∈ {0, 1}, but also prob-
abilities of the positive class fp(xi) ∈ (0, 1). The
goal of the attack is to come up with a modifica-
tion function m, such that the difference with the
original example is small (m(xi) ≈ xi), but the
victim changes its decision (f(xi) ̸= f(m(xi)),
for example xi = Drinking orange juice causes
DEATH! and m(xi) = Drinking orange juice
provokes DEATH!. Here we consider both the tar-
geted scenario, taking into account only examples
of non-credible text, for which the classifier made
the correct decision (yi = f(xi) = 1); as well the
untargeted one, where all examples are included.

3.2 XARELLO environment
The basic steps in our model are the same as in most
methods for AE generation in text, i.e. sequential
modifications, each consisting of replacing a word
by a candidate from a pre-computed list, until the
victim changes its decision (see section 2). Usually,
no single replacement can result in an AE, but sev-
eral are necessary. To learn an optimal strategy for
such a task, we use the reinforcement learning (RL)
framework (Sutton and Barto, 2018). We define
the environment in the following way:

• an environment state s includes the following:

– x
(t)
i,j – the current form (in step t) of the

i-th target text, expressed as a sequence
of N tokens (j ∈ {1 . . . N}),

– f(xi) – the decision of the victim for the
original text.

• an action a made by an agent: a pair (j, k)
including the positions of the changed token
j and the replacement candidate zk from a
pre-computed list z1, z2, . . . zK .

• a reward returned in response to an action:

– 1, if the provided example is an AE,
– −1, for an attempt to modify a non-word

token (see section 4.5).
– otherwise, [fp(x

(t)
i )−fp(x

(t−1)
i )]× [1−

2×f(xi)], i.e. the difference in the score
compared to previous state, computed
with respect to the original class, so that
positive values indicate the victim get-
ting closer to changing the decision.

Adaptation: During adaptation, the environ-
ment presents subsequent examples to the agent.
While it would be preferable to have only unique
examples, the limited data size means that exam-
ples are repeated for several epochs. Since an agent
is unlikely to find an AE by just a single word
replacement, it is allowed several modifications
(steps) until an AE is successful or the maximum
number of steps (MS = 5) is achieved. For ex-
ample, an agent might try Drinking orange juice
provokes DEATH!, then Consuming orange juice
provokes DEATH!, then Consuming orange juice
brings DEATH!, and so on. Such a sequence, called
episode, is attempted ME = 5 times (with text re-
set to the originals state in between) before the next
example is used. We encourage variability of ac-
tions between episodes through the penalisation of
action reuse (section 4.5).

Attack: In the attack stage the Q model is frozen
and no learning is performed, allowing more elabo-
rate action sequences as follows:

1. 10 episodes of up to 5 steps,
2. 5 episodes of up to 10 steps,
3. 2 episodes of up to 25 steps,
4. 1 episode of up to 50 steps.

Performing several episodes for the same number
of steps allows the attacker to makes several at-
tempts to create an AE with few changes, before
performing deeper modifications. As during train-
ing, the text is reset to the original form between
episodes and penalisation is used to encourage vari-
ation between attempts (section 4.5). For longer
input text (news bias and rumour detection tasks,
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Figure 2: Neural network used as Q model.

see section 4.3), the number of steps allowed is
multiplied by 5. The process can stop at any point
if an AE for the current text is found, which is sent
for evaluation.

3.3 XARELLO agent
The implementation of the XARELLO agent is
based on Q-learning (Watkins, 1989), which in-
volves estimating the value of Q(s, a), i.e. the
expected reward achieved from making action a in
state s and following a greedy strategy. In partic-
ular, we implement a deep Q-network (François-
Lavet et al., 2018), where the estimation is pro-
duced by a deep neural network, subsequently
trained based on the actually observed rewards.

Q model: We compute the value of Q(s =

(x
(t)
i,j , f(xi)), a = (j, k)) as follows (see Fig. 2):

1. For each token position j, its E1-dimensional
embedding is computed through a Trans-
former (Vaswani et al., 2017) encoder working
on the current text x(t)i,j ,

2. It is concatenated with a pre-computed E2-
dimensional embedding of candidate zk, form-
ing a E1 + E2-dimensional representation of
each possible action (j, k),

3. A linear layer with rectified linear activation
is applied, reducing the dimensionality to E3,

4. Depending on the value of original prediction
f(xi), one of two independent final linear lay-
ers is used, reducing the dimensionality to a
scalar, containing the value of Q(s, a).

The neural network is implemented so that it
computes the Q value for every possible action in a
given state in a single execution.

Action choice: Choosing an action based on
the Q value depends on the phase. In attack, sim-
ply the action with maximal Q value is selected
(greedy strategy). In the adaptation phase, a ran-
dom action may also be made with the probability
equal exploration factor ϵ ∈ [0, 1] – an ϵ-greedy
strategy (Sutton and Barto, 2018). Further infor-
mation including parameter values and underlying
components is in section 4.5.

Learning: As usual in fitted Q-learning, after
an action is performed, the value of Q estimation is
compared with the observed reward and discounted
expected reward (using discount coefficient γ) and
the resulting discrepancy is used as a loss for train-
ing the underlying neural network.

4 Evaluation

Since our solution is motivated by the adversar-
ial scenarios in the misinformation space, we base
our evaluation on the BODEGA framework (Przy-
była et al., 2023), which is designed specifically
for this area. It enables the evaluation in four mis-
information detection tasks: style-based news bias
assessment (HN), propaganda detection (PR), fact
checking (FC), rumour detection (RD), all for En-
glish. A non-credible (positive, label=1) example,
which should be detected by a classifier, is a news
item from a hyper-partisan source, a sentence in-
cluding a propaganda technique, a fact refuted by
the provided evidence, or a thread initiated by a
rumour. Examples are shown in table 4 in appendix
E. All of the tasks are based on data released on
CC licences (Potthast et al., 2018; da San Martino
et al., 2020; Thorne et al., 2018; Han et al., 2019).

BODEGA enables an evaluation of attacks on
two classifiers, based on BiLSTM (Hochreiter and
Schmidhuber, 1997) and fine-tuned BERT (De-
vlin et al., 2018). Additionally, in order to un-
derstand the vulnerability of the modern LLMs, we
test against 2-billion-parameter GEMMA (Gemma
Team and Google DeepMind, 2024).

4.1 Performance measures

The attack performance is assessed by comparing
each original examples with the produced AE and
computing four measures:

1. confusion score: 1 if the example provided is
a successful, 0 otherwise,

2. semantic score: a measure of the meaning
preservation between the original text and the
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Adaptation
Task train eval Attack Positive %

HN 3,200 400 400 50.00%
PR 2,920 400 416 29.42%
FC 3,200 400 405 51.27%
RD 1,670 400 415 32.68%

Table 1: The division of the BODEGA datasets for the
purpose of adaptation and final attack with the percent-
age of positive (non-credible) instances.

AE, computed using BLEURT (Sellam et al.,
2020) and clipped to (0,1),

3. character score: a measure of character-level
changes, computed using Levenshtein dis-
tance (Levenshtein, 1966) and scaled as a sim-
ilarity score in (0,1),

4. BODEGA score: a product of the above.

These quantities are averaged over all examples
in a given experiment. More information on these
measures, including the handling of multi-sentence
inputs, could be found in the BODEGA framework
(Przybyła et al., 2023). Additionally, we record
the average number of queries a method needs to
perform on the victim classifier before an AE is
generated, as a measure of how realistic a given
strategy is to be used in practice.

During the adaptation phase, we measure its
progress through certain indicators after each
epoch, both on the training data and a held-out
development set (used greedily). These include
mean reward value, the fraction of the episodes
that end with a success, and the number of steps
involving a given text before an AE is found.

4.2 Qualitative analysis
In addition, we provide a qualitative analysis of
AEs generated by the XARELLO system against
the BERT classifier in the targeted PR task. In Sec-
tion 6, we make some observations on linguistic
patterns that appear in this subset of AEs. Human
evaluation is especially important for NLP models
that generate text which people may read, or use
in text generation to aid replicability (Belz et al.,
2023). These models must also generate naturalis-
tic text which reflects qualities such as grammati-
cality, fluency, and coherence (van der Lee et al.,
2021) in order to be usable in practice, i.e. as mis-
information content.

4.3 Data
Table 1 shows the data distribution, based on the
BODEGA framework. We do not use the data re-
served for victim training (not included in the table)

and leave final attack portion unchanged, enabling
comparison with previous work. We employ the
development subset in XARELLO, splitting it into
adaptation-train (for Q adaptation) and adaptation-
eval (for monitoring the process, see measures
above). We also show what fraction of each dataset
as a whole is positive, i.e. non-credible.

4.4 Experiments

Each experiment starts with performing the adap-
tation for 20 epochs. During every epoch, firstly
the adaptation-train data are used to learn from the
experiences and update the network accordingly.
Afterwards, the held-out adaptation-eval portion
is used (with the greedy strategy and no weight
updates) to measure the adaptation performance.

After the adaptation is finished, the model that
performed the best on adaptation-eval, i.e. needed
the least steps on average to reach an AE, is se-
lected for final attack evaluation. This is performed
by connecting the learned Q model to an environ-
ment working in attack mode and evaluating the
quality of the AEs with BODEGA.

In total, 12 adaptation processes are performed
(against three victim classifiers for each of the four
tasks), which are followed by two evaluation sce-
narios: targeted or untargeted. We compare an
adapted XARELLO against:

• BERT-ATTACK (Li et al., 2020), perform-
ing a procedure of iterative replacement of
words by candidates from a language model,
fairly similar to XARELLO, but without any
adaptation to the victim. BERT-ATTACK
achieved the best result among those evalu-
ated on BODEGA (Przybyła et al., 2023).

• DeepWordBug (Gao et al., 2018), a simpler
approach, replacing individual characters in
the selected words, aiming to preserve visual
similarity to the original text. DeepWordBug
was also the best-performing in some attack
scenarios in BODEGA.

• XARELLO-raw, a version of the XARELLO
agent which was not adapted to the victim.
Testing this version allows us to make sure
the observed differences are due to adaptation
process, rather than the attack procedure.

4.5 Optimisation details

Preprocessing: The maximum length of a text
fragment is N = 512 tokens and all instances
are padded accordingly. For each text and each
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Figure 3: Improvement of the XARELLO attackers during the adaptation process, illustrated using the average
number of steps until an AE is found, shown for the data used in training (train) and a held-out portion (eval), for
each epoch. Shown for each of the tasks and victims: BiLSTM (upper row) and BERT (lower row).

non-padding token, the K = 20 replacement can-
didates are obtained by applying language mod-
elling through BERT (Devlin et al., 2018) in
bert-base-cased variant, implemented in Hug-
gingFace Transformers (Wolf et al., 2020). No
masking is used, as in BERT-ATTACK (Li et al.,
2020), and the most likely tokens for each position
are treated as candidates, disregarding the original
word and special tokens.

Neural network: We use BERT (config-
ured as above), to obtain embeddings of size
E1 = 768. To represent candidates, we use
static fastText (Mikolov et al., 2017) vectors,
i.e. the facebook/fasttext-en-vectors model
from HuggingFace, returning an embedding of size
E2 = 300. The reduced representation has size
E3 = 8. The Q network includes the 110 million
parameters of BERT and 8570 in the further layers.

Q override: In order to indicate that non-
word tokens ([CLS], [SEP] or [PAD]) cannot be
changed, the reward for attempting to replace them
is set to −1. Moreover, the Q value obtained from
the neural network is overridden using two rules:
(1) the value for replacing special tokens are set to
−1 and (2) the value for actions that have already
been applied for this text in the current sequence
of episodes are reduced by a factor of −0.1. This
penalisation mechanism makes it possible to gener-
ate diverse actions even when Q network remains
unchanged, esp. in the attack phase. Both of the
alterations correspond to behaviours that are benefi-

cial for the rewards and would be learnt eventually,
but introducing them accelerates the adaptation.

Further details on hardware and computing
times, software implementation, adaptation process
and parameter tuning can be found in appendix B.

5 Results

Figure 3 shows the progress made during the adap-
tation to the BiLSTM and BERT victims (the re-
sults for GEMMA are included as figure 4 in ap-
pendix A). We plot the average number of steps
made until an AE is found or the limit is reached,
taking values between 5 (the AE is found on first
try in all 5 episodes) and 25 (all 5 steps in the 5
episodes are used). All models start with a value
close to the maximum and manage to improve over
time, but the gains are more pronounced for the PR
and FC tasks than RD or HN. This is understand-
able, as the text fragments involved in the latter two
(news articles and rumour threads) are much longer,
so it is relatively rare to see an AE generated within
the 5 modifications allowed during adaptation. We
can also see that the BiLSTM victim, as a weaker
classifier, is easier to attack, allowing an AE to be
found in fewer steps after the adaptation.

It is encouraging to notice that the performance
on the unseen eval dataset improves similarly, indi-
cating that the model indeed learns vulnerabilities
of the victim model instead of memorising the steps
that prove successful for the training data. Towards
the end of the 20-epoch process we see the im-
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Victim: BiLSTM Victim: BERT Victim: GEMMA
XARELLO XARELLO XARELLO

Measure DWB B-A raw full DWB B-A raw full DWB B-A raw full
PR BODEGA 0.292 0.527 0.466 0.632 0.278 0.429 0.360 0.512 0.143 0.460 0.474 0.697

conf. 0.382 0.800 0.928 0.990 0.363 0.697 0.769 0.962 0.190 0.724 0.899 0.986
sem. 0.795 0.716 0.595 0.698 0.794 0.678 0.562 0.606 0.786 0.695 0.605 0.748
char. 0.960 0.914 0.791 0.884 0.962 0.902 0.772 0.834 0.958 0.906 0.813 0.920

queries 27.4 61.4 61.4 15.0 27.4 80.2 89.8 30.2 27.3 77.5 59.5 14.9
FC BODEGA 0.484 0.598 0.640 0.817 0.440 0.535 0.559 0.773 0.074 0.566 0.577 0.775

conf. 0.575 0.857 0.938 1.000 0.531 0.770 0.862 0.995 0.091 0.832 0.904 0.995
sem. 0.855 0.728 0.733 0.837 0.843 0.726 0.708 0.800 0.829 0.718 0.698 0.802
char. 0.984 0.954 0.917 0.975 0.982 0.953 0.902 0.970 0.983 0.939 0.902 0.969

queries 54.4 132.8 56.0 5.0 54.3 146.7 74.1 7.4 53.9 192.2 66.3 7.3
RD BODEGA 0.164 0.292 0.244 0.650 0.159 0.181 0.145 0.227 0.104 0.300 0.228 0.314

conf. 0.243 0.790 0.537 0.973 0.229 0.439 0.333 0.436 0.152 0.725 0.434 0.492
sem. 0.682 0.409 0.514 0.694 0.701 0.429 0.500 0.580 0.694 0.433 0.590 0.678
char. 0.991 0.890 0.842 0.957 0.991 0.961 0.830 0.870 0.991 0.951 0.865 0.934

queries 232.8 985.5 617.8 84.0 232.7 774.3 763.5 631.7 239.0 703.1 665.7 538.9
HN BODEGA 0.406 0.636 0.496 0.612 0.223 0.601 0.340 0.341 0.240 0.546 0.485 0.528

conf. 0.527 0.980 0.760 0.848 0.287 0.965 0.560 0.583 0.307 0.905 0.752 0.757
sem. 0.771 0.656 0.689 0.737 0.777 0.638 0.644 0.607 0.783 0.622 0.676 0.715
char. 0.998 0.988 0.933 0.975 0.998 0.972 0.918 0.937 0.998 0.965 0.930 0.963

queries 396.2 487.9 445.7 256.1 395.9 648.4 599.8 564.4 385.9 943.0 427.7 373.6
Avg: BODEGA 0.337 0.513 0.461 0.678 0.275 0.436 0.351 0.463 0.141 0.468 0.441 0.578

queries 177.7 416.9 295.2 90.0 177.6 412.4 381.8 308.4 176.5 478.9 304.8 233.7

Table 2: Results of the evaluation of the XARELLO attacker on different datasets (PR, FC, RD and HN) in the
untargeted scenario, measured according to BODEGA score, confusion score, semantic similarity score, character
similarity score and average number of queriues. The performance of the adapted XARELLO (full) is compared to
the attacker without adaptation (raw) and two separate approaches: DeepWordBug (DWB) and BERT-ATTACK
(B-A). The best values of BODEGA score and the lowest numbers of queries in each combination are highlighted.

provements on the eval dataset slow down, suggest-
ing that further training would result in overfitting,
which confirms the preliminary experiments with
50 epochs (see appendix B).

Table 2 shows the results of the main experi-
ment in untargeted scenario (with all data), car-
ried out by taking a Q neural network optimised
during adaptation and applying to the attack data
portion. The performance indicators averaged over
all scenarios (final rows) confirm the benefits of
the proposed approach: it achieves better-quality
AEs, reflected with a higher BODEGA score. The
gains are most pronounced against the BiLSTM
victim, where XARELLO achieves the score of
68%, compared to 51% of BERT-ATTACK, need-
ing only 90 queries instead of 417. We also see an
improvement over baseline in case of BERT, but it
is interesting to notice that GEMMA, the model of
largest size and best classification performance, is
quite vulnerable against XARELLO attacks (58%
compared to 47% of BERT-ATTACK).

Overall, DeepWordBug produces examples that
are semantically and visually similar to the original,
but achieve success only in some cases. For exam-
ple, in BiLSTM fact-checking scenario, DeepWord-
Bug has a confusion score of 57%, BERT-ATTACK
of 86%, but XARELLO reaches 100%. This is pos-

sible due to the adaptation process, as XARELLO
raw ranks similarly to BERT-ATTACK and only
the full version achieves the improvements.

The performance differs across tasks:
XARELLO shows improvement in all of
them except news bias assessment, especially
against the BERT victim. This is most likely due
to the length of the input: news articles often fill
the whole 512-token window, resulting in 512*20
possible actions – a space unlikely to be thoroughly
explored within the limits of the adaptation. The
quality of the sample AEs remains high, but they
are just not found for as many examples as in
BERT-ATTACK. This is in line with the slow
adaptation for this combination visible in Figure
3 (BERT/HN) and research showing fake news
detection as relatively robust (Jin et al., 2020).

On the other hand, the performance gains for
tasks with shorter text are substantial. In evalua-
tion against fact-checking task XARELLO not only
beats BERT-ATTACK in terms of BODEGA score
(77% vs 53%), but is able to reach an AE in 7.42
queries on average, rather than 146.

The results for the targeted attacks are shown
in table 3 in appendix D. The general outlook is
very similar, but the targeted attacks appear more
successful, especially against BERT and GEMMA.
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6 Linguistic analysis

In order to see what these improved performance
metrics look like in actual output utterances, we
perform a textual analysis on 67 AEs against BERT,
generated by XARELLO from the PR task in the
targeted scenario. These are examples where low-
credibility text was recognised as such by the vic-
tim model, but the modifications introduced by
XARELLO changed this decision. Examples of the
described phenomena are shown in appendix C.

Our main takeaway is that the XARELLO agent
strongly relies on making replacements at the sub-
word level. Some of these render clear non-words
which result in sentences becoming completely un-
grammatical. Other non-words may pose less of a
problem to reader, as they are typographically very
similar to the original text. A similar phenomenon
occurs in generated non-words which may appear
to be infrequent or archaic words which match the
orthographic and phonological rules of English2.

It is possible that readers may not notice these
spelling mistakes. In multiple studies over decades,
the first and last letters in a word contribute more
strongly to recognition (Huebert and Cleary, 2022),
for example when “hypocritically" is replaced by
“*hypoclipically". AEs may therefore be ungram-
matical, but still effective.

There are also patterns of adjectival replace-
ment which appear to perform a form of seman-
tic bleaching, or that introduce euphemistic lan-
guage by replacing an emotionally charged noun or
noun phrase with a pronoun3 or a more generalistic
noun4. This strategy is not always successful, with
around half of this type of replacement resulting
in ungrammatical utterances5. Moreover, the agent
may be too greedy and remove crucial constituents
of an utterance6. We also discovered words which
XARELLO has learned to retain, or avoid and pro-
vide replacements. It often chooses “new" or “big"
to replace more semantically-transparent or emo-
tive words, and this links to our observations about
adjectival and pronominal replacement.

The observed modification types may stem from
the nature of XARELLO’s victim BERT’s subword
tokenisation method, as well as our use of fastText
to represent word replacement candidates. In order
to ‘fool’ the classifier, XARELLO may rely too

2Original: “lives and vocations"→AE: “*vassations"
3Original: “his aggressive behaviour"→AE: “own"
4Original: “that type of injustice→AE: “work".
5Original:“from the american people"→AE: “my us"
6Original:“reported on a gaping hole in"→AE: “*"

strongly on replacing pieces of words whose out-
put resembles the orthographic and morphological
rules of English but which may not be acceptable
to real-world readers.

Possible methods to mitigate ungrammatical out-
put could be to check output tokens against the
N-gram probability of the AE, using semantic sim-
ilarity as a heuristic for whole-token replacement,
penalising tokens which do not appear in a lookup
lexicon, or by using reinforcement learning from
human feedback (Ziegler et al., 2020).

7 Limitations

Despite showing positive results, our study has
several limitations. Firstly, in casting the AE gen-
eration as a RL problem (section 3.2), we discard
the possibility of adding new words to the origi-
nal text, which is possible in some previous AE
generators, such as BAE (Garg and Ramakrish-
nan, 2020). Word deletion is not allowed either,
even though it is one of the most natural ways of
changing the form of the text while preserving its
meaning (Shardlow and Przybyła, 2023). Finally,
we do not perform any special treatment of sub-
words, e.g. as in BERT-ATTACK (Li et al., 2020).
These operations are excluded in order to reduce
the size of the action space, but incorporating them
would be a promising avenue for future research.

Secondly, due to the long processing time, we
performed only a basic exploration of the influence
of the many parameters present in our solution (see
appendix B). Some of these, e.g. discounting coef-
ficient, do not have an obvious meaning in context
of AE search, and their best value could only be
discovered through systematic tuning. Others, such
as dimensions of the Q network, number of steps
and episodes, likely depend on a particular task, so
would have to be tuned for each of them separately.
Finally, some, such as number of candidates, would
almost certainly improve the performance, but at
the cost of longer adaptation time. However, these
experiments might be justified if we want to simu-
late an attacker that consistently operates against a
specific target.

Moreover, classifiers more elaborate than in-
cluded here could be tested as victim models as
well. We decided to use BiLSTM and BERT in
the interest of comparability with previous solu-
tions, numerous of which were evaluated against
BODEGA (Przybyła et al., 2023), and GEMMA
to illustrate vulnerability of modern LLMs. It is
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interesting to notice that the latest of the tested ap-
proaches is also the most prone to attacks. Future
work might verify if this is caused by reasons con-
nected to our setup, e.g. relatively small datasets
for tuning a network of this size, or a more funda-
mental weakness of very large models.

Even though misinformation is an equally grave
problem for non-English Internet, our solution
is only evaluated on English datasets. However,
XARELLO does not depend on English in any par-
ticular way and could be applied to any language,
as long as a Transformer model for it exists.

Finally, the results on the news bias assessment
indicate our approach does not generalise very well
to the case when numerous changes in a long text
need to be made. This is because the final reward
typically could not be achieved within the short
horizon of the adaptation episodes. A more ex-
haustive search for solutions should happen during
adaptation in such cases, including attacks of in-
creasing length, as in the attack phase.

8 Ethical impact

The work in the domain of adversarial robustness
needs to be scrutinised to make sure it does not aid
the malicious actors. However, discovering AEs is
definitely more likely to help build up the defences.
Firstly, the examples we generate cannot be used di-
rectly to perform any attacks. That is because AEs
are not transferable, so they would work only with
the models they were discovered for, i.e. the victim
classifiers. The models used for content moder-
ation are likely trained using newer architectures
and proprietary internal data. Secondly, despite the
progress in the domain, most attack scenarios still
require dozens or even hundreds of attempts are
impossible to conduct in practice.

More generally, the AEs are vulnerabilities that
exist due to the nature of neural networks and re-
search such as ours is only revealing, not creat-
ing them. In our view, it is better that such tech-
niques are obtained and discussed within the trans-
parent research discourse rather than they would
be discovered just by misinformation spreaders.
For these reasons, we have decided to make the
XARELLO code available7.

9 Conclusion

To sum up, XARELLO adapts well to the weak-
nesses of a victim model and in all scenarios, ex-

7https://github.com/piotrmp/xarello

cept with very long text, achieves superior perfor-
mance. This result applies to various victim mod-
els, from small RNN networks to classifiers based
on large modern fine-tuned LLMs. This allows us
not only to find AEs for more examples, and of
better quality, but also do this with fewer attempts.
The evaluation becomes more realistic, as it is more
likely that a platform would allow a user to send 5
consecutive messages of similar content to find an
AE, rather than 133, needed by other methods.

We rely on an expectation that an attacker has
already some experience with the current classifier.
This is a much lower bar than in white-box attacks,
assuming complete access to victim model weights.
Nevertheless, in practice it will depend on the in-
ternal operations both of misinformation spreaders
(e.g. experience retention) and content platforms
(e.g. model updating frequency).

Ultimately, AEs allow us to find and understand
the weaknesses of the investigated models before
they are deployed. We can build on these methods
to improve the model robustness. Our contribution
could be easily used for this purpose, i.e. by includ-
ing the generated AEs in the training data, as in the
adversarial training paradigm (Bai et al., 2021).

We hope that by making the code of XARELLO
openly available, we enable such use-cases and con-
tribute to more reliable role of automatic classifiers
in making the Internet safer.
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A Adaptation process for GEMMA

Figure 4 shows the adaptation process for the
GEMMA victims.

B Implementation details

Software implementation: The Q-learning envi-
ronment is defined in terms of Env class in the gym-
nasium framework for RL (Towers et al., 2023).
The neural network is implemented in pyTorch
(Paszke et al., 2019).

Performance: The adaptation process is exe-
cuted on a machine using one NVIDIA A100 GPU
with 40 GB RAM. The duration of the process (all
20 epochs) varies depending on the victim and task
performed, taking from 18 hours (BiLSTM, PR) to
42 hours (BERT, HN).

Parameter tuning: Due to the length of the
adaptation process, only very limited parameter
tuning was performed. To reduce the necessary
processing time, in all of these experiments we
used a smaller version of the model (for input up to
128 tokens), 1500 instances for adaptation and 400
for testing, both within the development portion of
the PR task. Each run took around 10 hours to com-
plete, save for the adaptation length experiment,
taking proportionally longer. We tested separately
adaptation length (20 or 50 epochs), memory mech-
anism (experiences either previously observed or
drawn from memory of 4000), warmup periods
(0.1, 0.3, 0.5, 0.7. 0.9), discounting parameter (0.0
or 0.5) and number of candidates (10 or 20). In
general, our observations indicate low variability
of the results within the ranges tested, but the best
variants were selected for the main evaluation.

Adaptation: We train for 20 epochs on the adap-
tation dataset. The discounting coefficient is set
to γ = 0.5 and exploration factor ϵ falls linearly
during warmup period from 100% at the beginning
of the process to 10% after 30% of the adaptation
are finished and remains constant afterwards. As in
the seminal work on deep RL (Mnih et al., 2015),
we use a memory of previous experiences. Up to
4000 experiences are kept in a queue and 16 are
randomly selected for Q update at every step. This
learning is initiated every time 16 new experiences
are added to the memory. The neural network is
updated using Adam optimiser (Kingma and Ba,
2015) with a constant learning rate of 2× 10−5

C Qualitative analysis: examples

Changed characters by the agent are in boldface,
and the star (*) symbol indicates incoherence, un-
grammaticality or disfluency.

Examples where subwords are replaced render-
ing an ungrammatical sentence:

• Original: “...doctors are warning that it will
be continuing to spread and worsen"

• AE: “*...doctors are warning that it will be
continuing to slow and badn"

• Original: “is already reeling over the reve-
lations...a Cardinal over weekend, has been
credibly accused"

• AE: “*is already poiseding over the revela-
tions...a Cardinal over the weekend, has been
nowredibly accused"

Examples of non-words which are typographi-
cally similar:

• Originals: “menace", “hypocritically",
“blatently", “colluded"

• AEs: “*meace", “*hypoclipically",
“*bratently", “*copoluded"

Example of a non-word which may appear like
an infrequent or archaic word:

• Original: “many who have spent their lives
and vocations"

• AE: “*many who have spent their lives and
vassations"

Examples of adjectival replacement resulting in
euphemistic language:

• Original: “that type of injustice"
• AE: “that type of work"

Examples of a pronoun replacing a noun/noun
phrase:

• Original: “his aggressive behaviour", “vi-
cious comments", “treated as criminals"

• AE: “his own behaviour", “his comments",
“treated as it"

An example where this does not work well:

• Original: “from the american people"
• AE: “*from the my us"

An example where a whole constituent of a sen-
tence is removed unsuccessfully:

• Original: “reported on a gaping hole in"
• AE: “*reported on a in"
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D Results in the targeted attacks

Table 3 includes the results of the evaluation in the
targeted scenario.

E Text examples

Table 4 shows examples of credible and non-
credible text in each task.
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Figure 4: Improvement of the XARELLO attackers during the adaptation process, shown for each of the tasks and
the GEMMA victims. See figure 3 and the main text for more information.

Victim: BiLSTM Victim: BERT Victim: GEMMA
XARELLO XARELLO XARELLO

Measure DWB B-A raw full DWB B-A raw full DWB B-A raw full
PR BODEGA 0.560 0.658 0.588 0.682 0.501 0.503 0.432 0.523 0.292 0.553 0.568 0.617

conf. 0.720 0.940 0.980 1.000 0.640 0.787 0.760 0.907 0.378 0.851 0.905 0.986
sem. 0.808 0.744 0.668 0.725 0.811 0.691 0.648 0.633 0.797 0.700 0.690 0.676
char. 0.962 0.937 0.872 0.932 0.965 0.920 0.862 0.889 0.968 0.920 0.893 0.911

queries 35.3 50.1 40.0 10.3 36.0 99.9 75.6 53.4 36.0 94.1 43.4 23.3
FC BODEGA 0.540 0.594 0.613 0.779 0.224 0.413 0.471 0.764 0.063 0.496 0.513 0.781

conf. 0.642 0.851 0.946 1.000 0.268 0.621 0.737 1.000 0.077 0.759 0.841 0.995
sem. 0.854 0.726 0.706 0.803 0.847 0.708 0.700 0.789 0.836 0.701 0.676 0.810
char. 0.984 0.956 0.907 0.969 0.983 0.932 0.897 0.966 0.984 0.919 0.880 0.967

queries 50.7 123.2 57.1 4.5 52.3 207.2 100.8 8.1 52.0 254.2 91.5 8.1
RD BODEGA 0.615 0.426 0.420 0.636 0.388 0.299 0.324 0.433 0.237 0.408 0.420 0.604

conf. 0.907 0.947 0.947 1.000 0.560 0.690 0.770 0.880 0.346 0.933 0.923 1.000
sem. 0.686 0.462 0.511 0.664 0.700 0.446 0.491 0.559 0.693 0.455 0.521 0.649
char. 0.988 0.975 0.838 0.952 0.990 0.971 0.812 0.856 0.989 0.961 0.839 0.919

queries 153.6 130.6 224.4 5.6 174.0 366.1 422.6 222.5 161.9 259.4 297.0 46.1
HN BODEGA 0.366 0.613 0.368 0.545 0.153 0.567 0.175 0.247 0.267 0.575 0.494 0.534

conf. 0.473 0.958 0.599 0.820 0.198 0.948 0.314 0.465 0.342 0.947 0.797 0.775
sem. 0.775 0.648 0.658 0.682 0.776 0.620 0.610 0.558 0.782 0.624 0.653 0.708
char. 0.998 0.985 0.918 0.966 0.997 0.962 0.885 0.916 0.998 0.970 0.925 0.963

queries 379.2 565.0 585.4 316.2 389.8 753.9 795.7 691.0 380.6 761.5 408.3 366.4
Avg: BODEGA 0.520 0.573 0.497 0.660 0.317 0.445 0.350 0.492 0.215 0.508 0.499 0.634

queries 154.7 217.3 226.7 84.2 163.0 356.8 348.7 243.8 157.6 342.3 210.0 111.0

Table 3: Results of the evaluation of the XARELLO attacker on different datasets in the targeted scenario. See
table 2 and the main text for further explanation.
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Task Credible example Non-credible example
HN Challenges in the Courts to Obamacare

Certainly, as the new national health care changes
get underway, there are going to be many challenges
to it in the courts. These challenges will prove quite
telling for the general public about the state of the
health care reforms, and their legitimacy. In recent
news, a Detroit Federal judge just upheld major ele-
ments of the health care overhaul law. U.S. District
Judge George Steeh explained in his 20 page deci-
sion that not having health insurance is basically
an active decision to pay out of pocket for health
care. With this ruling, he supported the constitution-
ality of the health care reform law, particularly that
part of it that indicates that individuals need to have
health coverage. (...)

Texas Board Of Education Approves Resolution To
Limit Islam References
Associated Press
AUSTIN, Texas — The Texas State Board of Educa-
tion adopted a resolution Friday that seeks to curtail
references to Islam in Texas textbooks, as social
conservative board members warned of what they
describe as a creeping Middle Eastern influence in
the nation’s publishing industry.
The board approved the one-page nonbinding res-
olution, which urges textbook publishers to limit
what they print about Islam in world history books,
by a 7-5 vote.
Critics say it’s another example of the ideological
board trying to politicize public education in the
Lone Star State. (...)

PR The Italian Catholic daily La Nuova Bussola Quo-
tidiana reports that not only did the pope see a letter
from victims, but that the CDF, under Muller, “had
already conducted an preliminary investigation into
Barros and the other bishops close to Karadima
which had led to the decision to relieve them of
their duties.”

Somehow the openly racist and anti-Semitic Far-
rakhan and his hateful organization have managed
for decades to avoid being harshly denounced as
such by the news media, which instead has spent the
last two years attempting to smear Donald Trump
as the new Hitler.

FC Indian Army. The Indian Army has a regimental
system, but is operationally and geographically di-
vided into seven commands, with the basic field
formation being a division. Army. Within a na-
tional military force, the word army may also mean
a field army. An army (from Latin arma “arms ,
weapons” via Old French armée , “armed” (femi-
nine)) or ground force is a fighting force that fights
primarily on land. → The Indian Army is a military
force.

Armenian Genocide. Other indigenous and Chris-
tian ethnic groups such as the Assyrians and the
Ottoman Greeks were similarly targeted for extermi-
nation by the Ottoman government in the Assyrian
genocide and the Greek genocide, and their treat-
ment is considered by some historians to be part
of the same genocidal policy. → The Armenian
Genocide was the extermination of Armenians who
were mostly Ottoman citizens.

RD Pray for the victims. Deadly terrorist attack on
French magazine Charlie Hebdo in Paris #FreeP-
ress http://t.co/HCEG92Zxtz
@Parazhit @nickyromero look
@Parazhit just because they published, 9 year ago, a
satirical drawing of Mahomet,... One of the terrorist
said "The prophet was avenged"...
RT @Parazhit: Pray for the victims. Deadly ter-
rorist attack on French magazine Charlie Hebdo in
Paris #FreePress http://t.co/TrYGr2Sm1O
@Parazhit Praying for Paris and France you are our
brothers and sisters #EDM better days will come
thanks to God and music!
@Parazhit @HardRavers merci

After the attack, the gunmen shouted: “We have
avenged the Prophet Mohamed! We have killed
Charlie Hebdo!” http://t.co/DgmB9jTXx7
@nytimes Did they really avenge. Does the Prophet
need avenging?
@nytimes No cure for crazy.
@nytimes Killing one Charlie has only created thou-
sands more. #JeSuisCharlie #FreedomOfSpeech
@nytimes Ironically they have given Charlie Hebdo
martyr status...#JeSuisCharlie
@nytimes Report this:Americans DON’T want
to close Gitmo or release terrorists&WANT
pipeline&borders secured.Obama not listening to
ppl.
@nytimes Given you’re filtering victim accounts
@nytimes, shocked you haven’t made the killers the
heroes yet. #Journalism (...)

Table 4: Examples of credible and non-credible content in each of the tasks in BODEGA: style-based news bias
assessment (HN), propaganda detection (PR), fact checking (FC) and rumour detection (RD). See main text for the
data sources.
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