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Abstract

We present a one-shot prompting approach to
multi-class classification for similar language
identification with an off-the-shelf pre-trained
large language model that is not particularly
trained or tuned for the language identifica-
tion task. Without post-training or fine-tuning
the model, we simply include one example per
class when prompting the model and surpris-
ingly the model is able to generate the language
and locale labels accordingly.

1 Introduction

Recent works validated the idea of using language
models generation performs well in classification
task (Li et al., 2018a; Thant and Nwet, 2020; Hadar
and Shmueli, 2021) and generation models can also
perform competitively as zero-shot text-classifiers
(Yinetal., 2019; Meng et al., 2022; Sun et al., 2023;
Wang et al., 2023). Particular to language identifica-
tion, Gillin (2022) have trained an encoder-decoder
model for the French Cross-Domain Dialect Identi-
fication (FDI) dataset (Gaman et al., 2023) for the
VarDial 2022 shared task (Aepli et al., 2022a).!

Previously one might find it appealing to train or
fine-tune a model to achieve state-of-the-art NLP
models for specific tasks, but recent advancement
in large language models and prompt-based solu-
tions have made us think,

What if we just prompt a popular LLM
and make it work like a classifier without
tuning it?

To test the idea of just prompting a pre-trained
model for language identification, we evaluated the
approach on the English, French, Portuguese and
Spanish subset of the DSL Multi-label classifica-
tion of similar languages (DSL-ML) shared task

'The general idea is to generate language labels as how a
language model will generate the next token/word in natural
text (Li et al., 2018b,c).

at VarDial 2024 (Chifu et al., 2024).> A few of
example inputs and outputs of the DSL-ML test
data are as follows:

[IN]: It took a lifetime, three trips to the moon
and the downfall of communism to make it hap-
pen...

[ouT]: EN-GB,EN-US

[IN]: ..as an artist, there is no shortage of
colour in my life.

[ouT]: EN-GB

[IN]: ...the annual pop culture event bringing
colorful cosplayers, entertainment aficionados
and comic book lovers together under one roof...

[ouT]: EN-US

The English varieties contains 3 classes, EN-US,
EN-GB or both EN-GB, EN-US. The Portuguese and
Spanish varieties also have 3 classes. Respectively,
PT-BR, PT-PT and PT-BR,PT-PT for Portuguese
from Brazil, Portugal or both and ES-AR, ES-ES
and ES-AR,ES-ES for Spanish from Argentina,
Spain or both.

For the French varieties, the single label classes
comprises the Belgium, Canada, Switzerland and
France, viz. FR-BE, FR-CA, FR-CH and FR-FR. And
the combinations of multi-labels may come from
either of the labels, e.g. FR-CA,FR-CH,FR-FR to
represent texts that could be in classified as ei-
ther Canadian, Swiss and French varieties. Also,
we note that the input text from the French vari-
eties subtask contains masked named-entities rep-
resented by the $NE$ tokens.

2https://sites.google.com/view/vardia1—2®22/
shared-tasks
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2 TL;DR (Experimental Setup)

We use the Mistral instruct model with 7 billion
parameters (Mistral-7B) (Jiang et al., 2023) for all
our experiments .

Off the shelf, we did not post-train, i.e. continue
training the language model generation with raw
monolingual texts, nor fine-fune the model with
language identification datasets.

Without using the training data, we only selected
one example per class from each language family
from the development dataset provided by the DSL-
ML shared task organizers. These examples were
used as one-shot prompt and prepended to texts in
the test sets.

For example, given an example from each class
in the English development set from Section 1 and
a input text from the test set:

[IN]: Conducting an amateur orchestra and per-
forming with it as a soloist are parts of the learn-
ing process for young professionals.

We process the above to put them in the format
that the Mistral-7B model expects, e.g.

<s>[INST] It took a lifetime... [/INST]
EN-GB,EN-US</s>

<s>[INST] ...as an artist... [/INST]

EN-GB</s>

<s>[INST] ...the annual pop culture... [/INST]
EN-US</s>

[INST] Conducting an amateur orchestra... [/INST]

And we expected the model to generate EN-US,
EN-GB or EN-GB,EN-US as a continuation to the
examples and input sentence we entered. We will
refer to this as one-shot prompting for the rest of
the paper.* We repeated the one-shot prompting
approach for the French, Portuguese and Spanish
test sets (Zampieri et al., 2024, 2023; Gaman et al.,
2023; Bernier-colborne et al., 2023).

2.1 One-shot Prompting with Instructions

Additionally, for the English variety test set (Tan
et al., 2014a), we experimented with a instruction
prompt where we prepend the following instruc-
tions before the examples and the test instance, aka.
instructed one-shot prompting.

3https ://huggingface.co/mistralai/Mistral-7
B-v@.1

*We acknowledge that the terminology of "*-shot" has
not been defined formally in previous literature, e.g. https:
//datascience.stackexchange.com/q/120637/122. In
this case, we refer to one-shot as giving the model one example
per class as context before requiring it to infer the label given
the test instance.
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Label the following text as (i) EN-US if it's
in United States English or (ii) EN-GB if it's
in United Kingdom English or (iii) EN-US,EN-GB
if it can be both in United States or

United Kingdom. <s>[INST] ...[/INST]...
[INST] Conducting an amateur orchestra...

</s>...
[/INST]

3 Results
Lang ‘ Train Dev Test
EN | 751 748 745
ES 212 206 213
PT 20.0 20.6 18.5
FR - 156 129

Table 1: Weighted Averaged F1 Score of One-shot
Prompting

Table 1 presents the weighted F1 scores of the
one-shot prompting without instructions. In addi-
tion to the test set scores, we report the performance
of the results of classifying the training (7rain) and
development (Dev) of the one-shot prompting ap-
proach.

We note that these numbers for the test set F1
scores differ from the ones reported in the offi-
cial shared task findings papers (Chifu et al., 2024)
since we didn’t do any special label processing
to compute partial matches for multi-class true la-
bels before computing the weighted F1-score with
sklearn.’

Split | One-shot Prompt-shot
Train 75.1 69.9
Dev 74.8 68.7
Test 74.5 74.8

Table 2: Results of English Variety Classification be-
tween One-shot Prompting without (One-shot) vs with
Instructions (Prompt-shot)

Table 2 reports the results of the English variety
classification with and without the pre-example in-
struction prompt as described in Section 2.1. The
one-shot prompts with instructions consistently per-
forms worse on the training and development sets
as compared to the one-shot prompting without in-
structions. However, one-shot prompting performs
almost equally on F1-scores on the test sets with or
without instructions.

https://scikit-learn.org/stable/modules/gene

rated/sklearn.metrics.precision_recall_fscore_su
pport.html
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4 Related Works

As language coverage of identification systems in-
creases (Jauhiainen et al., 2019; Agarwal et al.,
2023; Burchell et al., 2023), language identification
between similar languages, dialects and national
varieties remains an active and challenging task in
NLP (Tiedemann and Ljubesi¢, 2012; Gaman et al.,
2020; Bouamor et al., 2019; Chakravarthi et al.,
2021; Aepli et al., 2022b, 2023).

Early studies on language varieties classification
created annotations through proxy signals such us-
ing the top-level domain of the text source’s web-
site as the locale label (Tan et al., 2014b). However,
datasets with locale labels created through proxy
signals are often unreliable since there might be
no linguistics marker that distinguish one language
variety to another language variety (Zampieri et al.,
2014; Acs et al., 2015; Goutte et al., 2016).

Zampieri et al. (2023) and Bernier-colborne et al.
(2023) redefined the language variety identification
task as a multi-label task instead of assigning only
a single language variety to each text.

5 Conclusion

By prompting the Mistral-7B model, which was not
particularly known to be trained on language identi-
fication, we were able to make it classify language
varieties to some extent. However, like many large
language models, it is largely English-centric and
we observed that the English variety classification
performance far exceeds the French, Portuguese or
Spanish varieties classification task. While a lan-
guage model ‘open source’ its model parameters,
the lack of transparency in what goes into train-
ing the model makes its usage a grey-box probing
exercise.
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A Appendix

All generations from the Mistral models used to
produce the results from Table 1 and 2 can be found
on https://huggingface.co/collections/a
lvations/jelly-shots-662f2661e4a1f7302
a85488a
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