
The Third Ukrainian Natural Language Processing Workshop (UNLP) @LREC-COLING-2024, pages 135–140
25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

135

Language-Specific Pruning for Efficient Reduction of Large
Language Models

Maksym Shamrai
Institute of Mathematics of NAS of Ukraine

Kyiv Academic University
Kyiv, Ukraine

m.shamrai@imath.kiev.ua
Abstract

Delving into pruning techniques is essential to boost the efficiency of Large Language Models (LLMs) by reducing their
size and computational demands, resulting in faster and more cost-effective inference. In this work, our key contribu-
tion lies in recognizing that LLMs trained on diverse languages manifest distinct language-specific weight distributions.
Exploiting this insight, we illustrate that pruning LLMs using language-specific data results in a more potent model
compression. Empirical evidence underscores the critical nature of pruning on language-specific data, highlighting
a noteworthy impact on the perplexity of Ukrainian texts compared to pruning on English data. The proposed
methodology significantly reduces the size of LLaMA, LLaMA 2 and Mistral models while preserving competitive
performance. This research underscores the significance of linguistic considerations in LLM pruning and advocates
for language-specific optimization, establishing a framework for more efficient and tailored language models across
diverse linguistic contexts. Additionally, all experiments were conducted using a single consumer-grade NVIDIA RTX
3090 GPU, and the code is available at https://github.com/mshamrai/language-specific-pruning.
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1. Introduction

The evolution of Large Language Models (LLMs)
has unlocked unprecedented capabilities in natu-
ral language processing, yet the monumental size
of these models necessitates innovative solutions
for their efficient deployment. Lately, quantization
techniques, which employ lower precision types
for compression, have enhanced the accessibil-
ity of LLMs to a broader audience (Frantar et al.,
2022; Dettmers et al., 2022, 2024). While these
advancements are noteworthy, alternative compres-
sion methods can yield significant improvements.
Pruning, a technique involving the selective re-
moval of model weights, is a promising avenue
for addressing computational challenges without
compromising performance.

While existing pruning methods have demon-
strated success in general contexts (Molchanov
et al., 2019; Yang et al., 2022; Ma et al., 2024),
their application to different languages and the im-
plications for model performance remain largely
unexplored. This paper pioneers the investigation
of language-specific pruning for LLMs, with a dedi-
cated focus on the Ukrainian language. Our objec-
tive is to establish that the efficacy of pruning meth-
ods is linked to the linguistic characteristics of the
target language. Leveraging state-of-the-art tech-
niques such as SparseGPT (Frantar and Alistarh,
2023) and Wanda (Sun et al., 2023), our method
achieves competitive perplexity scores when eval-
uated on a Ukrainian dataset with sparse versions
of LLaMA (Touvron et al., 2023a), LLaMA 2 (Tou-

vron et al., 2023b) and Mistral (Jiang et al., 2023)
models, eliminating the necessity for retraining.

Moreover, considering that pruning strategies in
Transformer-based models primarily target linear
layers due to their significant presence and cru-
cial role in model parameterization, the methods
employed and our findings are applicable to any
Transformer architecture without constraints.

It is essential to note that the successful applica-
tion of SparseGPT and Wanda requires reference
data to tailor the pruning specifically for the char-
acteristics of the given dataset. For our Ukrainian
language exploration, we utilized reference data
sourced from UberText 2.0 (Chaplynskyi, 2023) –
this corpus provides a robust foundation for assess-
ing the effectiveness of language-specific pruning
in real-world linguistic contexts.

Additionally, we delve into the ramifications of
language-specific pruning on model performance.
To emphasize the language-specific nature of our
findings, we conducted additional experiments by
attempting to prune models on the English c4
dataset (Raffel et al., 2019).

The evaluation of pruning methods for the
Ukrainian language includes a comparison of per-
plexity metrics for dense, unstructured, and 2:4
semi-structured sparsity patterns with 50% spar-
sity, indicating a pruning of models by half. The
adoption of a 2:4 semi-structured sparsity pattern,
where at least two out of every four elements must
be zero, is investigated due to its native support in
the NVIDIA Ampere GPU architecture, leading to
significant computational speed-ups (Mishra et al.,
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2021).
In conclusion, this research marks a pioneering

effort in advancing the efficiency of Large Language
Models (LLMs) through the exploration of language-
specific pruning techniques, with a focused exam-
ination on the Ukrainian language. Our primary
contribution lies in establishing a profound connec-
tion between the efficacy of pruning methods and
the unique linguistic characteristics of the target
language.

2. Related work

While our work primarily focuses on training-free
approaches to language model pruning, it is essen-
tial to acknowledge the existence of methods that
require post-pruning retraining (Jiao et al., 2019;
Ma et al., 2024). The effectiveness of such meth-
ods is contingent on the availability and quality of
training data, making it less practical for scenar-
ios where acquiring sufficient annotated data is a
formidable task.

In the context of low-resource languages such
as Ukrainian, where limited annotated data poses
a significant obstacle, this limitation underscores
the importance of investigating training-free ap-
proaches, which mitigate the need for additional
labeled data. Therefore, we focus on the meth-
ods that requires only a relatively small calibration
dataset for efficient model pruning.

These approaches share a similar concept: as-
sessing weight importance based on a specific met-
ric and input calibration data, where a larger value
of the importance metric indicates that the weight
should be retained. The pruning process is con-
ducted in a layer-wise manner, involving the cal-
culation of weight importance for each layer. Sub-
sequently, the weights are sorted, and depending
on the desired sparsity level, weights with lower
importance are replaced with zeros. This stream-
lined approach facilitates efficient pruning, even for
large-scale models.

The subsequent subsections delve into the de-
tails of this methods, highlighting its potential
and practicality in the context of low-resource lan-
guages.

2.1. SparseGPT
In recent strides towards optimizing the efficiency
of Large Language Models (LLMs), SparseGPT
emerges as a pioneering one-shot pruning method
(Frantar and Alistarh, 2023).

The foundation of SparseGPT’s pruning method-
ology lies in the formalization of the problem
through a local layer-wise reconstruction approach.
It employs a pruning metric that considers the layer-
wise reconstruction problem.

Sij =
[
|W|2/diag

(
(XTX+ λI

)−1)]
ij

(1)

The weight importance metric utilized in
SparseGPT, represented by Equation 1, incorpo-
rates the Hessian matrix in the denominator, where
W denotes the weights, X represents the inputs,
and λ stands for the Hessian dampening factor,
employed to prevent the collapse of inverse compu-
tation. This metric underscores the importance of
local layer-wise information during the pruning pro-
cess. By prioritizing such information, SparseGPT
ensures the preservation of accuracy levels cru-
cial for the optimal performance of large language
models.

2.2. Wanda

The approach, termed "Pruning by Weights and Ac-
tivations" (Sun et al., 2023) presents an effective so-
lution to the pruning challenge. Wanda augments
the standard weight magnitude pruning metric with
input activations, effectively evaluating weight im-
portance.

Sij = |Wij| · ||Xij||2 (2)

The computation of weight importance in Wanda
is defined by Equation 2, where the score for each
individual weight Wij is computed as the product of
its magnitude and the corresponding norm of input
feature Xij. Therefore, the score encapsulates
the weight’s importance within the context of its
associated input activations.

One of the key strengths of Wanda lies in its
computational efficiency and minimal memory over-
head. The method can be executed in a single
forward pass, making it suitable for practical imple-
mentation in large-scale language models.

In summary, SparseGPT and Wanda employ dif-
ferent weight importance metrics, each grounded
in a common conceptual framework. While
SparseGPT utilizes a more complex metric, Wanda
prioritizes computational efficiency. Following sec-
tions will explore comparative analyses to assess
the effectiveness of each method for language-
specific pruning.

3. Experimental Methodology and
Setup

In this section detailing our experimental method-
ology and setup for the pruning experiments, we
chose models from the LLaMA and Mistral families,
specifically opting for LLaMA 7B, LLaMA 2 7B and
Mistral v0.1 7B in 16-bit floating point precision.
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To evaluate the models, we utilize the perplexity
metric, which measures the effectiveness of a lan-
guage model in predicting a sequence. Perplexity
is computed as the exponentiated average nega-
tive log-likelihood of a sequence, representing the
level of surprise or uncertainty of the model in pre-
dicting the next token. Mathematically, if we have a
tokenized sequence X = (x0, x1, . . . , xt), then the
perplexity of X is calculated using the equation:

PPL(X) = exp{−1

t

t∑
i=0

log pθ(xi|x<i)},

where log pθ(xi|x<i) denotes the log-likelihood of
the ith token conditioned on the preceding tokens
x<i, according to our model parameterized by θ.
Therefore, a higher value of perplexity indicates
poorer predictions, while lower perplexity values
signify better model performance.

Our focus on pruning and subsequent evaluation
centered around the Ukrainian language, and for
this, we utilized the UberText 2.0 corpus (Chap-
lynskyi, 2023), encompassing various subcorpora
such as court, fiction, news, and Wikipedia. Ex-
cluding the social subcorpus, which predominantly
contains short texts, we randomly selected 1000
samples for calibration and 50 samples for evalua-
tion from each relevant subcorpus. In total, the cal-
ibration dataset consisted of 4000 samples, while
the evaluation dataset consisted of 200 samples.
These selections contributed to the creation of ro-
bust calibration and evaluation datasets, with each
sample exceeding a length of 8192 characters.

To calibrate the model effectively, we imple-
mented a random sampling approach from the cal-
ibration dataset, utilizing a specified seed along
with the number of calibration samples as input
arguments. The evaluation process covered the
full evaluation dataset, calculating perplexity. Ex-
periments were conducted with varying numbers of
calibration samples and three distinct seeds to en-
sure statistical robustness, with mean and standard
deviation calculations performed across multiple
runs involving different seeds.

To underscore the importance of linguistic con-
siderations, we expanded our experimentation to
include the pruning of models on the c4 dataset,
written in English. The subsequent evaluation was
carried out on the Ukrainian-language evaluation
dataset. Furthermore, to comprehensively assess
and compare pruning performance, we also evalu-
ated the dense version of the models (i.e., the orig-
inal models without pruning) on the same dataset.

Our experiments included the introduction of di-
verse sparsity structures, such as unstructured and
semi-structured 2:4 sparsity. Each configuration
aimed to achieve a 50% sparsity level, indicating

that half of the weights in each linear layer were
pruned.

Overall, the objective of the experiments is to
empirically and statistically investigate several key
aspects:

1. The impact of the size of the calibration dataset
on the performance of pruned models.

2. Comparison of different pruning methods to
determine their efficacy for language-specific
tasks.

3. Assessment of the significance of the lan-
guage used in the calibration data for pruning
effectiveness.

These experiments aim to provide insights into
the factors influencing model performance post-
pruning, identify optimal pruning methods tailored
to language-specific requirements, and ascertain
the relevance of language-specific calibration data
for pruning outcomes.

Regarding the hardware requirements of the
methods, both are capable of pruning 7B models
in a matter of hour on a single NVIDIA RTX 3090.
Pruning larger-scale models is also feasible but
requires additional computational resources. For
instance, in a study by Frantar and Alistarh (2023),
the authors demonstrate that their method can
prune a 175B model on a single NVIDIA A100 GPU.
Overall, based on the experiments conducted, we
can conclude that the pruning requirements primar-
ily depend on the size of the model and its contex-
tual window, without incurring additional overhead.
Therefore, the pruning requirements are approxi-
mately equivalent to those of inference.

4. Results

In this section, we present and discuss the out-
comes of our experiments, focusing on the perplex-
ity metric evaluated on the Ukrainian evaluation
dataset with various setups for different models.

Table 1 illustrates perplexity values for models
pruned on UberText 2.0 dataset, employing both un-
structured and 2:4 semi-structured pruning configu-
rations with 50% sparsity. Additionally, the models
underwent pruning using diverse calibration sample
sizes (64, 128, 256, 512) to examine the relation-
ship between sample size and performance.

Analyzing the table, it could be observed that
Wanda’s performance appears independent of cali-
bration set size or, perhaps, this correlation does
not consistently hold across all models. This is
particularly evident in the perplexity values of un-
structured models, such as Mistral v0.1 7B, where
the Pearson correlation between calibration set size
and perplexity mean values is 0.99, and LLaMA 2
7B, where the correlation is −0.98. Conversely, all
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Method Calibration Samples LLaMA 7B LLaMA 2 7B Mistral v0.1 7B

Unstructured Wanda

64 12.162 ± 0.025 11.283 ± 0.007 9.314 ± 0.098
128 12.161 ± 0.012 11.278 ± 0.007 9.726 ± 0.125
256 12.148 ± 0.008 11.275 ± 0.009 10.385 ± 0.038
512 12.152 ± 0.007 11.254 ± 0.012 12.262 ± 0.424

2:4 Wanda

64 31.533 ± 0.169 30.101 ± 0.406 29.822 ± 0.381
128 31.438 ± 0.348 30.177 ± 0.361 30.741 ± 0.231
256 31.496 ± 0.327 30.651 ± 0.353 32.709 ± 0.328
512 31.198 ± 0.446 30.883 ± 0.271 34.471 ± 0.704

Unstructured SparseGPT

64 10.632 ± 0.027 9.703 ± 0.013 7.109 ± 0.003
128 10.559 ± 0.011 9.683 ± 0.028 7.095 ± 0.011
256 10.531 ± 0.006 9.671 ± 0.015 7.085 ± 0.003
512 10.529 ± 0.020 9.652 ± 0.012 7.074 ± 0.004

2:4 SparseGPT

64 13.319 ± 0.092 11.559 ± 0.082 8.582 ± 0.036
128 13.148 ± 0.192 11.515 ± 0.072 8.551 ± 0.041
256 13.093 ± 0.054 11.457 ± 0.035 8.497 ± 0.006
512 12.994 ± 0.047 11.379 ± 0.008 8.476 ± 0.031

Table 1: Perplexity values of different models and different pruning configuration.

models pruned by SparseGPT exhibit a notably
high negative correlation, such as for 2:4 LLaMA
7B, where the correlation is −0.9. Hence, we can
assert that Wanda’s performance is not necessar-
ily dependent on the calibration data size, while
SparseGPT’s performance does show such de-
pendency. This difference could be attributed to
the inherent dissimilarity in the precision of impor-
tance metrics employed by each method, where
Wanda utilizes a faster but less accurate metric,
and SparseGPT employs a more precise but time-
intensive alternative.

The Table 3 presents the optimal perplexity val-
ues achieved by models pruned using both unstruc-
tured and 2:4 semi-structured configurations, each
with 50% sparsity, on calibration data from Uber-
Text 2.0 or c4 datasets. Additionally, the perplexity
values for the dense models are included.

The analysis of the table leads to the conclu-
sion that, among both unstructured and 2:4 semi-
structured configurations, the most effective prun-
ing method is SparseGPT when applied to the
UberText 2.0 dataset, which consists of Ukrainian
texts. It is also noteworthy that the superiority of
the SparseGPT pruning technique becomes evi-
dent, particularly when the pruning pattern is 2:4
semi-structured.

Furthermore, the extreme variances observed in
models pruned with c4 data indicate a significant
dependency on randomness in the pruning process,
suggesting that the outcome is less influenced by
the dataset itself.

Moreover, we analyze the memory footprint of
the models before and after pruning. As shown in
Table 2, pruning with a 50% sparsity level reduces
the memory size of the models by approximately

41%. Therefore, pruning enables a significant de-
crease in the memory consumption of the model’s
parameters while preserving parameters in 16-bit
floating-point format. However, achieving such a
reduction in memory usage is not feasible with un-
structured sparsity. To attain this reduction, we
should utilize a 2:4 semi-structured sparsity pattern,
which employs an efficient sparse semi-structured
tensor representation.

Model Dense Sparse
LLaMA 7B 12.58 Gbs 7.31 Gbs
LLaMA 2 7B 12.68 Gbs 7.40 Gbs
Mistral v0.1 7B 13.99 Gbs 8.30 Gbs

Table 2: Memory footprint before (dense) and after
(sparse) pruning with 50% sparsity level and 2:4
semi-structured sparsity configuration of different
models.

Additionally, among these three models, Mis-
tral v0.1 7B demonstrates the best pruning perfor-
mance, as indicated by the lowest residual between
dense and pruned perplexity values.

Therefore, SparseGPT emerges as the preferred
pruning method for language-specific applications,
with its performance significantly influenced by the
language of the calibration dataset.

5. Conclusion

In this study, we conducted a comprehensive set
of experiments to investigate the impact of pruning
methodologies on language models, with a specific
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Model LLaMA 7B LLaMA 2 7B Mistral v0.1 7B
Dense 8.950 8.269 6.460
Unstructured Wanda on c4 13.953 ± 0.060 13.829 ± 0.087 41.466 ± 6.314
Unstructured SparseGPT on c4 15.797 ± 0.761 15.011 ± 0.283 9.208 ± 0.086
Unstructured Wanda on UberText 2.0 12.148 ± 0.008 11.254 ± 0.012 9.314 ± 0.098
Unstructured SparseGPT on UberText 2.0 10.529 ± 0.020 9.652 ± 0.012 7.074 ± 0.004
2:4 Wanda on c4 52.346 ± 1.628 79.801 ± 7.338 433.940 ± 282.154
2:4 SparseGPT on c4 89.772 ± 28.306 57.460 ± 5.379 165.516 ± 90.769
2:4 Wanda on UberText 2.0 31.198 ± 0.446 30.101 ± 0.406 29.822 ± 0.381
2:4 SparseGPT on UberText 2.0 12.994 ± 0.047 11.379 ± 0.008 8.476 ± 0.031

Table 3: Perplexity values of different models and different pruning configuration.

focus on language-specific considerations. Our
objectives were in the following:

1. Dependency on Calibration Dataset Size:
The experiments aimed to state whether the
performance of pruned models is influenced
by the size of the calibration dataset. Results
revealed that, unlike SparseGPT, the Wanda
pruning method demonstrated little to no de-
pendence on the calibration set size.

2. Comparison of the Pruning Methods:
Through an analysis of perplexity values,
we compared two language-specific pruning
methods, Wanda and SparseGPT. The latter
emerged as the preferred pruning method for
language-specific applications, particularly un-
der 2:4 semi-structured pruning configurations.

3. Language Dependence in Pruning Perfor-
mance:
Our investigation extended to clarify whether
the pruning methods yield distinct outcomes
based on the language of the calibration
dataset. The results clearly demonstrated that
the effectiveness significantly dependent on
the language of the calibration data.

Our findings contribute valuable insights into the
language-specific considerations of model pruning,
paving the way for more informed choices in deploy-
ing such techniques for diverse natural language
processing applications.

6. Discussion and Future Work

Our experiments reveal that different sets of pa-
rameters are optimal for different languages. In
particular, an LLM pruned on English calibration
data shows lower performance on the Ukrainian
evaluation dataset compared to an LLM pruned
on Ukrainian calibration data. Consequently, this
pruning technique can serve as a foundational

framework for linguistic comparisons among lan-
guages. For instance, a compelling exploration
could involve comparing the languages of Polish
and Ukrainian, given their Slavic roots and linguistic
proximity. Demonstrating their linguistic closeness
in the LLM context suggests that fine-tuning the
LLM on data from both languages could potentially
enhance overall performance.

Furthermore, it’s essential to assess alternative
training-free pruning techniques, such as those pro-
posed by Zhang et al. (2023), to conduct a com-
prehensive investigation before developing a truly
innovative, language-specific pruning approach.

In addition, the next phase of research could
explore the synergies between pruning and quan-
tization, aiming to create the smallest and fastest
Ukrainian LLM. Combining these techniques holds
the promise of optimizing model size and inference
speed, contributing to more efficient language mod-
els.
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