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Abstract
To build large language models for Ukrainian we need to expand our corpora with large amounts of new algorithmic
tasks expressed in natural language. Examples of task performance expressed in English are abundant, so with a
high-quality translation system our community will be enabled to curate datasets faster. To aid this goal, we introduce
a recipe to build a translation system using supervised finetuning of a large pretrained language model with a
noisy parallel dataset of 3M pairs of Ukrainian and English sentences followed by a second phase of training using
17K examples selected by k-fold perplexity filtering on another dataset of higher quality. Our decoder-only model
named Dragoman beats performance of previous state of the art encoder-decoder models on the FLORES devtest set.

Keywords: machine translation, parameter-efficient fine tuning, large language models, unsupervised data

selection, perplexity filtering

1. Introduction

The availability of the data is the most important
ingredient when one needs to pretrain general-
purpose large language models for a specific natu-
ral language task or a set of tasks. While it is rela-
tively easy to obtain a good and balanced dataset
under specific domain for the English language,
it is much harder to do the same for other under-
resourced languages such as Ukrainian.

Since curating a corpus of tasks in Ukrainian is
a large endeavor, and given a large body of work
done for English, we consider existing instruction
tuning datasets as a source of tasks to reuse in
Ukrainian using automatic machine translation.

This work focuses on improving the current state
of machine translation from English to Ukrainian.

We contribute a recipe for finetuning a large pre-
trained language model with publicly available data
to build a translation system (section 3, section 4).
This matches state of the art performance of the
best encoder-decoder model on a common multi-
lingual benchmark using a consumer GPU with 24
GiB of VRAM. We release training, evaluation code,
datasets, and model at https://github.com/
lang-uk/dragoman. Our main results are sum-
marized in Table 1. We provide examples of the
top-5 best and worst translations on the FLORES
devtest set in the Appendix A.

We base pretrained model selection on evalua-
tion in few-shot learning setting (section 5). We find
that it's a promising method to design tasks without
training, and the model can perform comparably
to specialized systems given increased inference
budget and auxiliary translation scoring functions,
yet still underperforms our finetuned recipe.

41

Model BLEU ©
Finetuned

Dragoman P, 10 beams (section 3) 30.4
Dragoman PT, 10 beams (section 4) 32.3
Zero shot and few shot (section 5)

Llama 2 7B 2-shot, 10 beams 20.1
Mistral-7B-v0.1 2-shot, 10 beams 249
gpt-4 10-shot 29.5
gpt-4-turbo-preview 0-shot 30.4
Pretrained encoder-decoder

NLLB-3B, 10 beams 30.6
OPUS-MT, 10 beams 32.2

Table 1: Main results. Our Dragoman models im-
prove existing state of the art on translation from En-
glish to Ukrainian on FLORES-101 devtest (Goyal
et al., 2022), a multilingual benchmark of trans-
lated sentences from web articles. We compare to
state of the art encoder-decoder models, NLLB-3B
(Team et al., 2022) and OPUS-MT (Tiedemann and
Thottingal, 2020).

2. Supervised Finetuning

We cast machine translation as a likelihood maxi-
mization of a density p of Ukrainian sentences Y =
”nepekiagene peyenns’ € ) conditioned on their
English sources with quasi-instruction formatting:
X ="[INST] translated sentence [/INST]” € X.

The density is parametrized using a neural net-
work with frozen pretrained weights 6:

(1)

We implement the conditional language model-
ing objective by masking out tokens of X when

argmax, py ,(Y[X)
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Filters

Dataset Pairs Lang BPC LaBSE Len diff Example Order Best BLEU 1
1m unfiltered 963k - - - - Random 28.26
1m filtered 958k En/Uk <3.33 >0.91 <50 Random 29.47
3m filtered 29m En/Uk <3.25 >0.85 <50 By LaBSE score, dissimilar first 30.37
8m filtered 8m En/Uk <5 >05 <50 By LaBSE score, dissimilar first 30.19

Table 2: Summary of experiments with Paracrawl subcorpora. Legend of filters: Lang denotes language
filters, BPC denotes maximum sum of bits per character measures, LaBSE denotes maximum sentence
embedding cosine similarity between source and target sentences, Len diff denotes maximum difference
in length between source and target in characters. Example ordering impacts data loading in the training

loop.

computing token-wise cross entropy of shifted tar-
gets. We only optimize extra low rank adapter (Hu
et al., 2022) parameters ¢ after nf4 quantization
(Dettmers et al., 2023). In practice we use large
rank values and adapter mixture weights. All train-
ing runs proceed for one epoch and we use dropout
(Srivastava et al., 2014) for regularization against
data noise.

We use Mistral-7B-v0.1 (Jiang et al., 2023) as a
base pretrained decoder-only transformer, as it per-
forms favorably in our few-shot experiments (sec-
tion 5).

3. First Phase: Heuristic Filtering of
Paracrawl

We use the publicly available Paracrawl dataset
(Bandn et al., 2020). This dataset contains
13,354,365 English-Ukrainian sentence pairs, col-
lected by automatically matching similar sentences
in large corpora of internet text.

We have identified issues with translation pairs,
including a significant number of repetitive or in-
correct examples. We encounter a large subset of
repetitive weather forecasts following the template
“The temperature in <x> is <y> degrees,” and sen-
tences from site navigation menus. Additionally,
many texts appear to be scraped from adult web-
sites, containing low-quality, machine-translated
samples. We have spotted numerous instances
of incomplete or significantly incorrect translation
pairs. Some target sentences were written in lan-
guages other than Ukrainian.

To control the quality of the sentences, we apply
multiple heuristics.

Language filtering gcld3 library’ provides lan-
guage detection capabilities. We remove all sen-
tences that failed to verify as Ukrainian or English.

Perplexity thresholding We score source and
target sentences using two decoder-only models
trained on different monolingual datasets (Radford
et al., 2019; Minixhofer et al., 2022) and sum their
bits per character measures.

"ttps://github.com/google/cld3
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Translation mismatch filtering LaBSE (Feng
etal., 2022) embeds sentences into a space, where
similar sentences in different languages are close
together. We use it to filter out badly aligned sen-
tence pairs.

Length filtering The lengths of the original and
translated sentences reveal examples that are too
short or too long. Absolute differences of lengths
point to pairs with long target for the short source
and vice versa.

We arbitrarily choose joint values of filtering
thresholds to get the desired approximate example
counts: 1 million, 3 million and 8 million. We per-
form multiple experiments with these splits while
searching for optimal hyperparameters. We list
threshold values in Table 2 and best results for
each subset.

4. Second Phase: Unsupervised Data
Selection on Extended Multi30K

We use the best checkpoint from the previous fine-
tuning phase to train on a high-quality dataset: Ex-
tended Multi30K from Saichyshyna et al. (2023).
Switching datasets gives us a performance boost
of 1.97 BLEU. We additionally delete 11600 sen-
tences from the dataset using unsupervised per-
plexity filtering pipeline gaining 0.35 on the dev set
that translates to 0.3 BLEU on the devtest subset
of FLORES.

We use perplexity as a data selection criterion
to calculate thresholds to filter out highly surprising
sentences. We apply the k-fold cross-validation
technique to make the perplexity evaluation in-
domain. We split the training data into k£ = 5 folds
and train £ models withholding one of the folds from
each run. Then we score every sentence using the
model that has not seen that sentence in training.
Next, we sweep for acceptable threshold values
by minimizing BLEU on the development set and
report results in Table 3. We plot the distribution
of scores in Figure 1. We also provide threshold
sweep results for training from base Mistral-7B-v0.1
checkpoint in Table 6. By comparing finetuned re-
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Figure 1: Distributions of sentence log probabilities
for each fold superimposed on top of each other.
Every bar color represents a unique fold; every ver-
tical line denotes a 60" percentile cutoff threshold.
The best percentile is chosen using grid search
shown in Table 3.

sults, we demonstrate that data from the second
phase alone is not enough to match the perfor-
mance of our best checkpoint.

Threshold Examples BLEU 1
percentile dev devtest
20" 5800 31.57 32.06
40" 11600 31.65 32.16
50t 14500 31.76  32.36
goth 17400 31.80 32.34
70t 20300 31.51 32.17
goth 23200 31.44 32.46
95.4™M (20) 28025 31.74 32.18
Full dataset 29000 31.45 32.04

Table 3: Extended Multi30K log probability thresh-
olds swept on FLORES dev set. We choose the
best checkpoint based on model performance on
FLORES dev subset using grid search for optimal
perplexity threshold value.

5. Few-Shot Translation

Conditioning the model on a sequence of demon-
strations of performing some task allows the model
to learn this task in-context, also known as “few-
shot learning” (e.g. Brown et al. (2020)), thanks to
the ability of the Transformers to modulate represen-
tations of its future tokens using past context, imple-
menting a specialized internal context-dependent
learning algorithm inside its weights (von Oswald
et al., 2023).

While few-shot learning allows to quickly try any
task with a low number of demonstrations, Liu et al.
(2022) have shown that parameter-efficient fine-
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tuning allows smaller models achieve better per-
formance, effectively spending less floating point
operations per test example at inference time.

Setting up the model for finetuning requires a lot
of work, and in-context learning allows to quickly
probe capability of a large model using inference
software that performs efficient management of
key-value cache for speed (Kwon et al., 2023).

To test backbone models before finetuning, we
attempt decoding translations with a basic prompt
shown in Figure 2.

[INST] They are planning to host a party next week-
end. [/INST| Bonu mianyiorh HpoBecTH BEUipKy
HACTYITHOT'O BIKEHJTY.

[INST] I enjoy swimming in the ocean and feel-
ing the salty breeze. [/INST] Meni nonobaerbes
ILUTaBATH B OKEaHI Ta BiTIyBaTH COJIOHMII BiTep.

[INST]

Figure 2: Basic 2-shot prompt used for few-shot
translation. [INST] prefixes the beginning of the
source sentence and [/INST] denotes the begin-
ning of the target translation. These separators
are chosen arbitrarily (as in finetuning) and are not
special vocabulary items, even though they bear
visual resemblance to them.

We find that the model significantly underper-
forms compared to current state of the art trans-
lation models when using beam search (Tillmann
and Ney, 2003).

This decoding algorithm performs pruned
breadth-first expansion, scoring target sentence
prefixes using model’'s own log probability, approxi-
mating maximum a-posteriori estimation of the best
translation.

Inspection of the n-best list of translation candi-
dates (beams) reveals that the models can produce
high-quality translations, however assign low prob-
abilities to them. We find the best possible trans-
lation by rescoring beams using the BLEU score
as a loss function (Kumar and Byrne, 2004) with
respect to the reference translation (the so-called
“oracle”).

We employ this oracle rescoring strategy to
gauge the potential capability of the model to pro-
duce good translations without finetuning, and find
that in a regime of increased computation (large
width of the beam) and assuming perfect selection
capability, a base model is competitive with special-
ized alternatives. We sweep over a grid of multiple
beam widths and report highest attainable BLEU
scores in Table 4.



Beams Oracle BLEU ©

Mistral-7B-v.01 Llama 2 7B
3 27.11 24.55
5 29.20 26.64
10 31.53 28.76
15 32.81 29.09
20 33.54 27.64
25 34.27 26.35
30 33.99 (decoder failure)
35 34.94
40 34.61

Table 4: We establish the upper bound of the la-
tent capability of pretrained base models to produce
high quality translations with by varying beam width
on the task of translating sentences from FLORES
dev given a 2-shot prompt. The ground truth oracle
determines the best beam. We use beam search
implementation by Kwon et al. (2023) with presence
penalty of 0.1. The results do not improve mono-
tonically with increasing beam size, and lengths of
hypotheses grow with maximum beam size, yield-
ing diminishing returns. This problem can be at-
tributed to label bias (Murray and Chiang, 2018),
and rectifying it will require extra regularization.

Consecutive sentences in FLORES are samples
from the same document. We hypothesize, dynam-
ically adjusting the prompt by inserting previous
translations will improve results. We observe that
the model indeed improves translation of certain
words such as proper nouns through access to cor-
rect definitions provided in the context (Figure 3),
however its overall performance degrades in other
examples.

We additionally attempt basic 0-shot with a
system prompt You translate English sen-
tences into native Ukrainian., and 10-
shot prompting using automatic prompt selection
based on similarity between source sentences ex-
periments with GPT-4 and GPT-4 Turbo and find
that commerical systems perform similarly to other
open source systems, as shown in Table 1.

6. Discussion and Limitations

Single-sentence translation Our system is
trained on demonstrations of standalone sentence
pairs.

Decoder-only models with long context win-
dows We choose to finetune existing decoder-
only models since the choice of models with al-
most the same architecture but different massive
pretraining data is abundant. The number of open-
source models released recently and their constant
improvement offers a good prospective for the ma-
chine translation tasks.
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Source: RSPCA New SoutH WALES CHIEF INSPECTOR
DAviD O’SHANNESSY TOLD THE ABC THAT SURVEILLANCE
AND INSPECTIONS OF ABATTOIRS SHOULD BE COMMON-
PLACE IN AUSTRALIA.

Hypothesis given random 2-shot context:
Tostouuii incriekrop PCITIKA Hosoro IliBaenHoro
Vemwcy Hesin O’Illenneci nosimomus ABC, o
CIIOCTEPEKEHHsSI Ta iHCIeKINl ab0baTcTB ITOBHUHHI
OyTu 3BMYaiHUM sBUIIEM B ABcTpaJil.

Context example: [INST] ANIMAL LIBERATION AND
THE ROYAL SOCIETY FOR THE PREVENTION OF CRUELTY
70 ANIMALS (RSPCA) ARE AGAIN CALLING FOR THE
MANDATORY INSTALLATION OF CCTV CAMERAS IN ALL Aus-
TRALIAN ABATTOIRS. [/INST] Opranizania 3sinbaenus
1

TBapUH KoposiBcbke ToBapucTBO i3 3amobiranHst

JKOPCTOKOMY 1oBOKeHHIO 3 TBapunamu (KT32KIIT)

3HOBY 3aKJIMKAIOTDH JI0 00OB’SI3KOBOI yCTAHOBKM KaMep
CIIOCTEPEYKEHHST Ha BCIX aBCTPAINCHKUX OifHSIX.
Hypothesis given relevant 2-shot context:
T'onoBuwmit incriekrop KopoJiBcbKoro ToBapucTsa

i3 3amobiraHHsi YKOPCTOKOMY TTOBO/PKEHHIO 3 TBAPUHAMU
(KT3ZKIIT)

O’lllenneci 3asiBUB, IO CIIOCTEPEXKEHHSI Ta IHCIEKIIT

Hosoro IliBmennoro VYesbcy /[leBin

Giitai moBuHHI OyTH MOMUpeHUMU B ABCTpAJIil.

Figure 3: Few-shot translation with contextual
prompting allows the model to learn named enti-
ties on the fly. Without context, the model makes a
wrong guess trying to transliterate the abbreviation.

These models receive gradient from all outputs
during pretraining, and the self-attention mecha-
nism can see the input, the partial output, and ac-
cess past examples of translations in its context
window using induction heads (Olsson et al., 2022).

For efficiency, we only train on examples with sin-
gle short sentence pairs and do not pack context
windows full of tokens as done in pretraining. In
our early experiments, we find that our models still
generalize to inputs longer that what is seen in train-
ing. This generalization behavior is often attributed
to relative position embeddings (Dai et al., 2019;
Csordas et al., 2021). We leave evaluation of long
context attention stability under these conditions
for future work.

Training on the noisy dataset Data cleaning has
a positive effect on the resulting metrics. However,
our models trained on 8 million filtered, examples
perform worse than models trained on 3 million
examples (Table 2).

Tokenizer performance We used the LLaMA
and Mistral tokenizers during our experiments,
which use at least twice as many tokens to com-
press a sentence in Ukrainian of the same length
as an English sentence in character. In practice,
that means that generating a sentence in Ukrainian



takes at least twice as many steps to generate. We
show a distribution of sentence token lengths in
Figure 4.
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Figure 4: Comparison of tokenizer compression
rates between English and Ukrainian using the
Mistral-7B tokenizer on the FLORES dev set.

Evaluation We choose BLEU-4 score (Papineni
et al., 2002) as our core evaluation metric and
model selection criterion. BLEU-4 measures 4-
gram precisions, where grams are defined as
words. We use the implementation and rely on
tokenization decisions of Post (2018). This metric
is sensitive to minor differences that do not affect
the meaning of the sentence, for example case in-
flections that tend to cascade to multiple adjacent
words. BLEU is known to poorly correlate with hu-
man judgement of translation quality, and Freitag
et al. (2022) recommend learned metrics.

Choosing an appropriate learned metric for judge-
ments of translation quality of Ukrainian requires
careful consideration, and incorporation of data
informed by the language community, such as a
curated corpus of grammar corrections that reflects
proper modern use of language (Syvokon et al.,
2023).

Regardless of limitations of BLEU, improvement
in BLEU still signals improvement in translation
quality in our regime.

WMT22 Our reviewers have pointed out that
WMT22 benchmark (Kocmi et al., 2022) includes a
test set for Ukrainian. Our model achieves 24.72
on the WMT22 test set without any postprocess-
ing, ranking behind the best result of Roussis and
Papavassiliou (2022) at 25.2 BLEU. We note that
the submission that scores relatively low on the
WMT22 test, scores comparably to our results on
FLORES. These data distribution properties require
closer exploration.
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7. Related Work

Translation to Ukrainian Maksymenko et al.
(2023a,b) explore translation controllability by con-
ditioning the model on text embeddings that en-
code style by finetuning an encoder-decoder model.
They claim high quality translations on a private test
set.

Instruction-tuned language models Ustiin et al.
(2024) explore large-scale translation efforts to
produce a multilingual instruction-tuned language
model Aya. This work translates large datasets like
the Flan Collection (Longpre et al., 2023) using the
NLLB-3B model (Team et al., 2022).

Translation systems Han et al. (2021) provide
an iterated backtranslation recipe to bootstrap neu-
ral machine translation systems using generative
models: zero-shot translation ability is used to pro-
duce candidates for few-shot demonstrations. Fil-
tered few-shot demonstrations are used to sample
new sentences for further finetuning for translation
in two directions.

Translation benchmarks Besides FLORES-101
(Goyal et al. (2022), or FLORES-200 (Team et al.,
2022), both include the same data for Ukrainian)
dataset used in this work, Tiedemann (2020) pro-
vides an additional dataset for multilingual evalua-
tion.

Data selection techniques Yang and Li (2023)
propose a perplexity filtering pipeline, in which the
data is split into k folds to classify low quality aug-
mentation generations produced by surrogate lan-
guage models. Sachdeva et al. (2024) provide
recipes on curating data for language models by
directly asking language models to score examples.

8. Conclusion

In this work, we build a translation system using a
two-phase data cleaning pipeline. We demonstrate
matching performance to state-of-the-art encoder-
decoder models for English-Ukrainian translation
task. Notably, our system exhibits superior per-
formance compared to the NLLB model, which
was instrumental in generating the Aya dataset
and contributed significantly to the advancement of
multilingual language models. Improved machine
translation could bring new capabilities to the next
generation of large language models trained for
the Ukrainian language. The recent improvements
made for decoder-only backbones and the general
dynamics of this process encourages us: we firmly
believe that recipes we propose in this paper can
be used to improve the quality of the translation by
simply upgrading the backbone model.
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Appendix
A. Translation Examples

Sample of top 5 worst examples by BLEU from
FLORES devtest set Source: WHILE MOST OF
THEIR FOOD WOULD BE FAMILIAR TO US, RomANS DID
HAVE THEIR SHARE OF STRANGE OR UNUSUAL FEAST
ITEMS, INCLUDING WILD BOAR, PEACOCK, SNAILS,
AND A TYPE OF RODENT CALLED A DORMOUSE
Hypothesis: Xoua 6Ginbmicrs IXHIX TPOIyKTIiB
XapayBaHHsA O0ys10 6 3HAIOMUM I HAC, PUMJISHI
MaJid CBOIO YACTKY [AWBHUX a00 HE3BUYANHUX
CcTpaB, BKJIOYao4n KabaHa, maBuda, PaBJIUKIB Ta
IPU3YHIB, 3BAHUX KYHUISIMU.

Reference: Ilepesaxkuo pumiisinu Xap4yBaJluCh
THM, IO 3HailoMe 1 HaMm, ajie Oysn y HEX i cBOI
JUBHI Ta HE3BUIHI OEHKETHI TaCTyBaHHS, CEpe
AKUX JUKAN KabaH, MaBud, CAUMAKH i TPU3YH TIiT
Ha3BOIO BOBYOK.

BLEU: 1.72

Source: "| wAS MOVED EVERY TIME WE DID A
REHEARSAL ON THIS, FROM THE BOTTOM OF MY
HEART."

Hypothesis: "4 6ys 3Bopyuienuii KoxxkHOrO pasy,
KOJIM MU POOWJIM PEIETHINIO 3 I[bOTO ITPUBOY, Bi
muporo cepus".

Reference: Mene me TopKasIo KOXKEeH pa3 I 9ac
penetutiii 10 TMOUHM JYTITI.

BLEU: 1.91

Source: FERAL CHILDREN MAY HAVE EXPERIENCED
SEVERE CHILD ABUSE OR TRAUMA BEFORE BEING
ABANDONED OR RUNNING AWAY.

Hypothesis: Turuna-ukys, MOXK/IMBO, HepeKUIA
2KOPCTOKE HACHJIBCTBO HaJI JIThbMU ab0 TpaBMY,
eI Hi2K OyTH KUHYTOK ab0 BTEKTH.
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Reference: Moxe Take 6yTu, 1o JUKapChbKi JiTH
Oy 06’€KTaMu 2KOPCTOKOI'O ITOBOJKEHHST a00
OTpUMAaJIM CEpPHO3HI TpaBMHU IIepeJl TUM, SK 1X
[TOJTUIIIIIIA 200 BOHHU BTEKJIU.

BLEU: 2.31

Source: WORKERS MUST OFTEN GET THEIR SUPE-
RIORS’ APPROVAL FOR ANY DECISIONS THEY MAKE,
AND ARE EXPECTED TO OBEY THEIR SUPERIORS’
INSTRUCTIONS WITHOUT QUESTION.

Hypothesis: IIpaniBuukn  9acTo  MOBUHHI
OTPUMYBaTH CXBAaJIEHHsI CBOIX HAYAJbHUKIB Ha
Oymb-siKi pillleHHsT, $Ki BOHHM MPUWMAIOTH, 1
TIOBUHHI 0e33aIepevHO BUKOHYBATH BKA3iBKU CBOIX
Ha4YaJIbHUKIB.

Reference: IIpaniBaukaM d4acTo IIOTPIOHO
OTPUMATHU CXBAJIEHHsSI KEPIBHUKA, MO0 OVIb-IKUX
pillleHb, a TaKOK BiJl HUX OUIKYIOTH 0€33aIIepeTHOTO
JOTPUMAaHHS HACTAHOB KEPIBHUKIB.

BLEU: 2.32

Source: TYPICALLY THERE WILL BE A TUITION FEE
TO ENROLL IN THESE EDUCATIONAL PROGRAMS.

Hypothesis: Sk mnpasmio, Oyme mrara 3a
HABYAHHSA, 100 3apPEECTPYBATUCS B IIUX OCBITHIX
IIporpamMax.
Reference:
ILJIATHI.

BLEU: 2.62

3azBuyaii Taki OCBITHI IpoOrpamu

Sample of top 5 best examples by BLEU
from FLORES devtest set Source: THE EAsT
AFRICAN ISLANDS ARE IN THE INDIAN OCEAN OFF
THE EASTERN COAST OF AFRICA.

Hypothesis: CxigaoadpuKaHCbKi  OCTPOBHU
3HAXOIAThCA B [HAificbKOoMy oKeaHi Oiis cximHOrO
y36epexxkst Adpuku.

Reference: CxignoadpuKaHChKI  OCTPOBU
3HAXONAThCs B [HAlfIcbKOMY OKeaHi OLIsT CXiTHOTO
y306epex:ksa Adpuku.

BLEU: 100.00

Source: EARLIER THE CHINESE NEWS AGENCY
XINHUA REPORTED A PLANE TO BE HIJACKED.
Hypothesis: Panime kwmraiicbke indopmarniiine
areaTcTBO CiHbXya MOBIJIOMUJIO PO BUKPAJICHHST
JIiTaKa.

Reference: Panime kuraiicbke imdopwmartiiine
arenTcTBO CiHbXya MOBIJOMMJIO PO BUKPAJICHHS
JIITaKa.

BLEU: 100.00

Source: FOR INSTANCE, THEY DIDN'T HAVE CORN,
NOR TOMATOES, NOR POTATOES, NOR COCOA, AND
NO ANCIENT ROMAN EVER TASTED A TURKEY.
Hypothesis: Hanpuknan, y mwmx me 6yno Hi
KYKYPY/I34, Hi IIOMiJIOpiB, Hi KapToILIi, HI KaKao,
1 KOJEH CTapOJIaBHIll PUMJISHUH HIKOJIA He
CKYIITYBaB iHJIUYKY.

Reference: Hampukian, y wHux He 6ysmo HI
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KYKYPY/I3H, Hi TTOMiI0piB, Hi KapTOILI, Hi KaKao,
1 2KOJeH CTapoJlaBHIl PUMJISHAH HIKOJIU He
KYIITYyBaB iHITIKY.

BLEU: 90.95

Source: THE LUMINOSITY AND ROTATION ARE USED
TOGETHER TO DETERMINE A STAR’S RossBY NUMBER,
WHICH IS RELATED TO PLASMA FLOW.
Hypothesis: CsiTnicTs i
BUKODPUCTOBYIOTBCS ~ Pa3sOM  JIJIst
uncaa Poccbi 3ipku, ke IMOB’sI3aHe 3 IIOTOKOM
ILTa3MU.

Reference: Csirrictb i
BUKOPUCTOBYIOTHCS ~ Pa3OM sl
qucaa Poccbi 3ipku, ke moB’sI3aHe 3 I1a3MOBUM
IIOTOKOM.

BLEU: 83.26

Source: BuT BEING PLACED IN THE "HIGH TROPICS"
JUST A FEW DEGREES NORTH OF EQUATOR YOU
WILL NEED TO DEAL WITH BOTH HEAT (ALWAYS)
AND STRONG SUN (WHEN THE SKY IS CLEAR, MORE
RARELY).

Hypothesis: Ajse nepebysaioun B
Tpomikax" BChOro B JEKIIBKOX IpaJjlycax Ha IiBHIY
BiJl eKBaTOpa, BaM JOBEIETHCS MATH CIPAaBY K 3
CIIEKOIO (3aBXK/IH), TaK 1 3 CHJIBHUM COHIEM (KOJIH
He6o gucTe, pigime).

Reference: Aje, nepebyBaioun B
Tpomikax" BChOroO B JEKIIBKOX Ipajycax Ha MBHIY
BiJI eKBaTOpa, BaM JIOBEJIEThCA MaTH CIIPaBy AK 31
CIIEKOIO (3aBXK/M), TaK 1 3 MaI0YUM COHIEM (KOJII
uebo gucTe, pigime).

BLEU: 82.47

obepTaHHs
BU3HAYEHHSI

obepTaHHa
BU3HAYEHHS

"BUCOKHX

"BUCOKHX



Model BLEU 1t spBLEU chrF chrF++
Finetuned

Dragoman P, 10 beams (section 3) 30.38 37.93 59.49 56.41
Dragoman PT, 10 beams (section 4) 32.34 39.93 60.72 57.82
Zero shot and few shot (section 5)

LLaMa-2-7B 2-shot 20.1 26.78 49.22 46.29
RWKV-5-World-7B 0-shot 21.06 26.20 49.46 46.46
gpt-4 10-shot 29.48 37.94 58.37 55.38
gpt-4-turbo-preview 0-shot 30.36 36.75 59.18 56.19
Google Translate 0-shot 25.85 32.49 55.88 52.48
Pretrained

NLLB 3B, 10 beams 30.46 37.22 58.11 55.32
OPUS-MT, 10 beams 32.2 39.76 60.23 57.38

Table 5: We evaluate generated translations with the sacrebleu library to calculate BLEU, spBLEU, chrF,
and chrF++ metrics on the FLORES DEVTEST set. Metric spBLEU was calculated with default BLEU
values and tokenizer flores101. Tokenization and detokenization are done using the models’ default
tokenizers. Evaluation is performed on detokenized sentences with corresponding reference sentences.

Threshold Examples BLEU 1

percentile dev devtest
20" 5800 25.14 25.49
40t 11600 25.39 25.45
50th 14500 25.79 25.93
goth 17400 26.07 26.01
70t 20300 26.00 25.72
8oth 23200 25.90 26.08
95.4"M (20) 28025 25.91 25.81
Full dataset 29000 25.74 25.67

Table 6: Evaluation scores for model, finetuned from Mistral-7B-v0.1 directly on Extended MultiS30K
dataset. We performed log probability thresholds sweep on FLORES dev set. We demonstrate that data
from the second phase alone is not enough to match the performance of our best checkpoint. Perplexity
filtering improves downstream performance over training on full Extended Multi30K dataset.
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