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Introduction

Welcome to UnImplicit: The Third Workshop on Understanding Implicit and Underspecified Language.
The focus of this workshop is on implicit and underspecified phenomena in language, which pose serious
challenges to standard natural language processing models as they often require incorporating greater
context, using symbolic inference and common-sense reasoning, or more generally, going beyond strictly
lexical and compositional meaning constructs. This challenge spans all phases of the NLP model’s
life cycle: from collecting and annotating relevant data, through devising computational methods for
modeling such phenomena, to evaluating and designing proper evaluation metrics.
In this workshop, our goal is to bring together theoreticians and practitioners from the entire NLP cycle,
from annotation and benchmarking to modeling and applications, and to provide an umbrella for the
development, discussion and standardization of the study of understanding implicit and underspecified
language.
In total, we received 15 submissions (4 of which non-archival), out of which 12 were accepted. All
accepted submissions are presented as posters. The workshop also includes three invited talks on topics
related to implicit language. The program committee consisted of 21 researchers, who we’d like to thank
for providing helpful and constructive reviews on the papers. We’d also like to thank all authors for their
submissions and interest in our workshop.

Valentina, Daniel, Elias, Alisa and Sandro

ii



Organizing Committee

Organizers

Valentina Pyatkin, Allen Institute for AI and University of Washington
Daniel Fried, CMU
Elias Stengel-Eskin, UNC Chapel Hill
Alisa Liu, University of Washington
Sandro Pezzelle, University of Amsterdam

Advisory Committee

Michael Roth, Stuttgart University
Reut Tsarfaty, Bar-Ilan University and AI2
Yoav Goldberg, Bar-Ilan University and AI2

iii



Program Committee

Program Committee

Vera Demberg, Saarland University
Yanai Elazar, AI2 & University of Washington
Daniel Hershcovich, University of Copenhagen
Jennifer Hu, Harvard University
Lucy Li, UC Berkeley
Aida Nematzadeh, DeepMind
Sebastian Pado, University of Stuttgart
Roma Patel, Brown University
Chris Potts, Stanford University
Elior Sulem, Ben Gurion University
Tiago Torrent, Federal University of Juiz de Fora
Sara Tonelli, Fondazione Bruno Kessler
Nathan Schneider, Georgetown University
Michael Elhadad, Ben Gurion University
Zhaofeng Wu, MIT
Michael Elhadad, Ben Gurion University
Sofia Serrano, University of Washington
Dmitry Nikolaev, University of Stuttgart
Nan-Jiang Jiang, Google
Julian Michael, NYU
Ece Takmaz, University of Amsterdam
Sahithya Ravi, University of British Columbia

Invited Speakers

Alex Warstadt, ETH
Malihe Alikhani, Northeastern University
Benjamin Bergen, UCSD

iv



Table of Contents

Taking Action Towards Graceful Interaction: The Effects of Performing Actions on Modelling Policies
for Instruction Clarification Requests

Brielen Madureira and David Schlangen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

More Labels or Cases? Assessing Label Variation in Natural Language Inference
Cornelia Gruber, Katharina Hechinger, Matthias Assenmacher, Göran Kauermann and Barbara
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Abstract

Clarification requests are a mechanism to help
solve communication problems, e.g. due to am-
biguity or underspecification, in instruction-
following interactions. Despite their impor-
tance, even skilful models struggle with pro-
ducing or interpreting such repair acts. In this
work, we test three hypotheses concerning the
effects of action taking as an auxiliary task in
modelling iCR policies. Contrary to initial ex-
pectations, we conclude that its contribution
to learning an iCR policy is limited, but some
information can still be extracted from predic-
tion uncertainty. We present further evidence
that even well-motivated, Transformer-based
models fail to learn good policies for when to
ask Instruction CRs (iCRs), while the task of
determining what to ask about can be more
successfully modelled. Considering the impli-
cations of these findings, we further discuss the
shortcomings of the data-driven paradigm for
learning meta-communication acts.

1 Introduction

The concept of graceful interaction (Hayes and
Reddy, 1979, 1983) was proposed as a set of skills
that machines should exhibit to properly engage in
cooperative dialogue with humans, among which
are being able to ask for, understand and offer clar-
ification. More than forty years later, the ineptitude
of large language models and voice assistants to
handle underspecifications and to properly process
or produce clarification requests (CR) is still being
documented (Larsson, 2017; Kuhn et al., 2022; Li
et al., 2023; Deng et al., 2023; Shaikh et al., 2023).
It is also one of the acknowledged limitations of
the currently prevailing commercial chat-optimised
LLM.1

1In the blogpost releasing chatGPT, the limitations section
says: “Ideally, the model would ask clarifying questions when
the user provided an ambiguous query. Instead, our current
models usually guess what the user intended.”. Source: https:
//openai.com/blog/chatgpt.

Figure 1: Clarification requests posed by an instruction
follower, demonstrating uncertainty on deciding what
actions to take due to ambiguity or underspecification.
From: CoDraw dialogue game 8198, CC BY-NC 4.0,
cliparts from Zitnick and Parikh (2013).

Given that they are modulated for instructions,
this seems to be a peculiar fault: CRs are a crucial
mechanism used to repair misunderstandings in in-
struction following interactions (Benotti, 2009), as
we see in Figure 1. On second thought, it comes
as no surprise. Clarification exchanges are meta-
communication acts that do not normally appear in
non-interactive data (Kuhn et al., 2022) and are
also relatively rare in dialogue data. As a spe-
cific dialogue phenomenon, CRs have an empir-
ical frequency of 4% of turns in spontaneous con-
versations to 11% of turns in strictly instruction-
following interactions (Purver et al., 2001; Benotti
and Blackburn, 2021; Madureira and Schlangen,
2023b). Therefore, it is still unclear to what ex-
tent CR strategies can be learnt with data-driven
approaches (Benotti and Blackburn, 2021).

Many existing CR datasets, despite their utility
for applications like conversational search (Key-
van and Huang, 2022; Rahmani et al., 2023), either
have not been collected via real interactions or are
synthetic, so that learnt CR policies may not cor-
respond to genuine human behaviour. Moreover,
current best-performing data-driven models are still

1
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not doing very well in deciding when to request
clarification (see §2), and we must understand why.

CRs can occur in all four levels of communi-
cation (Clark, 1996): Attention (due to problems
in the channel), identification (due to acoustic im-
pediments), recognition (when the signal is under-
stood but a lexical, parsing or reference problem
manifests) and consideration (when the intention
is unclear) (Rodríguez and Schlangen, 2004). In-
struction CRs (iCR) emerge mostly at Clark’s 4th
level of communication (Clark, 1996), i.e. at the
level of uptake (Schlöder and Fernández, 2014), to
solve ambiguities and underspecifications.

Recently, Madureira and Schlangen (2023b,a)
have argued that the multimodal CoDraw game
(Kim et al., 2019) is a rich resource for iCRs, nat-
urally produced as a by-product of game playing
via actions, as in the example in Figure 1. This
dataset offers a balance between size (in compari-
son to well-curated but small corpora) and retaining
ecological validity (as opposed to massive datasets
collected or crafted artificially). Supposing under-
lying iCR strategies can emerge from data, we can
reasonably assume that action-taking is a key com-
ponent in modelling policies for deciding when and
what to repair in this type of game.

However, one major drawback of the proposed
baseline models is the overhearer paradigm: Mod-
els are not trained to act as authentic dialogue par-
ticipants. Instead, they process other people’s inter-
actions, and at some points have to predict when
to ask iCRs, a decision detached from the actual
actions required by the game. Understanding is
different for overhearers and addressees, and the
latter have advantages in building common ground
(Schober and Clark, 1989). Clark (1992) argues
that subjects in psycholinguistics are actually usu-
ally treated as overhearers; we add to that that many
NLP approaches are also modelling overhearers.

Contributions Given that background, this work
aims to expand the boundaries of the open question
of learning meta-communication acts from human
data. We do that by (i) implementing a more well-
motivated model for learning when to ask iCRs in
CoDraw; (ii) taking another step towards a more re-
alistic agent by defining and modelling the task of
what to ask about; and, most importantly, (iii) test-
ing three hypotheses to study the effect of action-
taking in learning iCR policies, verifying whether
a measure of certainty can be used to probe for iCR
abilities and inform predictions.

2 Related Work

Learning when to ask questions The problem
of knowing when to ask questions in an interac-
tion appears in various contexts. Relevant work
has been done in language-aided visual navigation
(Nguyen and Daumé III, 2019; Thomason et al.,
2020; Chi et al., 2020; Nguyen et al., 2022), in
which the agent must take actions in an environ-
ment and decide when to ask for help, where RL is
a suitable method. Similar policies are necessary
in interactive settings like visual dialogue games
that require deciding when to stop asking (Shekhar
et al., 2018) or incremental predictions on when to
answer a question (Boyd-Graber et al., 2012).

Modelling clarification requests A vast litera-
ture exists on describing and modelling clarifica-
tion strategies (Purver et al., 2003; Gabsdil, 2003;
Schlangen, 2004; Rodríguez and Schlangen, 2004;
Rieser and Lemon, 2006; Stoyanchev et al., 2013,
inter alia). In the age of neural network-based NLP,
the problem has commonly been broken down into
various tasks that are learnt from data: When to
ask (Narayan-Chen et al., 2019; Aliannejadi et al.,
2021; Shi et al., 2022; Kiseleva et al., 2022), what
to ask about (Braslavski et al., 2017; Aliannejadi
et al., 2021; Hu et al., 2020), and how to gener-
ate (Kumar and Black, 2020; Gervits et al., 2021;
Majumder et al., 2021) or select/rank appropri-
ate CRs (Rao and Daumé III, 2018; Aliannejadi
et al., 2019; Mohanty et al., 2023). Ideally, these
tasks should be tied into a single agent, but sev-
eral works are still approaching the problem in a
“task-framed” fashion without integration of all ca-
pabilities (Schlangen, 2021).

Modelling policies for when to ask for clarifi-
cation in instruction following is far from being
a solved problem, as models perform well below
the ceiling. The performance in the Minecraft Di-
alogue dataset is 0.63 accuracy for the CR class
(Shi et al., 2022). In the recent IGLU challenge
(Kiseleva et al., 2022), the best model in the leader-
board2 reaches 0.75 weighted average F1 Score. In
predicting underspecification for code generation,
the highest performance is 0.78 binary F1Score
(Li et al., 2023). In Codraw-iCR, the baseline
achieves a similarly suboptimal 0.34 average pre-
cision (Madureira and Schlangen, 2023b). These
policies are failing to fully capture the human be-
haviour from data, but the reasons as still obscure.

2Reported in the NeurIPS 2022 IGLU challenge platform.
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Another open issue is how to collect high-quality
CR data in enough amounts for machine learn-
ing purposes. In the annotated Minecraft Dia-
logue Corpus (Narayan-Chen et al., 2019; Shi et al.,
2022), TEACh dataset (Padmakumar et al., 2022;
Gella et al., 2022) and CoDraw (Kim et al., 2019;
Madureira and Schlangen, 2023b,a), CRs occur by
own initiative of the players in real, multi-turn in-
teraction, ranging from hundreds to less than ten
thousand identified CR utterances. Still in the same
size range, the IGLU dataset (Kiseleva et al., 2022;
Mohanty et al., 2022) has been collected in a set-
ting that avoids pairing up players, with a one-shot
opportunity to ask for clarification (and without a
partner to answer it and allow further actions).

Other procedures have been used to collect CR
data in larger amounts. Massive datasets are Dial-
FRED (Gao et al., 2022), created via crowdsourc-
ing with workers who are explicitly asked to gener-
ate a question, and answer it, for a situation they are
not actually involved with. In neighbour domains
like virtual assistance, conversational search and
code generation, large-scale datasets containing
CRs have been constructed with data augmentation
methods (Aliannejadi et al., 2021), user simulation
(Kottur et al., 2021), templates (Li et al., 2023) and
crawling QA online forums (Rao and Daumé III,
2018; Kumar and Black, 2020). These strategies
can reflect CR form and facilitate data collection
but abstract away the fundamental triggers of In-
struction CRs (joint effort, real-time interaction
and action-taking), being arguably not suitable for
learning CR policies for instruction following.

Evaluating CR mechanisms in dialogue models
We need more evaluation campaigns and methods
to shed light on what a model has actually learnt
with respect to CR strategies and why it fails. Some
initiatives towards more detailed assessment are in
progress. Chiyah-Garcia et al. (2023) evaluate the
abilities of multimodal models to process CRs in
coreference resolution by interpreting the differ-
ence in the object-F1 score at turns before and after
a CR as the improvement provided by incorporat-
ing the clarification; they also analyse results by
considering various CR properties. In the realm
of LLMs, recent studies have employed evaluation
techniques via prompts to test the models abilities,
concluding that they can detect ambiguity to some
extent but even so do not generally attempt to repair
it and when they do request clarification there is
little alignment with human strategies (Kuhn et al.,

2022; Shaikh et al., 2023). When Deng et al. (2023)
first induce the LLM to predict whether the appro-
priate dialogue act is to ask for clarification the best
LLM achieves only 0.28 F1 Score.

3 Definitions

CoDraw (Kim et al., 2019) is a multimodal dia-
logue game where an instruction follower (IF) uses
a gallery of 28 (out of 58) cliparts to reconstruct a
scene (from the Abstract Scenes dataset (Zitnick
and Parikh, 2013)) they cannot see. They exchange
text messages in a turn-based fashion with an in-
struction giver (IG), who sees the original scene
but has no access to the state of the reconstructed
scene, except for one chance to peek at it during the
game. The available actions are adding or deleting,
moving, flipping and resizing cliparts in a canvas.
Game success is measured by a scene similarity
score based on its symbolic representation. The au-
thors collected 9.9k such dialogues in English, con-
taining around 8k iCRs (11.3% of the game turns),
annotated by Madureira and Schlangen (2023b,a)
both under the license CC BY-NC 4.0.

Note that not all iCRs are questions. In terms
of mood, most CoDraw-iCRs are polar questions,
followed by wh- and alternative questions, but
there are also declarative and imperative forms. Al-
most 60% of instances refer to only one object and
around 33% refer to two objects. The attributes be-
ing clarified are, in order of frequency, relations be-
tween objects, positions in the scene, disambigua-
tion of persons, direction, size and disambiguation
ob objects (Madureira and Schlangen, 2023a).

We can split the space of possible IF models for
this game regarding their CR capabilities:

1. Overhearer: A model that observes the current
game state (dialogue context and scene) to predict
when to ask iCRs, without any additional game-
play actions or linguistic decisions.
2. Action-Taker: A model that plays the game by
only taking clipart actions, without iCR decisions.
3. iCR-Action-Taker: An Action-Taker with the
extra decision of when to ask iCRs.
4. Full agent: A model that makes all game-play
decisions, including natural language generation.

The Overhearer is a common paradigm in NLP
in which models resemble an observer of the actual
player, deciding what to do as if it were in their
shoes. It is, however, a rather rough simplification
of a full-fledged agent, which is an idealised tar-
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get not yet reached. (iCR-)Action-Takers are an
intermediate step examined in this work.

Task 1 We follow the formalisation of the task
of when to ask for iCRs in CoDraw by Madureira
and Schlangen (2023b). In short, given the game
state up to the last IG utterance, the IF has to decide
whether to ask for clarification. This policy is mod-
elled as a function fwhen : s 7→ [0, 1] that maps the
game state st at the current turn t to the probability
of asking an iCR at this point, performing a binary
decision task at each turn in the game. Here, the
state s comprises the dialogue history, the gallery
and the situation of the scene.

Task 2 Additionally, once the decision to ask has
been made, a player should also know what objects
are subject to clarification at that point. We thus
define the subsequent task of what to ask about: at
an iCR turn t, a function fwhat : (oi, s) 7→ [0, 1]
outputs, for each of the 28 objects oi in the gallery,
the probability of asking an iCR about it, given
the state st. These are binary decisions over each
available object in the gallery. Both of these tasks
are steps happening before the actual generation,
which we do not address in this work.3

4 Hypotheses

In this section, we motivate and state the three hy-
potheses we test as our main contribution. We refer
to related findings in the Minecraft game, but note
that CoDraw has a more challenging asymmetry re-
garding the players’ common ground: the IG does
not observe the IF’s actions throughout the game.

Chiyah-Garcia et al. (2023) argue that auxiliary
learning objectives of detecting objects’ attributes
in a scene (Lee et al., 2022) are useful for refer-
ential CRs at Clark’s 3rd level, elicited during ref-
erence resolution.4 Our expectation is that action
prediction should be equivalently relevant for 4th
level iCRs, which emerge when deciding how to
act. More concretely, iCR-Action-Takers should
have a more genuine motivation to decide to re-
quest clarification in comparison to Overhearers.5

To investigate it, our first hypothesis is:
3We leave the additional decisions of what attributes to

mention and which form to realise for ongoing parallel work
dealing specifically with iCR generation.

4CoDraw-iCR also contains referential CRs, but directly
related to uptake of instructions.

5Experiments in the Minecraft dataset point to the opposite
direction: Generating action sequences slightly harmed the
accuracy on when to ask (Shi et al., 2022). We seek to dive
deeper into understanding this issue.

Hypothesis 1: iCR-Action-Takers can learn a
more accurate policy for predicting when to ask
an iCR than Overhearers.

Here, we can also test whether action detection
has a similar effect, by letting the model learn to
detect actions given the scene before and after, as
in Rojowiec et al. (2020). It is a framing even more
equivalent to Lee et al. (2022), since, in their model,
the attributes are already available in the images.
The access to post-action scene can be examined in
this dialogue game because it is turn-based: The IF
would have done all actions they want (thus seeing
the newly edited scene) at the point they press the
button to send the next message or iCR.

Next, we aim to investigate if Action-Takers,
which are trained without any explicit iCR signal,
still build representations that encode the need for
repair. The study done by Xiao and Wang (2019) on
quantifying uncertainty in NLP tasks shows that the
examined models output higher data uncertainties
for more difficult predictions. Besides, Yao et al.
(2019) propose the assumption that if a model is
uncertain about a prediction, it is more likely to be
an error, and use uncertainty as a score to decide
whether the prediction requires user clarification in
semantic parsing. Based on that, we conjecture that
the need for repair should manifest as less certainty
in the Action-Taker’s decisions. Therefore, the
second hypothesis we test is:

Hypothesis 2: At iCR turns, Action-Takers predict
actions with less certainty than at other turns. Sim-
ilarly, less certainty is expected for actions upon
objects subject to iCRs than for other objects.

For this step, we set the linking hypothesis that
certainty is expressed in the probability the model
assigns to taking action, or not, at a given turn. It
is a reasonable assumption, because the objective
function is expected to push the predictions to be
either 0 or 1, so predictions close to 0.5 can be seen
as indecisive.6

Finally, iCR policies for when to ask should be
grounded in a fine-grained representation of what
exactly is unclear. Thus our last hypothesis is:

Hypothesis 3: Pre-trained iCR-Action-Takers can
learn a more accurate policy for predicting what
to ask about in iCR turns than Overhearers.

6An investigation of the predictive uncertainty of the IF
model in the Minecraft data has been done by Naszad et al.
(2022) using length-normalized log-likelihood and entropy of
generated action sequences. Negative results are reported in
an unpublished short manuscript concluding that uncertainty
is not a direct signal for when to ask CRs in their setting.
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5 Models

In this section, we present the models we anal-
yse in our experiments. We do not intend to pro-
pose a novel architecture, since our aim is to un-
derstand why current SotA models are failing and
the effect that learning to take actions has on them.
We implement a model that addresses the limita-
tions of the baseline model (iCR-baseline) from
Madureira and Schlangen (2023b) by incorporating
techniques from top-flight models in recent multi-
modal dialogue challenges, namely IGLU (Kise-
leva et al., 2022) and SIMMC 2.0 (Kottur et al.,
2021). The basic architecture of the Overhearer
and (iCR-)Action-Taker is illustrated in Figure 2.
We provide here an overview of its informationv
flow; see Appendix for detailed specifications.

The CoDraw IF has access to a gallery of 28
objects, which is an informative source in the game
(e.g. if it contains just one of the three tree cliparts,
it is less likely that disambiguation is needed) but
was absent in iCR-baseline. We follow a symbolic
approach to represent the objects’ attributes (pres-
ence in the scene, orientation, position, size, pose,
facial expression) based on the original drawer in
Kim et al. (2019) (which, however, had unrealistic
access to all possible objects in the database).

Previous works did not employ Transformers
(Vaswani et al., 2017) to model iCR policies in
CoDraw. Given its leading performance in several
scenarios, we bring them to the scene, in an ap-
proach inspired by DETR (Carion et al., 2020). We
use a Transformer decoder7 module to create con-
textual embeddings of each object in the current
game state, i.e. by building a representation that
considers the dialogue so far and the actual scene.

This is done by passing each object to the Trans-
former decoder (“target”), to allow self-attention
to the state of the gallery, and subsequent cross-
attention with the game state representation (“mem-
ory”). The state has two components: The dia-
logue so far, represented via token-level contextual
embeddings constructed by BERT (Devlin et al.,
2019), and the current scene, represented as image
features constructed by a ResNet (He et al., 2015)
backbone, followed by a trainable convolutional
layer to reduce the number of channels, as in the
DETR model (Carion et al., 2020). We make text

7The full Transformer encoder-decoder was detrimental in
almost all cases, so we report results using only the decoder
component. This is probably due to the fact that the scene
and dialogue had already been encoded by the pretrained
components.

…

28 objects 
in gallery or scene 

(symbolic)

…

dialogue context 
(pretrained) 

…

scene features 
(pretrained)

action 
predictor 
(flip)

action 
predictor 
(add/
delete)

action 
predictor 
(move)

action 
predictor 
(resize)

P(add/remove) P(flip) P(resize) P(move)

P(iCR)

iCR 
predictor

memory

target

…
contextual embeddings 

for each object

Transformer

absent in Overhearer

absent in 
Acton-Taker

Figure 2: The basic structure of our iCR policy models.
The full structure represents the iCR-Action-Taker. The
Overhearer contains no action predictor (area shaded
in grey), whereas the Action-Taker contains no iCR
predictor (area in the dotted box).

and scene available as one sequence like Lee et al.
(2022). The variation of iCR-Action-Detecters ac-
cess the scene before and after the actions.

The Transformer outputs a contextual representa-
tion of each object. The steps so far are represented
in the lower portion of Figure 2. Now we proceed
to the predictions in the upper part, which differs
according to the type of model. To test our hy-
potheses, we implement models that predict the
game actions (or detect them, if the updated image
is used) and/or make iCR decisions via multi-task
learning. We take inspiration from Shi et al. (2022)
to train the contextual object embeddings as joint
encodings for all the classifiers.

Action predictors and iCR predictors are im-
plemented as 2-layer feed-forward networks with
dropout, which take a representation as input and
output a probability. In (iCR-)Action-Takers, we
model each action prediction (add/delete, flip, re-
size, move) as a binary classification done upon
each object embedding.8 The iCR decision is also
performed as a binary classification task. In Task 1
(when to ask), it predicts whether an iCR should be
made at the current turn. In Task 2, (what to ask)
it predicts, for each object, whether it is subject to
and iCR. In iCR-Action-Takers, we let the action
logits be part of the input to the iCR predictor.

8To facilitate evaluation, we add an additional meta-action
prediction which is 1 whenever any action is made to a clipart.
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6 Experiments

For our experiments, we implement variations of
Overhearers and (iCR-)Action-Takers, all trained
on the CoDraw dataset. Results are compared by
varying the complexity of the input, which can be
comprised of the gallery G, the dialogue context D
with varying length, the scene before Sb and after
Sa the current actions, and the actual actions A or
their logits LA.

To test H1, we compare Overhearers with iCR-
Action-Takers and iCR-Action-Detecters in Task 1,
predicting when to ask iCRs at turn level. For H2,
we examine the predictions of the Action-Taker
using the certainty measure we discuss next. Fi-
nally, H3 is tested by a similar analysis as H1, but
in Task 2, i.e. what to ask about. Here, iCR pre-
dictions are done at clipart level and only the turns
where iCRs actually occurred are used (i.e., we as-
sume the decision to ask for iCR has already been
taken). For H3, Overhearers are compared with
pretrained iCR-Action-Takers/Detecters whose ac-
tion modules’ parameters are initialised with the
best Action-Taker/Detecter checkpoint.

iCRs actions

when what any add/del move flip resize

train 11.24 14.32 5.43 3.11 2.13 0.23 0.42
val 11.84 14.43 5.47 3.11 2.17 0.24 0.39
test 11.26 14.69 5.40 3.12 2.11 0.21 0.39

Table 1: % of the positive labels in the dataset.

Table 1 shows the proportion of each type of
label in the dataset. Actions at each turn are sparse
(mean=1.65, std=1.69) because only a small subset
of the full action space is actually performed.

Implementation Our implementation uses Py-
Torch Lightning. We run hyperparameter search
and other manual combinations, and then use the
configuration that led to the best results in the val-
idation set for the Overhearer G+D model. The
training objective is to minimise a sum of binary
cross-entropy losses for each task. Optimisation re-
lies on the Adam algorithm (Kingma and Ba, 2015),
with early stopping. Details of the model con-
figuration, data processing and experiment setup
are in the Appendix. Our code is available at
https://github.com/briemadu/icr-actions.

Evaluation metrics We report test results for the
best epoch in the validation set.9 H1 and H3 are
analysed based on the performance on iCR predic-
tions. To facilitate comparison to existing works,
we report Average Precision (AP) and binary and
macro-average F1-Score (bF1 and mF1) for each
model and task (i.e. one measure for iCR labels and
one for all action labels). To inspect how much in-
formation can be extracted from clipart states alone
(e.g. some cliparts are less often subject to iCRs),
we report metrics for a model that only gets the
gallery as input. For H2, we need an additional pre-
diction certainty metric. We adapt the classification
margin metric used for uncertainty sampling in ac-
tive learning (Settles, 2012), which is the difference
between the probability assigned to the first and the
second class, like in Chi et al. (2020). In our binary
task, we define it as |P (iCR)−P (¬iCR)|, which
is 0 when both are 0.5 (highest uncertainty) and 1
when one or the other is 1 (highest certainty). We
analyse whether we can derive a signal for when
to ask iCRs by finding a decision threshold upon
this metric, as in similar works (Yao et al., 2019;
Naszad et al., 2022; Khalid and Stone, 2023).

7 Results

Table 2 presents the main results for all experi-
ments. We begin with overall observations, and
then walk through the table to analyse the findings
for each hypothesis. In the next section, we discuss
the implications of these findings.

Firstly, for deciding when to ask an iCR, the
base Overhearer achieves 0.38 AP and the highest
performance comes from the iCR-Action-Detecter
with 0.41. This is noticeably higher than the 0.34
Overhearer baseline in Madureira and Schlangen
(2023b), but the gain is not as substantial as ex-
pected given the improvements in the architec-
ture.10 When the Overhearer is ablated to have no
access to the dialogue, performance drops to close
to random, as expected. The addition of scenes be-
fore and after the current actions and the inclusion
of an explicit signal with the last actions, however,
cause only marginal variation and do not really
contribute to a better performance. The Action-
Taker similarly does not profit from having access
to the image. We have no precedent results for the

9We compared Overhearers using a context from 0 to 5
previous turns. 0 or 1 turns had worse results, but 2 to 5 were
almost equivalent, so we report results using 3.

10Note that we use the second released version of the anno-
tation, containing a marginally different proportion of iCRs.
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Task 1: When to Ask Task 2: What to Ask

predictions: iCR actions iCR actions

inputs AP bF1 mF1 AP bF1 mF1 AP bF1 mF1 AP bF1 mF1

Baseline D, Sa .347 - .645 - - - - - - - - -

Overhearer G .138 .000 .470 - - - .332 .289 .593 - - -
G, D .384 .349 .642 - - - .697 .665 .801 - - -
G, D, Sb .372 .267 .604 - - - .697 .666 .799 - - -
G, D, Sb, Sa .378 .304 .620 - - - .694 .660 .799 - - -
G, D, A .372 .404 .662 - - - .711 .683 .810 - - -
G, D, Sb, A .379 .377 .654 - - - .712 .675 .808 - - -
G, D, Sb, Sa, A .388 .377 .655 - - - .706 .674 .808 - - -

Action-Taker G - - - .149 .005 .498 - - - - - -
G, D - - - .769 .710 .853 - - - .571 .550 .770
G, D, Sb - - - .762 .708 .851 - - - .547 .530 .761

iCR-Action-Taker G, D .378 .393 .658 .755 .702 .848 .753 .688 .815 .652 .621 .807
G, D, LA .393 .372 .652 .764 .708 .851 .751 .683 .811 .657 .619 .806
G, D, Sb .384 .380 .655 .760 .702 .848 .739 .681 .810 .612 .592 .792
G, D, Sb, LA .378 .311 .625 .771 .709 .852 .743 .684 .812 .630 .600 .796

iCR-Action-Detecter G, D, Sb, Sa .416 .418 .676 .859 .763 .880 .733 .684 .811 .834 .730 .862
G, D, Sb, Sa, LA .409 .366 .652 .864 .777 .886 .739 .689 .813 .838 .738 .867

Table 2: Main results of average precision, binary F1 Score and macro-average F1 Score for all models in the test
set. The inputs are G: gallery, D: dialogue, Sb: scene before the actions, Sa: scene after the actions, A: last gold
actions, LA: predicted logits of the actions. Shaded cells means the models were pre-trained on actions.

task of what to ask about, but even the Overhearer
achieves more than .70 AP. Given the imbalance
of the labels, we consider it a favourable result,
showing this task is easier to model. Introducing
iCR decisions does not cause drastic changes to the
performance on taking actions for when to ask, but
fine-tuning on what to ask causes a drop, which is
probably due to the fine-tuning occurring only on
iCR turns. See Appendix for additional analysis.

Hypothesis 1 In H1, we study the effect of action-
taking on the decision of when to ask iCRs. To
analyse it, we compare the results of the Over-
hearer with the iCR-Action-Taker/-Detecter in the
left block of Table 2. Integrating multi-task learn-
ing for taking actions is slightly helpful for iCR
prediction only if the action decision logits are
passed to the iCR classifier. If instead of predicting
actions we let the model learn the auxiliary task
of just detecting them from the scenes, the results
are better.11 Interestingly, the magnitude of the
positive difference is comparable to the difference
(in accuracy) found in the Minecraft dataset (Shi
et al., 2022), which was, however, negative. These
effects are not large enough to provide us with defi-
nite evidence that H1 holds.

11Again, this is still plausible: In CoDraw, we can assume
that the actual player has taken actions before generating the
iCR, as discussed by Madureira and Schlangen (2023b).

Hypothesis 2 For H2, we examine the certainty
scores assigned by the Action-Taker to performing
any action upon each clipart. For the task of what to
ask about, we compare two distributions: Scores of
cliparts subject to iCRs versus scores of cliparts not
subject to iCRs. For when to ask iCRs, we inspect
the distributions of the lowest score at turns where
iCRs occur versus turns where no iCR is made.
Using the two-sample Kolmogorov-Smirnov test
(Hodges Jr, 1958), we compare the underlying em-
pirical cumulative distributions of the two samples,
shown in Figure 1, under the null hypothesis that
they are equal, and a two-sided alternative.

clipart (what to ask) turn (when to ask)

iCR non-iCR iCR non-iCR

mean (std) .838 (.251) .952 (.147) .363 (.283) .525 (.328)

KS test .524* .219*
AP .009 .080

Table 3: Mean (std) of certainty scores for each sample,
results of the two-sided Kolmogorov-Smirnov test and
average precision. * means p-value < 0.001.

Table 3 shows the statistically significant test
results. It means that, on the whole, Action-Takers
behave differently regarding action certainty for
cliparts or turns with iCRs. In Figure 3, we can
see that the certainty for non-iCR cliparts is more
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concentrated around 1 than for cliparts subject to
iCRs. Similarly, the distribution of the minimum
certainty score at iCR turns is more concentrated
at lower values. In that sense, we find support for
H2. Still, using these scores directly as a signal
for iCR prediction does not result in high AP, in
line with the findings by Naszad et al. (2022). This
seems to occur because, although the distributions
are different, both samples have values in the whole
range, with overlap in their standard deviation.0 1certainty

0

1

e
c
d
f

turns

non-iCR iCR

0 1certainty
0

1

e
c
d
f

cliparts

non-iCR iCR

0 1certainty
0

1

e
c
d
f

turns

non-iCR iCR
Figure 3: Empirical cumulative distribution function of
the certainty of taking actions for each clipart (left) and
the minimum by turn (right).

Hypothesis 3 Lastly, we assess the effect of tak-
ing actions in deciding what to ask about. Here,
we focus on the right columns of Table 2, again
comparing the Overhearer with the pretrained iCR-
Action-Takers/Detecters. We observe a positive
effect of learning to take actions on the iCR policy,
with AP increasing from .69 to .75. Differently
from the task of when to ask, here predicting ac-
tions leads to better results than merely detecting
them. The difference is not negligible, which is
stronger support in favour of H3 in this context.

8 Discussion

Our setting allowed us to differentiate between un-
derstandability and iCR policy. The first refers
to learning a mapping from linguistic input to ac-
tions. The latter is an additional decision on top of
action-taking that regards knowing when the infor-
mation available to the agent at a given moment is
not enough for the current purposes of wanting to
commit to an outcome.

Learning to take actions does not seem to be a
signal informative enough for deciding when to ask
for iCRs, although it has a more prominent effect
on deciding what to ask about in iCR turns. Be-
sides, we investigated whether there is a signal in

the purely understanding models that predicts what
to clarify. Indeed, a model trained without any ex-
plicit iCR signal made predictions whose certainty
distribution differ at iCR turns and cliparts. Even
though the raw score cannot be directly used as a
predictor of human iCR behaviour, further investi-
gation can be done on extracting an agent’s implicit
iCR policies, e.g. with probing or attribution meth-
ods and in-depth analysis of the model’s internal
states.

The five sources of improvement (integration
of the gallery, token-level representations of utter-
ances, learnable scene features, attention mecha-
nism to construct contextual object embeddings
and action predictions) over the existing CoDraw
baseline formed together a conceptually superior
model design. We expected this more sophisticated
architecture, aligned with the latest literature, to
lead up to a clear-cut improvement in the task of
when to ask iCRs. The fact that the gain is not more
than 10% in our main metric over that baseline
compel us to join the ranks of works that question
whether the current NLP paradigm (employing imi-
tation learning or behavioural cloning to learn with
supervision from limited human data) is the right
way to go when it comes to meta-discursive acts
in interactions (Hayes, 1980; Nguyen et al., 2022;
Min et al., 2022; Naszad et al., 2022; Bohg et al.,
2023, inter alia). It is also possible that the actions
signal is too weak; the action space is large (four
actions on 28 objects) which makes the actually
performed actions at a given turn be sparse.

In a static dataset of human play, the underlying
CR policies of each player may differ by nature
and also in visibility in the data. We cannot know
with certainty if other humans would have behaved
differently at each point than what is realised in
the data; consequently, it is hardly possible to set a
standard against which to judge the trained model’s
policy. We are, after all, trying to learn a “cus-
tomary” policy from what is actually a mixture of
policies with observations sampled from various
players. It may be the case that we have reached
the limits of the generalisable policies we can cap-
ture from this data with supervised training, even
though the actual metrics are not close to the ceil-
ing.12 As Hayes (1980) discussed, graceful inter-
action requires developers to aim for non-literal
aspects of communication that are effective for the

12Though, as pointed out by a reviewer, this may be a limita-
tion of the class of models we tested, and results can possibly
be improved with more powerful vision/language encoders.
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human-agent interaction, instead of trying to imi-
tate human patterns exactly. This connects to the
over confidence problem in LLMs: In some sit-
uations, they should produce an I don’t know or
a CR, but their limited abilities in meta-semantic
communication often cause failures.

Ambiguity arises under competing communica-
tive pressures (Piantadosi et al., 2012). Thus CRs
are not a problem: They are a solution emerging
from joint effort (Clark, 2002). If many bits of in-
formation are to be conveyed, the IG may produce
minimally sufficient messages and leave it to the
addressee to identify gaps. The IF may also take
actions that are only approximately good, since
mistakes can normally be fixed later. Moreover,
crowdworkers seem to lack incentive to try to build
perfect reconstructions, and often seem to use im-
plicit knowledge to make only satisfactory actions
(see Appendix). Therefore, the iCR signal may
not be “out there” in the data, but live in the in-
ternal state of the agents. Treating the task as iid
predictions under supervised learning is also not
ideal because game decisions are actually made
sequentially. Like some works on learning when
to ask questions, modelling iCR policies may call
for reinforcement learning (see e.g. Khalid et al.
(2020)), with evaluation methods that capture the
effectiveness of the agent’s policy for the game,
beyond comparison with human behaviour.

9 Conclusion

We have examined the effects of performing ac-
tions on learning iCR policies in the CoDraw game.
The assumption that learning to take actions would
make the underlying when to ask policy emerge
does not fully hold. Still, we find that prediction
certainty of actions differs at iCR turns. Then, if
we assume that a given policy has informed us on
when iCRs have to be made, we show that it is
possible to predict what to ask about more success-
fully, with action-taking having a stronger positive
effect. Exploring larger datasets with CRs pro-
duced as a by-product of action-taking is desired.
Still, the suboptimal performance of various SotA
models in deciding when to ask for clarification
speaks against approaches that seek to imitate hu-
man behaviour. We recommend more investigation
with RL and evaluation methods that capture the
effectiveness of iCR policies in dynamic contexts.

10 Limitations

We have only explored one dataset because there
are very few genuine iCR datasets available yet.
Minecraft, which is relatively comparable in terms
of the underlying instruction following setting, is
smaller and has a different form of common ground
due to full visibility by the IG. It has been explored
in related work, to which we refer in the related
work section. SIMMC 2.0 is not suitable in this
context for two reasons: Its CRs are not at Clark’s
level 4 (uptake), but mostly level 3 (reference reso-
lution). Besides, it is a simulated dataset, and we
are interested in exploring the limits of modelling
human iCR behaviour.

The models are thus task-specifically fitted to
CoDraw and cannot be applied out of the box to
other domains. Still, we believe that CoDraw is
representative of iCRs and that solving the task in
one domain is a first step towards generalisation,
which has not been achieved yet even with other
datasets, as we discussed.

In this work, our models do not predict all fine-
grained game actions, i.e. they are not full-fledged
Action-Takers. In preliminary experiments, we first
attempted to model an agent that predicts all fea-
tures of each clipart at each turn. However, since
the vast majority of the 28 available cliparts remain
unchanged from one turn to the other, the model
could simply learn to output a copy of the current
state. We thus opted to turn all tasks into binary
predictions for our analysis, as we observed results
that are good enough for our purposes, given the
imbalanced nature of the actions in the data. For
each object in the gallery, it makes high level de-
cisions on which actions are needed (add/delete,
move, resize, flip). A full agent should include the
subsequent tasks of deciding where to place cli-
parts and what exact (discrete) size to set (presence
and orientation can be deduced in post-processing
with the current version).

Further investigation can be done to improve the
performance of the Action-Takers. Since the ac-
tions are very sparse, it may be the case that models
just learn to detect mentioned cliparts in the utter-
ances. A detailed error analysis should look closer
at the predictions and also examine how good the
scene similarity scores of the reconstructions are.
Instead of predicting probabilities, the model could
also output parameters of a distribution from which
the actions would be sampled; we do not investi-
gate that option here. Besides, we use a supervised
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learning approach that treats turns as iid. In reality,
what the player does in one turn influences its next
moves, so other methods like RL could be more
appropriate, as we discussed.

Although our models take several epochs to over-
fit the training data, performance in the validation
set saturates very early. The techniques we tried
(for instance, dropout, variations of the architecture
and filtering the training data) did not lead to better
results. We performed a limited hyperparameter
search that could be done more extensively in the
future, also to investigate in more detail how the
method scales with larger and smaller models.

For the task of what to ask about, we did not in-
clude the utterances for which the annotation does
not provide the reference cliparts due to ambiguity.
Still, that happens for very few cases and should
not have a considerable impact on the results.

To conclude, we do not have human performance
to use as an upper boundary for our results. It
would be interesting to collect human data by let-
ting humans decide when to ask for clarification
and what to ask about, so that we can better un-
derstand to what extent the task itself is possible
for humans acting as overhearers. Still, since our
aim is to do an intrinsic analysis on whether taking
actions improve a model’s performance, human re-
sults are not strictly necessary, because comparison
within models suffices for testing our hypotheses.

11 Ethical Considerations

Merely posing clarification requests can be a source
of miscommunication regarding intentions, which
has ethical implications and may also weaken the
application of moral norms by the interlocutors,
as discussed by Jackson and Williams (2018) and
Jackson and Williams (2019). Besides, the risks
regarding privacy and biases of learning actions
from individual behaviour also apply, as well as
the current topics being discussed in the field of
responsible NLP.
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A Additional Analysis

Here we present additional analysis. Figure 4 il-
lustrates the distribution of the number of actions
per turn. Table 4 presents the average precision for
each type of action, which are aggregated in Table
2. Figure 5 show the boxplots for the distribution
of certainty scores, to aid visualising that they have
different shapes in each sample.
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Figure 4: Empirical distribution of the number of actions
per turn in the CoDraw dataset.

add/del move flip resize

Action-Taker G, D .875 .617 .367 .531
iCR-Action-Taker G, D .865 .600 .398 .539

Action-Detecter G, D, Sa,b .976 .644 .414 .636
iCR-Action-Detecter G, D, Sa,b .974 .642 .423 .626

Table 4: Detailed performance of the Action-Takers
and Action-Detecters for when to ask. Values are the
average precision for each type of action in the test set.
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Figure 5: Empirical distribution of the certainty of tak-
ing actions for each clipart (top) and the minimum by
turn (bottom).

B Reproducibility

In this section, we provide details of our data pre-
processing and implementation. For precise details,
please check the available code. Here, we provide
a brief overview of each component and the justifi-
cation of some decisions.

B.1 Data

We used the annotation released in the file
codraw-icr-v2.tsv13 to identify iCRs and men-
tioned cliparts. We followed the train-val-test splits
as in the original CoDraw data. The ambiguity
classes introduced by the authors were treated as
follows: If an iCR was about an ambiguous but
concrete class, we assigned the positive iCR label
to all objects in the gallery that belong to that class.
For instance, for hat_group, all hats in the gallery
were treated as positive cases. The general ambigu-
ity class, used for unclear cases, was ignored in our
labelling. This occured in 318 iCRS. The whole
dataset was used in all experiments, except for the

13https://osf.io/gcjhz/files/osfstorage
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tasks of what to ask about, for which only the turns
containing iCRs were included for all splits.

The gallery and scene representation was con-
structed using features in a similar fashion as the
original paper. Each clipart was assigned integers
for its identifier, size (three categories), orientation
(two categories), presence in the current scene (a bi-
nary feature), pose (seven categories) and facial ex-
pression (5 categories), as well as five features for
its position (x and y coordinates of its centre, width,
height and area in the canvas). We set features (ex-
cept pose and facial expression) to a special cate-
gory 0 for objects that are not in the scene. All boy
and girl cliparts were collapsed into one class for
each, and their facial expressions and poses were
turned into features in the symbolic representation,
as in original paper. Other cliparts were assigned
a “not-applicable” class for these two features. To
define bounding boxes, we rescaled sizes according
to the AbstractScenes documentation.

Actions were defined as either addition/deletion
or edits. Edits meant flip, resize and move. If a
clipart was added or deleted, we did not consider
changes to its orientation, position and size with re-
spect to the gallery (in order to avoid that the model
only learnt the edits that occur due to an addition
or deletion). Actions were defined by comparing
the state of the gallery in a turn in relation to its
state in the previous turn. For initial turns and
some cases where the scene string was not avail-
able in the dataset, we set the scene to empty and
use the gallery in adjacent turns (since the gallery
should remain the same across the game). We also
introduced an “acted upon” action that is positive
whenever any type of action occurs upon a clipart.

Text embeddings were retrieved from
bert-base-uncased, licensed under Apache 2.0.
Following Shi et al. (2022), we concatenate the IG
and IF utterances using special tokens before each
speaker. Special tokens <TELLER> and <DRAWER>
were appended before the instruction giver and
follower, respectively. The last utterance from
the instruction follower was appended to the
beginning of the utterance of the instruction giver,
so that potential previous iCRs are encoded with
their responses, if given immediately. Embedding
sequences were padded with zeros to the right to
an empirical length of 80 tokens. When context is
used, the previous turns are appended to the left
of the last instruction and, if necessary, padded
with zeros to the left, so that the most recent turn is
always at the same position in the input.

B.2 Implementation

The models were implemented with Python
(v3.10.12), PyTorch14 (v1.13.1) and Pytorch Light-
ning15 (v2.0.8), in Linux 5.4.0-99-generic with
processor x86_64 on an NVIDIA GeForce GTX
1080 Ti GPU with CUDA (v11.6). The pre-trained
ResNet model was retrieved from torchvision16

(v0.14.1) and the pre-trained BERT came from
HuggingFace transformers17 (v4.29.2).

Optimisation was done with the Adam
algorithm (Kingma and Ba, 2015), using
BCEWithLogitsLoss with reduction set to sum
and the argument pos_weight to 2 for each
task. The total loss used for backpropagation
was a sum of all task losses. Early stopping was
implemented using a patience of 8 epochs and
the minimum delta of 0.001 for maximisation
of a monitored metric. Metrics were computed
using torchmetrics18 (v0.11.4). The monitored
metric varied according to the task: If iCRs were
predicted, we tracked the binary average precision
of iCR labels; otherwise, we tracked the binary
average precision of the meta-action class. The
maximum number of epochs was set to 30. The
checkpoint that lead to best performance in the
validation set was saved and loaded to run the tests.
Comet19 was used to manage experiments and to
perform hyperparameter search.

Hyperparameter search was performed with the
base model (i.e. an Overhearer that gets only the
dialogue and the gallery representation as input and
predicts only when to ask iCRs). We used comet’s
Bayes algorithm as well as a few manual selections
of hyperparameters, and opted for the model with
highest iCR binary average precision in the valida-
tion set. Table 5 shows the final hyperparameter
configuration used in all experiments.

We did not keep records of all experiments dur-
ing development. For the final run, we run 43
experiments during tuning and 102 for the analysis.
The duration varied from 5 minutes (the random
baseline) to 06h16m (the iCR-Action-Detecter us-
ing the full Transformer), without including the
time for data preparation. The number of param-
eters varied according to the model. The turn-

14https://pytorch.org/
15https://lightning.ai/pytorch-lightning
16https://pytorch.org/vision/stable/models.html
17https://huggingface.co/bert-base-uncased
18https://torchmetrics.readthedocs.io/en/

latest/
19https://www.comet.com
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hyperparameter type options selected

accumulate gradient discrete 1, 2, 5, 10, 25 1
batch size discrete 16, 32, 64, 128, 256 32
clipping discrete 0, 0.25, 0.5, 1, 2.5, 5 1
context length integer min=1, max=5 3
dropout discrete 0.1, 0.2, 0.3 0.1
d_model discrete 128, 256, 512 256
hidden_dim discrete 32, 64, 128, 256, 512, 1024 256
hidden_dim_trf discrete 256, 512, 1024 2048
learning rate discrete 0.1, 0.01, 0.001, 0.0001, 0.003, 0.0003, 0.00001, 0.0005 0.0001
lr scheduler bool True, False False
lr step integer min=1, max=10 -
n heads discrete 1, 2, 4, 8, 32 16
n layers float min=1, max=6 3
n reload datasets float min=1, max=10 1
pos weight float min=0.8, max=3 2
pre-trained text embeddings categorical bert-base-uncased, roberta-base, distilbert-base-uncased bert-base-uncased
random seed integer min=1, max=54321 12345
weight decay discrete 1, 0.1, 0.01, 0.001, 0.0001 0.
weighted loss bool True, False False

Table 5: Hyperparameters: Investigated options and selected values. Note that the search did not extensively cover
all possibilities for each hyperparameter.

level Overhearer without scenes had 5,008,923 and
with both scenes 29,054,299 (5,546,267 learnable).
The turn-level iCR-Action-Taker without scenes
had 5,339,168, and the iCR-Action-Detecter had
29,384,544 (5,876,512 learnable).

To enable reproducibility, we set the use of use
deterministic algorithms to True in PyTorch and
used Lightning’s seed_everything method with
a fixed random seed. Despite this, according to the
documentation, some methods cannot be forced to
be deterministic in PyTorch when using CUDA.20

B.3 Model
In this section, we explain in more detals how
we address five of the limitations of the baseline
model (iCR-baseline) by Madureira and Schlangen
(2023b), some of them already acknowledged by
the authors. We also refer to the original CoDraw
model (CoDraw-orig) by Kim et al. (2019), which,
however, did not include the instruction follower’s
utterances in the game.

Incorporating the gallery The gallery is an in-
formative source in CoDraw (e.g. if it contains
just one of the three tree cliparts, it is less likely
that disambiguation is needed). iCR-baseline does
not include the available objects as input, whereas
CoDraw-orig uses a symbolic representation as-
suming all 58 objects are available at any time.
Both approaches do not correspond to reality, as

20https://pytorch.org/docs/1.13/generated/
torch.use_deterministic_algorithms.html#torch.
use_deterministic_algorithms

players only see 28 cliparts. We follow a simi-
lar symbolic approach to represent the objects’ at-
tributes (presence in the scene, orientation, position,
size, pose, facial expression), but only for those at
play. The cliparts’ features and bounding boxes are
projected to a higher-dimensional space following
Sadler and Schlangen (2023).

Using contextual word embeddings iCR-
baseline relies only on two sentence-level embed-
dings, one to encode the whole dialogue context
and one for the last utterance, both not optimised
for the game. To allow the policy to access more
fine-grained linguistic information, we make all
token-level contextual embeddings available to the
player, constructed by a pretrained language model.

Enhancing scene representations iCR-baseline
uses a pretrained image encoder. It is unlikely
that off-the-shelf encoders fit well to clipart scenes
without fine-tuning. Here, we follow the approach
in DETR (Carion et al., 2020), employing a ResNet
(He et al., 2015) backbone with learnable positional
encodings to extract scene features, followed by a
trainable convolutional layer to reduce the number
of channels. The sequence of image features is
then used as part of the input.

Transforming The iCR predictions rely only on
pretrained embeddings with a feed forward neu-
ral network in iCR-baseline, and CoDraw-orig did
not employ Transformers (Vaswani et al., 2017) as
a trainable component. Given its leading perfor-
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mance in several scenarios, we bring them more
explicitly to the scene, in an approach similar to
DETR (Carion et al., 2020). We feed the clipart rep-
resentations to the decoder, to allow self-attention
to build up embeddings of the state of the gallery
and scene, without positional encoding due to the
arbitrary order of the cliparts. Here, we also rely
on the findings by Chiyah-Garcia et al. (2023) that
encoding relations between objects and their loca-
tions is helpful for CRs. Then, it performs cross-
attention with the scene and text. We make text
and scene available as one sequence like Lee et al.
(2022). Since cross-attention between modalities
is a cornerstone in current CR models (Shi et al.,
2022, 2023), we also run experiments using the
encoder to let text and scene attend to each other.
We then end up with a multimodal representation
of each clipart in the current context, which is then
passed to classifier layers for each prediction.

Action-taking via multi-task learning iCR-
baseline is an Overhearer, modelling only the pol-
icy of when to ask iCRs. To test our hypotheses,
we implement (iCR-)Action-Takers that predict the
game actions (or detect them, if the updated image
is used) via multi-task learning. Note that this is
not yet a full-fledged Action-Taker. For each object
in the gallery, it makes high level binary classi-
fication on which actions are needed (add/delete,
move, resize, flip); a full model would also make
the subsequent fine-grained decision of exact posi-
tions and sizes. We take inspiration from Shi et al.
(2022) and train a joint encoding for multiple clas-
sifiers. We let the action logits (or the real actions
via teacher forcing) be part of the input to the iCR
decoder. To facilitate evaluation, we add an addi-
tional meta-action prediction which is 1 whenever
any action is made to a clipart.

Components Let d_model be the dimension used
for the Transformer. First of all, an embedding of
the gallery and scene state is constructed. Em-
bedding layers are used for a clipart’s identifier,
orientation, presence, size, face and pose states
with dimensions d_model-100, 10, 10, 10, 20 and
20, respectively. The position is embedded with a
linear layer that maps its centre coordinates, area,
width and height to 30 dimensions. All embedded
features are concatenated so as to create a represen-
tation with dimensions 28 (number of cliparts) by
d_model. We used only the decoder of the Trans-
former, which gets the gallery representation as
“target” and the instruction tokens (whose dimen-

sions were reduced with a linear layer and, if appli-
cable, the sequence was concatenated to the scene
features) summed to positional encodings as “mem-
ory”. The decoder performs self-attention in the
gallery and then cross-attention with the memory.
Scenes are encoded following Carion et al. (2020)’s
implementation, but we first preprocess the scene
according to the pretrained model’s documentation.
The scene is then fed into a pre-trained ResNet50
followed by a trainable convolutional layer that
reduces the number of channels to the same dimen-
sion used for the Transformer. Then, the height
and width dimensions are flattened and the result
is added to learnable position embeddings, with a
dropout layer. The probabilities (for iCRs or ac-
tions) are predicted by taking each output of the
Transformer (i.e. one representation for each cli-
part in the gallery) and passing it through a feed-
forward network with the following sequential lay-
ers: leaky ReLU, dropout, linear, leaky ReLU and
linear. For predicting turn-level iCRs, the represen-
tations of all cliparts are averaged. If the action-
taking logits or teacher forcing is used, they are
appended to the input. The output logits are con-
verted to probabilities using the sigmoid function.

B.4 Evaluation
The threshold for the F1-Scores was set to 0.5. We
did not include the meta-action label in the main
results for taking actions to avoid inflating the per-
formance; it was only used for the analysis for H2,
done on the Action-Taker+G, D. Metrics for the
evaluation were computed with sklearn21 (v1.0.2)
and the plots were generated with seaborn (v0.12.2)
and matplotlib22 (v3.7.1). The hypothesis test
was done with SciPy23 (v1.11.1) stats.ks_2samp
method with a two-sided alternative.

C CoDraw Examples

Figures 6-9 exemplify strategies of crowdwork-
ers, showing various levels of commitment to
playing the game well. The images are gen-
erated with the CoDraw Dataset Visualizer, de-
veloped by @jnhwkim at https://github.com/
facebookresearch/CoDraw. Scenes at the top are
the state of the reconstructions at the highlighted
turns.

21https://scikit-learn.org/stable/index.html
22https://matplotlib.org/
23https://docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.ks_2samp.html
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← Older (?session=train_00487) Newer → (?session=test_00489)

Score: 3.94/5.00

Original Scene

CoDraw Dataset Visualizer
Rollover on messages to check the abstract scene at that moment!

val_00488

Random (?session=train_00401)

Developed by @jnhwkim (https://github.com/jnhwkim) as a reserach intern at Facebook AI Research (http://facebook.com/fair).

ready when you are

small rocket on right

ok

small sun on left corner big boy on left facing right
running position in from bottom

smiling or teeth ?

big girl running facing right shocked in center

ok need to know what expression boy has

small basketball up front beach ball right corner

Chance to peek is used by Teller

great job

Fin.

ok

Figure 6: Even peeking, the instruction giver does not inform the instruction follower that the reconstruction is not
totally correct: The orientation of the rocket is wrong, as well as the position of the basketball and the size of the
two balls. From: CoDraw dialogue game 488, CC BY-NC 4.0, scene from Zitnick and Parikh (2013).
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← Older (?session=train_00197) Newer → (?session=test_00199)

Score: 3.90/5.00

Original Scene

CoDraw Dataset Visualizer
Rollover on messages to check the abstract scene at that moment!

val_00198

Random (?session=val_02488)

Developed by @jnhwkim (https://github.com/jnhwkim) as a reserach intern at Facebook AI Research (http://facebook.com/fair).

ok

medium sun left corner cut off . boy frowning with leg
out to your right

ok

he 's wearing sunglasses and kicking yellow frisbee

so he is standing and where is his eyes to skyline

medium pine tree on right top and a little of side cut
off orange cat below tree looking at boy

so boy and pine on the right ? ? ?

his eyes are barely below the skyline

check my question

boy is on left but to the right of the sun

ok

are you finished ? will use chance .

ok

make sun bigger and top left cut off , move glasses
onto boys eyes , and frisbee touches his foot

ok

shrink the tree and the cat is more to the left of it

ok

Fin.

Chance to peek is used by Teller

Figure 7: A more careful instruction giver uses two turns to try to repair even minor details after the peek, like the
slightly wrong position of the sunglasses. From: CoDraw dialogue game 198, CC BY-NC 4.0, scene from Zitnick
and Parikh (2013).
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← Older (?session=train_03834) Newer → (?session=train_03836)

Score: 2.91/5.00

Original Scene

CoDraw Dataset Visualizer
Rollover on messages to check the abstract scene at that moment!

train_03835

Random (?session=train_06961)

Developed by @jnhwkim (https://github.com/jnhwkim) as a reserach intern at Facebook AI Research (http://facebook.com/fair).

hi and ready .

med cloud on left sky , small apple tree on left , then
frowny boy sitting in sandbox with bucket , bear to
right

Chance to peek is used by Teller

make tree and bear smaller , cloud closer to middle ,
make boy and box bucket bigger , and you got it

tree will not go smaller .

oh , and flip direction of boy

fixed everything but tree .

were good !

thanks !

Fin.

ok

Figure 8: The instruction follower gets underspecified instructions at the first turn (for instance, nothing is said
about the orientation of the boy and his position with respect to the bucket), but acts even so without asking for
clarification. From: CoDraw dialogue game 3835, CC BY-NC 4.0, scene from Zitnick and Parikh (2013).
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← Older (?session=train_04285) Newer → (?session=train_04287)

Score: 0.364/5.00

Original Scene

CoDraw Dataset Visualizer
Rollover on messages to check the abstract scene at that moment!

train_04286

Random (?session=train_05320)

Developed by @jnhwkim (https://github.com/jnhwkim) as a reserach intern at Facebook AI Research (http://facebook.com/fair).

ready !

a tree , with a girl in front with shades on a swing set ,
a guy in a pirate hat . a cat you bounce on . a sun and

thanks .

that 's left to right

medium to the left

what position is the girl and what is she doing ?

standing up smiling on the left side of the swing

where is the swing set ? what position is the boy ?

sad and to the right of the swing

where is the bee ?

to the farthest right

where is the swing ?

on horizon sun above

Fin.

what size tree where is the tree ?

Figure 9: The instruction giver provides underspecified instructions at the first turn. Instead of taking all actions
immediately, the instruction follower does many rounds of clarification. From: CoDraw dialogue game 4286, CC
BY-NC 4.0, scene from Zitnick and Parikh (2013).
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Abstract
In this work, we analyze the uncertainty that
is inherently present in the labels used for su-
pervised machine learning in natural language
inference (NLI). In cases where multiple anno-
tations per instance are available, neither the
majority vote nor the frequency of individual
class votes is a trustworthy representation of the
labeling uncertainty. We propose modeling the
votes via a Bayesian mixture model to recover
the data-generating process, i.e., the posterior
distribution of the “true” latent classes, and thus
gain insight into the class variations. This will
enable a better understanding of the confusion
happening during the annotation process. We
also assess the stability of the proposed estima-
tion procedure by systematically varying the
numbers of i) instances and ii) labels. Thereby,
we observe that few instances with many labels
can predict the latent class borders reasonably
well, while the estimation fails for many in-
stances with only a few labels. This leads us
to conclude that multiple labels are a crucial
building block for properly analyzing label un-
certainty.

1 Introduction

Commonly, binary or multi-class classification set-
tings in machine learning assume that a single gold
label—representing the “true” class of an instance—
can easily be acquired via human annotation. How-
ever, there are numerous examples where remark-
able variations between different annotators exist,
challenging the validity of this assumption (Uma
et al., 2021). This issue is especially prevalent
in datasets relating to the difficult task of perceiv-
ing human language, such as natural language in-
ference (NLI). In NLI, the textual entailment of
two sentences is to be determined. There exists
an increasing body of work documenting inher-
ent disagreement in labeling for NLI (Pavlick and

Figure 1: Scatter plot of the vote distribution of
ChaosSNLI. Each point represents one instance. Its
location is determined by the vote distribution. Corner
points represent 100 votes for the respective class, i.e.,
entailment, neutral, contradiction for the bottom right,
top, and bottom left, respectively. Solid black lines rep-
resent the border of class membership by majority vote.
The color of the points is determined by the estimated
latent class given by our model. Black diamonds de-
scribe the center points of the latent classes. Solid red
lines represent the borders of latent class membership.

Kwiatkowski, 2019; Nie et al., 2020; Zhang and
de Marneffe, 2021; Jiang et al., 2023). Such hu-
man label variation can be caused by context de-
pendency and subjectivity, amongst others, and is
ubiquitous (Plank, 2022). Moreover, human la-
bel variation is different from annotation errors, as
plausible, linguistic reasons for such variation exist
(Jiang and de Marneffe, 2022).

To provide new grounds to study human vari-
ation in labeling, Nie et al. (2020) collected the
ChaosNLI (Collective HumAn OpinionS on Nat-
ural Language Inference) dataset. ChaosNLI
comprises 100 labels per instance from quality-
controlled annotators for each of the ambiguous
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instances from multiple NLI-related datasets. In
this paper, we analyze ChaosSNLI, a sub-dataset
of ChaosNLI based on the Stanford Natural Lan-
guage Inference (SNLI) data (Bowman et al., 2015).
Several works on NLI (Pavlick and Kwiatkowski,
2019; Nie et al., 2020) show that many instances
exhibit high human disagreement or uncertainty,
i.e., human labelers do not agree on a single class,
resulting in a high spread of the annotators’ votes
among multiple classes. Less work has looked at
label variation and stability from a data-generating
process viewpoint in light of uncertainty.

Uncertainty in machine learning and NLP
is, however, gaining increased attention re-
cently (Hüllermeier and Waegeman, 2021; Gruber
et al., 2023; Baan et al., 2023). Different lines of re-
search study sources of uncertainty in various parts
of machine learning, such as the data itself, the
model choice, the estimation procedure, and model
deployment (Gruber et al., 2023). Early works
characterize uncertainty in terms of reducible and
irreducible randomness (Hüllermeier and Waege-
man, 2021), while some works argue that this line
is fuzzy (Gruber et al., 2023; Baan et al., 2023).

Variation in labels is part of the uncertainty in
the data and is ubiquitous given the inherent am-
biguity of language (Zhang et al., 2021). Yet, un-
derstanding the uncertainty in labels enables us
to not only empirically investigate human confu-
sion in annotated data, but also to gain insights
on the classification task itself. For example, the
complexity of detecting certain classes or the com-
position of class structures can be derived from
voting patterns—this information can provide use-
ful insights into task characteristics.

Therefore, in order to analyze the uncertainty
in the label vote distribution of ChaosSNLI, we
model the data-generating process and analyze the
stability of the resulting estimation. To do so, we
employ a Bayesian mixture model and recover the
latent “true” class label, see also Hechinger et al.
(2024). More precisely, we obtain the posterior
probability for each of the classes and can thus
assess the certainty for the class labels given the
votes.

Our results could further be incorporated into
a machine learning pipeline, e.g., by fitting a
model on our latent classes instead of majority
vote classes or class frequencies. This is, how-
ever, beyond the scope of this paper. In this work,
we focus on the fundamental step of quantifying
labeling uncertainty instead. We propose an estima-

tion procedure and analyze its stability for different
amounts of i) instances and ii) labels. Our work
shows that more labels are more beneficial for sta-
ble estimation of uncertainty, while only a few in-
stances already suffice. We also suggest new tools
for visual assessment of the uncertainty in labels
for three-way classification tasks (see Fig. 1).

Contributions With this paper, we contribute to
a better understanding of label variation via a deep
assessment of trustworthiness by 1) quantifying
labeling uncertainty with Bayesian mixture mod-
els, 2) providing a novel visual tool for a better
assessment of labeling uncertainty, and 3) deriving
practical guidance for labeling tasks. We identify
the benefit of using fewer cases with many labels
rather than the other way around.1

2 Related Work

The need to analyze diverse human opinions in
natural language inference is discussed by works
including Pavlick and Kwiatkowski (2019) and Nie
et al. (2020). Nie et al. (2020) show that some state-
of-the-art models (including BERT, RoBERTa, XL-
NET, AL- BERT, DistilBERT, and BART) are nei-
ther designed nor able to capture human variation
in labels and are therefore not appropriate. Their
work also states that predicting the majority vote
and predicting the human label distribution are dis-
tinct and seemingly conflicting objectives. In their
benchmark study, all considered models performed
consistently worse on examples with low human
agreement. This indicates that analyzing label vari-
ation is of significant relevance for a more complete
understanding of natural language inference.

Hovy et al. (2013) already advocated that major-
ity voting might be the simplest but not most ap-
propriate strategy for finding the correct label and,
that modeling the votes leads to improved predicted
label accuracy. The authors propose a method to
separately model annotations from spamming and
non-spamming annotators. Our methods differ in
the way variation in labels is modeled. Hovy et al.
(2013) explicitly model the behavior of annotators
and assumes non-spamming annotators always pro-
vide the correct label, while votes by spamming an-
notators are drawn from a multinomial distribution.
In contrast, our approach models human confusion
in the annotation process, assuming equal levels of
annotation skills. This is a reasonable assumption

1Code and data available at: https://github.com/
corneliagru/label-variation-nli
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for ChaosSNLI as all annotators undergo strict qual-
ity control, see Nie et al. (2020) for details. Nev-
ertheless, both methods share the goal of estimat-
ing the distribution of the data-generating process
and its parameters via an expectation-maximization
(EM) algorithm.

Paun et al. (2018) compare various Bayesian ap-
proaches for modeling annotation. Based on their
taxonomy, we employ a pooled model, i.e., assum-
ing equal quality of the annotators. They conclude
that such pooled models underperform, as the as-
sumption that all annotators share the same ability
is inappropriate in typical crowdsourcing settings.
However, when information on individual annota-
tors is unavailable, as is the case for the investigated
ChaosSNLI dataset, pooling is inevitable.

The benefits of harnessing multiple labels are
presented in Zhang et al. (2021). They demonstrate
that improvements in accuracy can be achieved
by varying the number of annotations for some
examples within a given annotation budget. Our
findings show a more nuanced picture supporting
their claims, as we show the necessity of multi-
ple annotations but a flattening value curve (see
section 5).

3 Dataset and Problem Setting

We examine label uncertainty in NLI, a task for
which textual entailment of two sentences is typ-
ically classified as either entailment, neutral, or
contradiction. In ChaosSNLI (Nie et al., 2020),
multiple annotations for each instance are provided.
Example sentences of ChaosSNLI with their re-
spective votes are shown in Table 1. Since those
annotators do not necessarily agree with each other,
we face a high degree of (human) label uncertainty.
We chose this dataset as it provides a unique ground
to explore label variation. Having access to a high
amount of labels per instance is particularly valu-
able, but unfortunately not a common setting.

Our analysis is based on N = 1, 514 instances
with J = 100 labels, each, that originate from
the development set of the SNLI dataset (Bowman
et al., 2015). The original SNLI development set
was generated by a multistep procedure, where first
an initial annotator provides a text description of
an image, i.e., generating the premise. Second, a
different annotator constructs three hypotheses as
an entailing, neutral, and contradicting description
of the premise. Third, four more annotators, inde-
pendent of the first two steps, provide labels for

the premise-hypothesis pairs, i.e., classify the pairs
into entailment, neutral or contradiction. This pro-
cedure yields five annotations per instance in total.
In ChaosSNLI, examples, where only three out of
those five annotators agree, are then relabeled by
100 quality-controlled annotators. For details on
the quality control procedure, we refer to Nie et al.
(2020). This relabeling procedure leads to a dataset,
where instances with a high degree of uncertainty
are overrepresented. Such a biased sample is valu-
able, as our main interest lies in understanding
exactly those uncertain and hard-to-classify cases.

In the dataset, we observe that the most com-
mon class according to majority voting is neutral,
with 53.7% of all examples, while entailment and
contradiction amount to 27.8% and 18.5%, respec-
tively. This already suggests that identifying neu-
tral seems to be more challenging than discerning
the other classes, as human annotators do not agree
on those especially challenging examples that were
collected for ChaosSNLI.

To gain a better understanding of label uncer-
tainty in NLI, we analyze the annotations for the
premise-hypothesis pairs available in ChaosSNLI.
In order to detect hidden structures and compre-
hend label variation, we follow a statistical ap-
proach for modeling the label distribution. It is thus
distinct from classical machine learning, where
models are optimized for predictive power. How-
ever, our approach can ultimately be incorporated
as a preprocessing step for predictive models. A
precise description of our methodology can be
found in section 4.

4 Modeling Approach

The main goal of this work is to explore the un-
certainty inherent in the (multiple) labels of the
sentence pairs in ChaosSNLI which is expressed
by the distribution of the annotations. In order to
formally describe the dataset with its multiple an-
notations and to assess label uncertainty, we use
tools from statistical modeling. The multinomial
mixture model provides the possibility to put multi-
ple annotations into a distributional framework and
subsequently estimate the associated parameters.
Based on these parameters, a latent ground truth
label can be derived for each instance, incorporat-
ing the uncertainty expressed by the distributions
of the annotations over all instances. We follow the
methodology proposed in Hechinger et al. (2024)
for modeling multiple annotations via a Bayesian
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Context/Premise Statement/Hypothesis [E, N, C]
A boy in an orange shirt sells fruit from a street cart. A boy is a street vendor. [90, 10, 0]
A woman wearing a red hat and black coat. The woman is asleep. [0, 87, 13]
People walk amongst a traffic jam in a crowded city. The cars are zooming past the people. [3, 15, 82]
A woman holding a child in a purple shirt. The woman is asleep at home. [1, 53, 46]

Table 1: Examples of ChaosSNLI. Annotators answered the question: “Given a context, a statement can be either:
definitely correct (Entailment); or definitely incorrect (Contradiction); or neither (Neutral). Your goal is to choose
the correct category for a given pair of context and statement.”

mixture model.

First, let us introduce a formal description of the
data. Each instance is a pair of (X(i),Y (i)), i =
1, . . . , N , where X(i) denotes the sentence pair
of premise and hypothesis and Y (i) denotes the
corresponding vote distribution. For this work, our
focus lies on the latter exclusively, i.e., we only
consider the vector of annotations for each instance.
To explicitly represent votes for K possible classes
by J different annotators, Y (i) is set to Y (i) =

(Y
(i)
1 , . . . , Y

(i)
K ) with Y

(i)
k =

∑J
j=1 1(V

(i)
j = k).

Here, V (i)
j denotes the individual vote for instance

i by annotator j. In ChaosSNLI we do not have
access to individual annotator-specific votes, but
observe Y (i) directly. As mentioned above, we
model the uncertainty inherent in the labels, so
we omit X(i) and only analyze Y (i). It is worth
mentioning that incorporating the actual text is still
possible for downstream tasks, but is out of the
scope of this work.

In order to make use of the multinomial mix-
ture model, we assume that each instance is as-
sociated with one true label, i.e., there exists an
unambiguous ground truth. However, due to the
inherent uncertainty in the perception of language,
annotators are not easily capable of recovering
the ground truth and they might vote for differ-
ent classes. We denote the latent ground truth
of each instance X(i) with Z(i) ∈ {1, . . . ,K}.
Again, to match our notation with the definition
of a multivariate variable, we define Z(i) as a one-
hot encoded vector indicating the latent class, i.e.,
Z(i) = (1{Z(i) = 1}, . . . ,1{Z(i) = K}).

In the context of this particular dataset, as de-
scribed in section 3, there exists a clearly defined
ground truth that annotators should recover. This is
due to the fact, that the annotator had one specific
class in mind while inventing the hypothesis. Thus,
the assumption of exactly one underlying “true” la-
bel is justified. However, this methodology can be
applied beyond scenarios with known ground truth.

In cases where no such information is available, the
distributions of votes can serve as a valuable tool
for deducing the latent labels.

Model Framework Let us now proceed to the
analysis of the voting distribution Y (i), which car-
ries information about the latent true labels. We
employ the following Bayesian modeling frame-
work. First, considering the ground truth labels to
be unobserved (or unobservable), they are assumed
to follow a multinomial distribution

Z(i) ∼ Multi(π, 1) i.i.d.,

where π = (π1, . . . , πK) denote the prior prob-
abilities for all classes. This distribution is also
called the prior distribution. Given the true classes,
the annotations are also assumed to be distributed
multinomially, i.e.,

Y (i)|Z(i) ∼ Multi(θp, J). (1)

This multinomial distribution describes the data
likelihood conditional on Z. Here, the parameter
vector θp depends on the latent true class Z(i), i.e.,
the multinomial probabilities vary based on what
we consider to be the true label. Hence, this pa-
rameter describes the probability of voting for a
class given the true label. We can summarize the
multinomial probability vectors of each latent, true
class into a matrix Θ = (θpk, p, k = 1, . . . ,K),
which can be interpreted as a confusion matrix. For-
mally, θpk describes the probability of an annotator
voting for class k given the instance has the true
class p, i.e., using the notation in Eq. (1) we have
θp = (θp1, θp2, . . . , θpK).

The key component of the model is the posterior
distribution, i.e., the probabilities for an instance
to truly belong to each of the classes given the
observed annotations. These probabilities are cal-
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culated as

τ (i)p = P (Z(i) = p|Y (i);π,Θ)

=
P (Z(i) = p;π)P (Y (i)|Z(i) = p;Θ)

P (Y (i);π,Θ)

=
πpP (Y (i);θp)∑K

p′=1 πp′P (Y (i);θp′)
.

The class with the maximal posterior serves as an
estimate for the latent ground truth, it is however
also possible to use τ in downstream tasks directly,
i.e., for training a classifier on the probabilities
instead of discrete class labels and thus directly
incorporate the label uncertainty.

It is important to note that the prior modeling
assumption of a single ground truth does not dictate
the reality to be discrete, much more it enables us to
compute the posterior distribution and quantify the
evidence for each class, given the vote distribution.
It thus allows us to model settings with ambiguous
labels.

Estimation Procedure The model above in-
cludes unknown parameters, which we suggest es-
timating through maximum likelihood. As we are
in the latent variable framework, straightforward
estimation of the model parameters via maximum
likelihood is, however, not possible. Instead, we
apply an iterative estimation procedure to obtain pa-
rameter estimates. With the help of the expectation-
maximization (EM) algorithm as introduced by
Dempster et al. (1977), we can replace the latent
class label Z(i) with its expectation for each voting
distribution. The expected latent class is thereby
calculated given the data and the current parameter
estimates and can be used afterward to update the
estimates, leading to an iterative procedure that is
performed until convergence. The algorithm can
be outlined as follows, with additional details avail-
able in Hechinger et al. (2024) and in Appendix A.
For the current parameter values at estimation it-
eration (t), Θ = Θ(t) and π = π(t), one iterates
over the two steps:

1. E-Step: Calculate the expectation of the full
data likelihood given the data and the cur-
rent estimates. Applying Bayes’ rule, this
simplifies to the computation of the expected
latent class, given by posterior probabilities
τ
(i)
p , i = 1, ..., N and p = 1, ...,K.

2. M-Step: Update the parameters Θ = Θ(t+1)

and π = π(t+1) based on the posterior τ .

The final estimates are denoted as Θ̂ and π̂. Our
modeling approach harnesses the information re-
trieved from the annotations from all instances, as
in every EM-step all instances are used for recal-
culating the estimates. This enables our method to
incorporate knowledge about all annotation uncer-
tainties and provide a comprehensive and holistic
view of label variation.

Label Switching The classes obtained through
mixture models are subject to label switching, i.e.,
their numbering is arbitrary and does not corre-
spond to the original order anymore. This is a
common issue in mixture models and can be re-
solved in various ways depending on the specific
application at hand, as outlined by Stephens (2000).
In this case, we apply a simple heuristic permu-
tation to the latent classes. The original classes
entailment, contradiction, neutral, denoted with
index k = 1, 2, 3, are assigned to the respective
latent classes p = 1, 2, 3 based on the diagonal en-
tries of the estimated confusion matrix Θ. E.g., the
class entailment is assigned to the mixture com-
ponent, where the highest voting probability is
entailment. This corresponds to the permutation
σ−1(p) = argmaxk(θ̂p) and the latent classes are
re-ordered accordingly.

To summarize, by allowing for human uncer-
tainty, i.e., human confusion while labeling a cer-
tain instance, we can recover information on a la-
tent class Z. The posterior distribution of the latent
class is then a more trustworthy representation of
the “true” class an instance belongs to, since all
information contained in the full dataset is used for
estimation, and not only the specific label distribu-
tion.

5 Results

5.1 Introspection by Visualization
As described earlier, the dataset ChaosSNLI (Nie
et al., 2020) consists of J = 100 annotations for
K = 3 classes. We propose to analyze human label
variation in NLI with a novel visualization tool, to
help gain insights into labeling. Figure 1 illustrates
the distribution of votes present in ChaosSNLI,
which we then contrast to the majority vote and
our model’s estimated class membership votes.

Each point in Figure 1 represents one instance,
where its location is determined by the empirical
distribution of votes. It is clearly visible by the
density of dots that most instances cluster around
the top of the plot, i.e., with many votes for neutral.
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This is consistent with the distribution of majority
votes (with neutral being observed 53.7% of times,
as discussed in section 3). Furthermore, we observe
that there is little confusion between contradiction
and entailment, as almost no points lie close to the
lower horizontal line or the vertical line starting in
the center. This observation is intuitively plausible,
due to the contrasting nature of the two labels of
entailment vs. contradiction. Interestingly, this
visualization tool helps us to quickly identify that
there are cases in the datasets where many labels for
both entailment and contradiction were observed.

In order to analyze our modeling result in rela-
tion to majority voting, we examine the borders
between the three classes. Figure 1 shows the bor-
ders of the majority voting as solid black lines,
which connect the center points of the axes, i.e.,
50:50 votes for two of the classes, to the center, i.e.,
33.33 votes for all three classes.

The borders between the latent classes are shown
as red lines. To calculate these borders between two
latent classes, we determine the vote combinations
that lead to equal posterior probabilities. That is,
we calculate the specific vote distribution Y (i) such
that τk = τj for two classes k, j ∈ {1, 2, 3}, k ̸= j,
while there are no votes for the third class. This
gives us the critical points lying on the axis con-
necting classes k and j. For the middle point, i.e.,
the connection between all three classes, the equa-
tion τ1 = τ2 = τ3 is solved for the corresponding
vote distribution. This results in four critical points.
By connecting the points on the axes to the cen-
ter, we obtain the new borders of the latent classes,
which are now based on posterior probability es-
timates and not just on the empirical distribution
of the votes for one instance. In other words, they
are estimated by taking all data into account. The
exact border points are described in Appendix A.

In Figure 1, for all instances that lie between the
black and red borders, the latent class label does
not agree with the majority vote. It is especially
evident that the latent class neutral comprises a
smaller fraction of vote distributions than it would
have by majority voting (black line). More pre-
cisely, considering all cases with a majority vote
for neutral, our model agrees for 83.3%, however,
entailment is estimated for 6.9% of cases and con-
tradiction for the remaining 9.8%, i.e., 16.7% of
the majority vote neutral are assigned a different
label by our model. This is however desirable, as
many votes for one of the more informative classes
(entailment or contradiction) strongly speak for

exactly those classes, even if there is no majority.
For example, having 40 votes for contradiction, 60
for neutral, and none for entailment, indicates that
entailment is unlikely. Likewise, if neutral would
be the “true” latent class, at least some votes for
entailment are expected. Thus, in this setting, a
latent contradiction is most probable. Analogous
reasoning can be applied for instances with many
votes for entailment, without entailment as the ma-
jority. Further, we argue that negative votes by the
annotators can be regarded as a stronger signal for
the instance actually being contradiction as fewer
of them are required for our model to assign the
label contradiction, compared to entailment. This
becomes evident from Figure 1 as the red border
between neutral and contradiction is much closer
to the neutral corner compared to its counterpart
between neutral and entailment.

To summarize, the model especially refines the
class neutral and alleviates the issue that the major-
ity class neutral does not only contain true neutral
statements, but might also be conflated with exam-
ples where the annotators were indecisive or had
conflicting interpretations (Nighojkar et al., 2023).

5.2 Stability Analysis

Having provided a visualization tool that allows
valuable insights into the dataset, we are now in-
terested in the stability of the modeling procedure.
One common approach to assess the estimation un-
certainty and stability of the resulting parameter
estimates is to employ a resampling method, like
bootstrapping (Efron, 1979). We therefore analyze
the stability of the estimation procedure in relation
to three aspects:

1. overall stability,

2. stability in the number of instances, N ,

3. stability in the number of labels, J .

Overall stability In order to assess the uncer-
tainty of the estimation procedure itself, we em-
ploy a classical bootstrap. That is, we sample from
the data with replacement2 and subsequently esti-
mate the model parameters. Repeating this multiple
times allows us to assess how the estimation would
change if we had different datasets coming from
the same distribution as the initial one.

2i.e., the same instance can be present multiple times, while
other instances might not be included at all.
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Figure 2: The ternary plot contains the decision borders
between the three classes calculated based on B = 50
bootstrapped estimates as gray lines. The range of the
gray lines is outlined in orange. The blue dashed line
indicates the mean of the bootstrapped versions and the
red line shows the original borders for comparison.

We run B bootstrap iterations, producing boot-
strapped versions of the parameter estimates π and
Θ. Based on these values, the borders of the la-
tent classes can be recalculated B times. Figure 2
shows the estimated borders for B = 50 bootstrap
replicates in gray alongside the borders computed
based on the full dataset in red (cf. Fig. 1). This
leads us to conclude that the estimation of the pa-
rameters and, therefore, the latent classes is stable
for the full dataset. Due to the high number of in-
stances in the dataset, this result is not surprising.
However, the question arises whether stable estima-
tion is also possible with a smaller dataset. Reduc-
ing N , the number of multiple annotated instances
on the one hand, and reducing J , the number of an-
notations for the instances on the other hand, could
lead to substantially reduced labeling effort. Hence,
these aspects will be analyzed in the following.

Stability of Number of Instances In many real-
world applications, the number of instances that can
be annotated multiple times is often limited to a
couple of hundred instances (as an example, the ear-
lier multi-annotated NLI dataset from Pavlick and
Kwiatkowski (2019) contained five annotations for
less than 500 instances as available in ChaosNLI).
Therefore, it is worthwhile to examine the stabil-
ity of the estimation procedure and the resulting
estimates for a smaller dataset in terms of sample
size (less than 1.5k instances). Specifically, we are
interested in the location of the decision borders
regarding the latent classes and their stability for

fewer instances.
Therefore, we employ a bootstrap again but

this time randomly sample smaller datasets, i.e.,
N < 1, 514 with replacement to artificially re-
duce the sample size. Figure 3 shows B = 50
bootstrapped borders of the latent classes for var-
ious numbers of samples N with fixed J = 100.
While the bootstrapped borders still show quite
some variation for very small sample sizes (e.g.,
N = 50), the average of all bootstrapped borders
already aligns quite well with the original borders.
For a sample size of N = 100, the variation has
already decreased noticeably, and for even larger
samples, like N = 500, which is only one-third of
the original sample size, almost no differences to
the original results are visible. Hence, we conclude
that reducing the sample size leads to reasonably
good and stable estimation results if a certain mini-
mum of instances is kept.

Stability of Number of Labels While this work
focuses on the ChaosSNLI dataset with J = 100
annotations, the original SNLI development dataset
only contains five labels per instance. In prac-
tice, annotating instances many times is costly and
might seem inefficient. Hence, we are also inter-
ested in the stability of the estimation procedure in
terms of the number of labels as well as the mini-
mal number of labels needed per instance for stable
parameter estimates.

Again, we draw bootstrap samples from the orig-
inal dataset. This time, the sample size is kept
constant at N = 1000 but the number of annota-
tions per sample is reduced. Therefore, we ran-
domly choose J < 100 annotations from the orig-
inal ones. The resulting bootstrapped borders are
shown in Figure 3. As expected, only using J = 5
annotations leads to large variations and unstable
results. For J = 25 annotations, the procedure is
already quite stable. For more than J = 50 anno-
tations, the results show diminishing returns: they
depict similar behavior to the original ones with
the double amount of J , i.e., J = 100 (see Fig. 2).
Therefore, we note that acquiring a smaller number
of labels for each instance is possible, but a suffi-
cient amount of annotations is needed for stable
estimation. Particularly, the number of annotations
seems to be more crucial for the stability of the
results than the sample size. Additional results for
simultaneously varying the amount of N and J
that further support this finding can be found in
Figure 4, Appendix A.
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(a) N = 50 (b) N = 100 (c) N = 250 (d) N = 500

(e) J = 5 (f) J = 10 (g) J = 25 (h) J = 50

Figure 3: The ternary plots show the bootstrapped latent class borders as gray lines, the range of the gray lines in
orange, the mean of the bootstrapped as blue dashed lines, and for comparison, the original borders as red lines
for various sample sizes and annotations. In the top row J is set to J = 100 and N ∈ {50, 100, 250, 500}. In the
bottom row, we set N = 1000 and J ∈ {5, 10, 25, 50}. The total number of annotations, i.e., N · J , is below each
plot.

6 Discussion

Reliable and correct labels are crucial for classifica-
tion models. While it is common practice to gather
multiple annotations to ensure high-quality labels,
these are often summarized into one single final la-
bel via a majority vote (Paun et al., 2018). However,
this strategy leads to a major loss of information
and uncertain ground truth labels in applications
where a high degree of label variation is present.
The statistical approach pursued in this work offers
the possibility to condense information, given in
multiple labels through the whole dataset, into a
single ground truth label. To evaluate the results,
we compared the borders between the classes, i.e.,
we examined the voting combinations where the
ground truth label changes for an instance. By
choosing the estimated latent ground truth instead
of the majority vote, these borders shifted reason-
ably, from a semantic perspective.

Additionally, we showed that the parameters of
the model and, hence, the borders can be estimated
reliably based on the available instances and anno-
tations. However, in many realistic applications,
the data basis might be smaller in terms of both

aspects. Hence, we also conducted a stability anal-
ysis for random subsets of the number of instances
(N ) and the number of votes per instance (J) of
the dataset. The results show that stable estimation
is already possible for a smaller dataset and that
human labeling effort can be decreased, without
loss of information. The quantity of accessible
labels proves to be more important for ensuring
a stable model performance than the sample size.
We assume that this is because the annotations bear
the majority of the inherent uncertainty. Therefore,
acquiring multiple labels, particularly for uncertain
instances, i.e., instances where label variation is
expected, is advisable.

While the results and decision borders obtained
via the proposed model in this work showcase the
problem of label uncertainty, future directions of
research could include the incorporation of this
information into the ML pipeline or the develop-
ment of a quantitative measure for label uncertainty.
This could then lead to a detailed strategy for ac-
quiring labels efficiently. Though these questions
are highly relevant and should be tackled in the
future, they are beyond the scope of the current
work.
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7 Conclusion

In conclusion, by analyzing ChaosSNLI we show-
case the suitability of Bayesian mixture models to
recover the true data-generating process of annota-
tion tasks with access to multiple labels. Our work
provides a framework to deal with multi-annotation
settings in classification and is applicable regard-
less of the underlying task, i.e., NLI. Furthermore,
our results suggest that in the annotation process,
the focus should lie on increasing the number of la-
bels per instance, instead of more instances in total,
as this promotes capturing the labeling uncertainty.

Limitations

Our proposed method analyzes uncertainty in la-
bels for a three-way classification task. However,
since the concept of uncertainty is by definition
vague and fuzzy, it is important to determine which
aspects of uncertainty should be or can be speci-
fied. In our work, we focus on modeling the anno-
tation process. If other aspects of uncertainty are
of relevance, our method might not be the most ap-
propriate anymore. This points to the individuality
of dealing with uncertainty and that no one-fits-all
approach exists.

Further limitations might arise upon the appli-
cation of the model to other datasets. 1) Multiple
annotations per instance are needed. 2) Visual as-
sessment of class memberships (c.f. Fig 1) or the
stability of class borders (c.f. Fig 3) works reason-
ably well for up to three classes. Analyzing datasets
with labels of higher dimensions is straightforward,
as shown by Hechinger et al. (2024) for the classi-
fication of ambiguous images. However, assessing
the stability of class borders needs to be done quan-
titatively, e.g., by computing confidence intervals
of the bootstrapped borders. 3) In case annotator
IDs are available, we recommend extending our
approach in order to incorporate all available in-
formation. This could be done by determining the
impact of individual annotators or a general anno-
tator effect on the results, e.g., by discarding votes
by certain annotators and re-estimating the model,
see Hechinger et al. (2024).

Our work contributes to the understanding of
NLI tasks and provides guidance for the early stage
of data collection. Therefore, analyzing the impact
on the full machine learning pipeline, i.e., improve-
ments on the predictive power of classifiers is be-
yond the scope of this paper, but is open for future
work.
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A Appendix

Details on Model and Estimation
The EM algorithm is initialized with π(0) =

(13 ,
1
3 ,

1
3), and Θ(0) is drawn from a Dirichlet distri-

bution where α is set to be a vector with K entries,
where each value is 2·K. In this case α = (6, 6, 6).

The model estimated on the full dataset (i.e.,
N = 1514, J = 100), which is also depicted in
Figure 1, results the following final parameter esti-
mates:

π̂ = (0.314, 0.448, 0.238)

Θ̂ =



θ̂entailment

θ̂neutral

θ̂contradiction


 =



0.73 0.24 0.03
0.14 0.79 0.07
0.03 0.31 0.66




In both parameters, the order of entries/columns is
entailment, neutral, contradiction.

Based on the estimated parameters obtained via
the procedure described in section 4 the decision
borders are defined by connecting the points ([E,
N, C]):

• center point: [35.98, 28.15, 35.86]

• EC axis: [48.46, 0.0, 51.54]

• EN axis: [42.03, 57.97, 0.0]

• NC axis: [0.0, 70.13, 29.87]

Combined Stability Analysis
Figure 4 shows the estimation results and their
bootstrapped stability for various sample sizes and
numbers of annotations. Reducing N and J simul-
taneously leads to unstable results for very small
datasets. However, this visualization supports the
earlier finding that a sufficient number of annota-
tions is more crucial than a large sample for stable
and reliable estimation.
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J = 5 J = 25 J = 50 J = 100

N = 50

N = 250

N = 500

N = 1000

Figure 4: The Figure shows the bootstrapped latent class borders as gray lines, the range of the gray lines in orange,
the mean of the bootstraps as blue dashed lines and the original borders as red lines for different values of N and J .
The total number of annotations, i.e., N · J , is below each plot.

32



Proceedings of the Third Workshop on Understanding Implicit and Underspecified Language, pages 33–41
March 21, 2024 ©2024 Association for Computational Linguistics

Resolving Transcription Ambiguity in Spanish: A Hybrid Acoustic-Lexical
System for Punctuation Restoration

Xiliang Zhu∗, Chia-Tien Chang∗, Shayna Gardiner, David Rossouw, Jonas Robertson
Dialpad Canada Inc.

{xzhu, karol.chang, sgardiner, davidr, jonas}@dialpad.com

Abstract

Punctuation restoration is a crucial step after
Automatic Speech Recognition (ASR) systems
to enhance transcript readability and facilitate
subsequent NLP tasks. Nevertheless, conven-
tional lexical-based approaches are inadequate
for solving the punctuation restoration task in
Spanish, where ambiguity can be often found
between unpunctuated declaratives and ques-
tions. In this study, we propose a novel hybrid
acoustic-lexical punctuation restoration system
for Spanish transcription, which consolidates
acoustic and lexical signals through a modu-
lar process. Our experiment results show that
the proposed system can effectively improve
F1 score of question marks and overall punc-
tuation restoration on both public and internal
Spanish conversational datasets. Additionally,
benchmark comparison against LLMs (Large
Language Model) indicates the superiority of
our approach in accuracy, reliability and la-
tency. Furthermore, we demonstrate that the
Word Error Rate (WER) of the ASR module
also benefits from our proposed system.

1 Introduction

Automatic Speech Recognition (ASR) systems are
applied in a variety of industry applications such as
voice assistance and conversation analysis. How-
ever, typical ASR systems avoid producing punctu-
ation marks in the transcripts, which leads to poor
readability and causes ambiguity in the context
(Jones et al., 2003). Therefore, a post-processing
step to restore punctuation marks in transcripts is
critical for speech-based commercial products.

Lexical-based approaches have been extensively
studied in punctuation restoration tasks (Păis, and
Tufis, , 2021). One major advantage of using lexi-
cal features is the availability of a massive amount
of text data that is often well punctuated, such as

*These authors contributed equally to this work

Wikipedia. Most of the existing work on punctua-
tion restoration focuses on English. Spanish is little
studied, although it is the world’s second largest
mother tongue and even has more native speak-
ers than English. Although a handful of work has
addressed Spanish punctuation restoration using
BERT-based approaches in recent years (González-
Docasal et al., 2021; Zhu et al., 2022a), one ma-
jor challenge in restoring punctuation marks for
languages like Spanish has not been fully tackled:
the rich morphology of Spanish allows speakers to
omit subject pronouns and order words in sentences
more freely than in English, which forces Spanish
speakers to rely more on prosodic features when
distinguishing questions from declarative sentences.
These characteristics present a unique challenge
from an NLP perspective when written transcripts
are the main source of information for models.

In order to address the challenges in predicting
Spanish question marks and improve the overall
punctuation restoration accuracy, we introduce a
hybrid punctuation restoration system leveraging
both acoustic and lexical signals for Spanish con-
versations. While previous work on multimodal
methodologies often requires large-scale, parallel
audio-text data (Klejch et al., 2017), or additional
audio encoding and fusion steps (Sunkara et al.,
2020), our approach employs the conventional mod-
ular ASR-NLP setup in industry applications with
no additional computational cost. Moreover, our
system allows independent training of ASR and
NLP modules, eliminating the need for massive
parallel training resources. The main contributions
of this paper are as follows:

1. Evaluate the impact of including punctuation
in Spanish ASR training data on Word Error
Rate (WER).

2. Propose a hybrid system for Spanish punc-
tuation restoration leveraging ASR and NLP
sequentially.
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3. Demonstrate the effectiveness of our system
by achieving up to a 2.1% relative reduction
in Word Error Rate (WER) for the Spanish
ASR decoder, improving question mark pre-
diction F1 score by over 4% absolute, and
consequently enhancing overall punctuation
restoration accuracy on internal and public
datasets from the Linguistic Data Consortium
(LDC) (Graff et al., 2010a,b), also outperform-
ing top LLMs (Large Language Model) in
terms of accuracy, reliability and latency.

2 Background

2.1 Related Work

Punctuation restoration is often formulated as a se-
quence labeling task, where punctuation marks are
predicted at appropriate positions in a sequence of
words. Early studies used lexical-based methods
such as n-gram language models (Gravano et al.,
2009) and Conditional Random Fields (CRF) (Lu
and Ng, 2010). More recently, long short-term
memory (LSTM) (Hochreiter and Schmidhuber,
1997) and pre-trained large language models have
been used (Xu et al., 2016; Devlin et al., 2019; Fu
et al., 2021). Some works (Guan, 2020; O’Neill
et al., 2021) proposed a speech recognition sys-
tem with direct punctuation output, but it is unclear
whether this approach is more effective than a tra-
ditional lexicon-based approach. For Spanish, a
multilingual LSTM-based approach was studied in
(Li and Lin, 2020). (Zhu et al., 2022a) proposed a
transformer-based architecture with transfer learn-
ing to overcome the Spanish resource limitation
and (González-Docasal et al., 2021) integrated si-
lence embedding into BERT; however, as far as we
are aware, no study has yet investigated the use of
a hybrid approach incorporating acoustic input for
the task of Spanish punctuation restoration.

Recent advances in LLMs such as ChatGPT1,
GPT42 and PaLM23 have reshaped the approaches
for many NLP tasks. (Qin et al., 2023) found that
ChatGPT performs well on tasks favouring rea-
soning capabilities while still faces challenges in
sequence tagging tasks. (Lai et al., 2023) studied
the multilingual capability of ChatGPT and found
that it shows less optimal performance compared to

1https://openai.com/blog/chatgpt
2https://openai.com/gpt-4
3https://blog.google/technology/ai/

google-palm-2-ai-large-language-model/

task-specific models in different languages. How-
ever, the application of LLM in punctuation restora-
tion task has not been studied yet to the best of our
knowledge.

2.2 Ambiguity in Unpunctuated Spanish Text
Identifying Spanish questions from unpunctuated
text is a challenging task. There are three relevant
sociolinguistic features to consider for question
identification in Spanish.

First, declarative sentences can occasionally be-
come questions on intonation and context alone;
e.g. ustedes no pueden mandar un cheque con
la orden can be either a declarative or a question.
This is true even for its English counterpart – both
Can’t you send a cheque with the order? and
You can’t send a cheque with the order? are
well-formed – but the phenomenon is extremely
common in Spanish (Brown and Rivas, 2011; Ray-
mond, 2015; Cuza, 2016). In fact, in Caribbean
Spanish, it is becoming increasingly more common
to see questions like ¿ustedes no pueden man-
dar un cheque con la orden? (You can’t send a
cheque with the order?), which has typical declar-
ative syntax, rather than ¿no pueden ustedes man-
dar un cheque con la orden? (Can’t you send a
cheque with the order?), which uses subject-verb
inverted order (Brown and Rivas, 2011).

Second, Spanish morphosyntax also allows the
reverse to occur: that is, declarative sentences
can have subject-verb inversion too (Mackenzie,
2021), meaning that the question no pueden ust-
edes mandar un cheque con la orden above is
also a perfectly well-formed declarative sentence.

Third, Spanish is a pro-drop language: due to
richly-inflected morphology, it is possible to drop a
subject pronoun entirely, using a verb’s suffix alone
to identify its subject – and removing the possibility
of subject-verb inversion. For instance, the above
example could easily become no pueden mandar
un cheque con la orden or ¿no pueden mandar
un cheque con la orden? . In a small survey of our
own data, we reviewed 200 utterances, in which
there were 180 questions, of which 125 (69%) were
pro-dropped – leaving only 55 questions with a
fully realized subject noun or pronoun.

These facts make subject-verb inversion a much
less helpful tool for definitively identifying ques-
tions in Spanish than it is for English, which con-
sequently limits the performance of lexical-based
NLP models in the Spanish punctuation restoration
task. We also know that Spanish speakers them-
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Figure 1: Overview of our hybrid punctuation restoration system, showing the example of an ambiguous unpunctuated utterance
"okey los sábados están abiertos" (can be interpreted as "OK, they are open on Saturdays." or "OK, are they open on Saturdays?")
processed as "Okey, ¿los sábados están abiertos?"

selves do not rely on lexical information alone to
distinguish questions from declaratives: evidence
suggests that acoustic features are measurably dif-
ferent when the speaker intends an utterance as a
question rather than a declarative, and that this
is true across many varieties of Spanish (Face,
2005; Willis, 2007; Lee and M.A., 2010; Arm-
strong, 2017).

3 Method

3.1 System Overview

Our hybrid punctuation restoration system is used
in a Spanish call center product. In the real-time
system pipeline, the audio from customer support
phone calls is first transcribed by the ASR mod-
ule, then text output is fed into the downstream
NLP module. Instead of adding an extra acoustic
encoder and combining it with a lexical encoder
as proposed in (Sunkara et al., 2020; Zhu et al.,
2022b), we directly train the ASR decoder to pre-
dict target punctuation marks. The ASR punctu-
ation predictions (acoustic-based) are combined
with the NLP module predictions (lexical-based)
via a probability thresholding process. A heuristic-
based post-processing step is then applied to make
corrections in the prediction as the final step. Our
system is illustrated in Figure 1. The set of Span-
ish punctuation marks predicted by the system are:
OPEN_QUESTION (¿)4, CLOSE_QUESTION (?),
COMMA (,), PERIOD (.), and NONE (for tokens
that have no associated punctuation marks).

4An open question mark (¿) is used at the start position of
a question in Spanish

3.2 Acoustic-based Prediction

Acoustic features, including intonation and
prosody, play an important role in distinguishing
declarative and interrogative sentences in Spanish,
as described in section 2.2. In order to leverage
our ASR module to directly predict punctuation
marks from the speech signal, we keep each tar-
get punctuation mark in our ASR training data
and treat it as an individual token by separating it
from surrounding words; an example of predicting
CLOSE_QUESTION is shown in Figure 1. Note
that we omit OPEN_QUESTION from the training
data since it can mostly be restored by heuristics in
the following post-processing step.

We use an End-to-End based ASR system
provided by the Nemo toolkit (Kuchaiev et al.,
2019). The applied Conformer-CTC architecture
is slightly different from the original Conformer
architecture (Gulati et al., 2020), where the LSTM
decoder is replaced with a linear decoder. The en-
coder uses CTC (Connectionist Temporal Classifi-
cation) loss (Graves et al., 2006) instead of RNNT
(RNN-Transducer) (Graves, 2012) which makes
it a non-autoregressive model. For word predic-
tion, we use an in-house streaming decoder with
language model shallow fusion.

3.3 Lexical-based Prediction

The lexical-based approach is capable of predicting
all supported punctuation marks outlined in section
3.1, which consumes unpunctuated transcribed text
emitted from the ASR module as shown in Figure 1.
For the NLP module utilized in this lexical-based
prediction, we follow the similar structure as uti-
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lized in (Zhu et al., 2022a) and (Fu et al., 2021),
which is a fine-tuned mBERT (multilingual BERT)
(Devlin et al., 2019) with an additional token classi-
fication head. The output of the prediction indicates
the appropriate punctuation marks to be attached
to the corresponding input token. Additionally, a
probability score (illustrated as p in Figure 1) is
also computed for each token using a softmax layer
on top of the prediction logits, which reflects the
confidence of each predicted punctuation mark in
the lexical-based prediction.

Algorithm 1 Thresholding algorithm

Input:
Preda: acoustic-based prediction
Predl: lexical-based prediction
Pl: probability score of Predl
Tquestion & Tdeclarative: hyperparameters
Output:
Predc: consolidated prediction
Where:
C_Q: CLOSE_QUESTION

if Preda == C_Q and Predl in {PERIOD, COMMA}
then

if Pl ≤ Tdeclarative then
Predc ← C_Q

else
Predc ← Predl

end if
else if Preda != C_Q and Predl == C_Q then

if Pl ≤ Tquestion then
Predc ← PERIOD

else
Predc ← C_Q

end if
else

Predc ← Predl
end if

3.4 Hybrid Prediction
To consolidate the results from both acoustic-based
and lexical-based predictions, we introduce a prob-
ability thresholding step based on the probabil-
ity score generated by the lexical-based predic-
tion. Our approach focuses on improving Span-
ish question prediction, which employs a set of
threshold values Tquestion and Tdeclarative as hy-
perparameters. These thresholds represent the min-
imal probability score the lexical-based prediction
needs to have when conflicting with acoustic-based
prediction. The detailed thresholding algorithm
is illustrated in Algorithm 1. The optimal values
of Tquestion and Tdeclarative are identified through
grid search towards the development dataset in our
experiment5.

5We found [0.7, 0.8] is usually a reasonable range to start
with for both Tquestion and Tdeclarative in our experiments.

A heuristic-based post-processing step (de-
tails in Appendix A.1) is also applied after
probability thresholding to mitigate the error
caused by unmatched OPEN_QUESTION and
CLOSE_QUESTION in the prediction. For ex-
ample, as illustrated in the hybrid prediction
result in Figure 1, an OPEN_QUESTION is
added on the first token of the word chunk los
sábados están abiertos? after an unmatched
CLOSE_QUESTION is created after the thresh-
olding process.

4 Experiment

4.1 Datasets

We conduct our experiment using a variety of data
resources. Since the proposed system is used in our
call center product, the in-domain data resource is
our internal audio recording and human-annotated
transcripts from real customer support calls in Span-
ish. This internal data resource consists of 50 hours
of audio and around 10,000 rows of correspond-
ing transcribed utterances (more statistical detail is
available in Appendix A.2). Apart from our internal
dataset, Linguistic Data Consortium (LDC) Span-
ish Fisher corpora (Graff et al., 2010a,b) is also
added as a supplementary resource for real-life hu-
man conversations, which has approximately 160
hours of audio with 130,000 rows of transcribed
utterances from Spanish telephone conversations.
Out of both LDC and our internal data, we leave
out 10% and 5% as test and development sets re-
spectively in our experiments. Note that in order
to evaluate the performance of our system on refer-
ence transcripts, we leverage Levenshtein distance
to align punctuation marks from each ASR hypoth-
esis to reference transcript in acoustic-based pre-
diction during our evaluation process on the test
set.

Additionally, the open-sourced Spanish datasets
from Openslr (Guevara-Rukoz et al., 2020;
Kolobov et al., 2021) and Common-voice (Ardila
et al., 2019) are used in ASR training as well, which
collectively provide 1200 hours of audio. A subset
of 80,000 utterances were also randomly sampled
from the Spanish OpenSubtitle corpus (Lison and
Tiedemann, 2016) and added as an extra text-only
dataset into the NLP module training process to im-
prove the accuracy of lexical-based prediction. All
text-based resources are also used in the language
model for the in-house streaming ASR decoder.
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Baseline ASR w/ C_Q ASR w/ all
Public 15.77 15.44 (-2.1%) 16.53 (+4.8%)
Internal 26.81 26.36 (-1.7%) 27.95 (+4.3%)

Table 1: WER and relative changes compared to the baseline
on public (LDC) and internal datasets, where the Baseline
performance is evaluated by the ASR module trained without
punctuation. ASR w/ C_Q: ASR module trained with only
CLOSE_QUESTION; ASR w/ all: ASR module trained with
CLOSE_QUESTION, PERIOD and COMMA.

Reliability Latency (s)
ChatGPT-few 92.4% 1.13
ChatGPT-zero 87.9% 1.10
PaLM2-few 28.7% 0.56
PaLM2-zero 28.6% 0.49
Our system (excl. ASR) - 0.04

Table 2: Reliability and Latency comparison between LLM
APIs (with both zero- and few- shot prompting) and our system
(excluding ASR latency), averaged over all internal and public
test samples. Latency shown as "seconds per input utterance".

4.2 Experiment Setup
For the ASR module, we use the Nemo
(Kuchaiev et al., 2019) Spanish model
STT_Es_Conformer_CTC_Large as the
pre-trained model. The presented model is
fine-tuned for 20 epochs, with the Adam optimizer
(Kingma and Ba, 2014) and no weight decay. The
Noam learning scheduler (Vaswani et al., 2017) is
used with a warmup of 100 steps and a learning
rate of 0.01.

In consideration of the real-time inference speed,
we take only the bottom 6 layers of bert-base-
multilingual-cased from Hugging Face
(Wolf et al., 2020) library as the backbone of our
NLP module. The 6-layer mBERT is then fine-
tuned through a token classification task using all
lexical training data described in section 4.1. The
NLP module is trained using the Adam optimizer
with 4 epochs and a learning rate of 3e-5.

In the subsequent sections, all assessments are
performed utilizing a single Intel Xeon 2.20GHz
CPU, 1.5G memory and under identical network
connection condition.

5 Results

5.1 Evaluation on Speech Recognition
We first evaluate the performance impact by in-
troducing CLOSE_QUESTION prediction in our
ASR module. Word-Error-Rate (WER) is a stan-
dard metric for the ASR system. A lower word
error rate shows superior accuracy in speech recog-
nition, compared with a higher word error rate.
To accurately determine the word error rate of

the ASR module, free from punctuation interfer-
ence, we exclude all punctuation marks in both the
ASR hypothesis and reference transcripts while
evaluating. Table 1 shows WER on both test
sets. Compared to our baseline, the ASR mod-
ule trained only with CLOSE_QUESTION shows
2.1% and 1.7% WER improvement in public (LDC)
and the internal test set respectively, which indi-
cates that our ASR module can learn better acous-
tic features of Spanish interrogative sentences by
keeping CLOSE_QUESTION in training data. In
addition to predicting CLOSE_QUESTION, we
also conduct a second experiment to keep all
CLOSE_QUESTION, COMMA and PERIOD in
the ASR module, but this unexpectedly increases
the WER by up to 4.8%, which is not a tolerable
performance deterioration for our production use.
Therefore, we only focus on CLOSE_QUESTION
prediction from the ASR module in our design.

5.2 Evaluation on Punctuation Restoration
In order to assess the comprehensive proficiency
of our system in restoring Spanish punctuation, we
conduct a benchmark test against some leading
LLMs available on the market. First, we evaluate
and compare the runtime performance of produc-
ing Spanish punctuation marks from unpunctuated
transcripts between (a) utilizing commercial LLM
APIs (ChatGPT and PaLM2) and (b) executing our
proposed system. Our evaluation criteria for this
analysis include two metrics: (1) Reliability: the
percentage of the results where the original input
words can be extracted without any modification or
reordering (except casing changes), to measure the
impact of the LLM hallucination or other undesired
outcomes. (2) Latency: the elapsed time to receive
responses from API calls for ChatGPT and PaLM2,
as well as the total execution time of our lexical and
hybrid prediction (excluding ASR latency), under
the same environment setting as stated in section
4.2. Table 2 presents the Reliability and Latency
comparison, it is clear that except our proposed
system, all LLM APIs exhibit various levels of reli-
ability concerns. Additionally, our system shows
much lower latency compared to API calls. It is
also noteworthy that Reliability of PaLM2 stands at
a mere 28% in both zero- and few- shot prompting,
suggesting that it is not suitable for the Spanish
punctuation restoration task. Details on the API
call setup and prompts are listed in Appendix A.3
and A.4.

Table 3 presents the comprehensive F1 score
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Public (LDC) data Internal data
Lexical Acoustic ChatGPT-

zero
ChatGPT-

few
Hybrid Lexical Acoustic ChatGPT-

zero
ChatGPT-

few
Hybrid

C_Q 54.0 51.5 13.5 13.9 58.2 47.3 28.2 24.4 28.6 51.7
O_Q 50.6 - 11.1 11.7 52.7 44.5 - 22.9 25.4 47.0

COMMA 60.8 - 43.5 51.0 60.7 68.9 - 47.2 60.4 69.0
PERIOD 87.7 - 58.6 58.8 88.0 83.6 - 59.5 72.4 83.8
Overall1 74.49 - 44.92 49.57 74.83 72.29 - 48.04 61.20 72.61
1Micro average of all punctuation

Table 3: F1 score comparison over all punctuation marks with different approaches. C_Q: CLOSE_QUESION; O_Q:
OPEN_QUESTION; Lexical: lexical-based prediction; Acoustic: acoustic-based prediction; Hybrid: our proposed hybrid system
with consolidated prediction; ChatGPT-few/zero: ChatGPT with few/zero-shot prompting, details in Appendix A.

Public (LDC) data Internal data
Lexical Acoustic Union Threshold Lexical Acoustic Union Threshold

Precision 48.0 65.32 47.0 53.1 63.7 98.43 66.0 66.1
Recall 61.7 44.1 71.1 64.3 37.7 16.4 42.1 42.4

F1 54.0 51.5 56.5 58.2 47.3 28.2 51.4 51.7
219.3% of the True Positive prediction is ambiguous in unpunctuated text, and not identified as questions by Lexical.
332.3% of the True Positive prediction is ambiguous in unpunctuated text, and not identified as questions by Lexical.

Table 4: F1, precision and recall comparison on CLOSE_QUESTION using different approaches. Lexical: lexical-based
prediction; Acoustic: acoustic-based prediction; Union: the union of CLOSE_QUESTION predictions from both lexical and
acoustic prediction; Threshold: our proposed thresholding process to consolidate lexical and acoustic predictions.

performance of our punctuation restoration system
and LLM API6 on both public and internal datasets.
Note that we also show the performance of the stan-
dalone lexical module which represents the conven-
tional BERT-based lexical-only structure used in
recent punctuation restoration studies (Zhu et al.,
2022a; Fu et al., 2021). It is clear that both lexical
and hybrid predictions demonstrate a substantial
accuracy advantage over ChatGPT. Moreover, the
hybrid approach, enhanced by the improvements
in CLOSE_QUESTION of up to 4.4%, exhibits
varied degrees of F1 score improvement for all
other punctuation marks after our thresholding and
post-processing step outlined in section 3.4. Conse-
quently, our proposed hybrid system outperforms
the lexical-only approach by 0.34% and 0.32% ab-
solute in overall F1 score respectively on public
and internal datasets.

To better illustrate the enhancement on
CLOSE_QUESTION from our hybrid system, we
additionally provide precision, recall and F1 score
details on CLOSE_QUESTION in Table 4. Al-
though with a lower F1 score, acoustic-based pre-
diction exhibits a higher precision in predicting
CLOSE_QUESTION compared to lexical predic-
tion in both testing datasets. In addition, up to
32.3% of True Positives from the acoustic predic-

6Only reliable outcomes from ChatGPT are evaluated.
PaLM2 is left out in this evaluation as it cannot produce reli-
able results of a large enough size to establish a meaningful
comparison, due to its low Reliability.

tion is ambiguous in unpunctuated text and does
not overlap with that in lexical prediction. In or-
der to demonstrate the effectiveness of our pro-
posed thresholding process to consolidate acous-
tic and lexical predictions as described in sec-
tion 3.4, we compare it with a naive union of the
two on CLOSE_QUESTION. Table 4 shows that
Thresholding consistently outperforms Union in
both datasets. As a result, with our thresholding
approach, the F1 score for CLOSE_QUESTION is
noticeably improved by 4.2% and 4.4% compared
to lexical-only prediction across public and internal
datasets respectively.

6 Future Work

From the evaluation result in section 5.1, con-
trary to the WER improvement when predicting
only CLOSE_QUESTION by the ASR module,
we discovered a WER deterioration when adding
COMMA and PERIOD to the prediction. Future
work may focus on establishing a possible cause for
this change. In addition, lexical ambiguity between
questions and declarations exists beyond Spanish;
thus, a natural next step would be evaluating our
system in other human languages.

7 Conclusion

In this study, we propose a hybrid acoustic-lexical
punctuation restoration system for Spanish conver-
sational transcripts, with a focus to address the am-
biguity in unpunctuated Spanish questions. The
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proposed system leverages an ASR decoder to
make direct predictions of Spanish question marks,
which are later consolidated with lexical predic-
tions from an NLP module. We evaluate the system
on both internal and public datasets and show that
it can effectively enhance Spanish question marks
prediction, and consequently improve the over-
all punctuation restoration accuracy. Additional
benchmark indicates that our proposed system out-
performs some top LLMs in accuracy, latency and
reliability. Furthermore, we demonstrate that keep-
ing question marks in the ASR decoder vocabulary
results in an improved WER of the ASR module
alone.

8 Ethical Considerations

During our internal data collection process, we im-
plement a data retention policy for all our users,
such that user consent is obtained prior to any data
collection. In addition, we have ensured that all
the annotators involved in the transcription pro-
cess of our internal dataset are paid with adequate
compensation. Moreover, to protect the privacy
and confidentiality of individuals, the dataset un-
derwent further processing to remove any sensitive,
personal, or identifiable information.
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Ondřej Klejch, Peter Bell, and Steve Renals. 2017.
Sequence-to-sequence models for punctuated tran-
scription combining lexical and acoustic features. In
2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5700–
5704.

Rostislav Kolobov, Olga Okhapkina, Andrey Platunov
Olga Omelchishina, Roman Bedyakin, Vyach-
eslav Moshkin, Dmitry Menshikov, and Nikolay
Mikhaylovskiy. 2021. MediaSpeech: Multilanguage
ASR Benchmark and Dataset.

Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii
Hrinchuk, Ryan Leary, Boris Ginsburg, Samuel Kri-
man, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook,
et al. 2019. Nemo: a toolkit for building ai ap-
plications using neural modules. arXiv preprint
arXiv:1909.09577.

Viet Dac Lai, Nghia Trung Ngo, Amir Pouran Ben Vey-
seh, Hieu Man, Franck Dernoncourt, Trung Bui, and
Thien Huu Nguyen. 2023. Chatgpt beyond english:
Towards a comprehensive evaluation of large lan-
guage models in multilingual learning.

Su Ar Lee and B.A.and M.A. 2010. Absolute interroga-
tive intonation patterns in Buenos Aires Spanish.

Xinxing Li and Edward Lin. 2020. A 43 Language
Multilingual Punctuation Prediction Neural Network
Model. In Proc. Interspeech 2020, pages 1067–1071.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Wei Lu and Hwee Tou Ng. 2010. Better Punctuation
Prediction with Dynamic Conditional Random Fields.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 177–
186, Cambridge, MA. Association for Computational
Linguistics.

Ian Mackenzie. 2021. The linguistics of spanish.

Patrick K. O’Neill, Vitaly Lavrukhin, Somshubra Ma-
jumdar, Vahid Noroozi, Yuekai Zhang, Oleksii
Kuchaiev, Jagadeesh Balam, Yuliya Dovzhenko,
Keenan Freyberg, Michael D. Shulman, Boris Gins-
burg, Shinji Watanabe, and Georg Kucsko. 2021.
SPGISpeech: 5,000 hours of transcribed financial
audio for fully formatted end-to-end speech recogni-
tion.
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A Appendix

A.1 Heuristic-based post-processing
As mentioned in 3.4, we apply the following
heuristic-based steps to post-process the prediction
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1. Convert all unmatched OPEN_QUESTION to
NONE in the prediction.

2. For all unmatched CLOSE_QUESTION,
change the prediction of the first token in the
continuous word chunk (the longest continu-
ous word sequence where no punctuation is
predicted in-between) to OPEN_QUESTION.

A.2 Description of our internal dataset
Our internal data is collected from audio record-
ings of Spanish customer support conversations,
covering a large range of domains such as retail,
technology, automotive and professional services.
Our primary focus lies within the North Ameri-
can region, including both Mexican and American
accents. The audio duration of the dataset totals
around 50 hours. For ASR training purposes, each
individual audio clip is broken down into segments
based on audio silence, with a maximum of 2 min-
utes and averaging approximately 18 seconds. Au-
dio clips are also transcribed by the annotators to
create text data for NLP training. We provide the
statistical summary on the length of the transcribed
utterances in Table 5.

mean medium min max std
num of words 43.4 38.0 1.0 231.0 25.4

Table 5: Statistical summary on length of the utterances in
our internal dataset.

A.3 API call setup
We use gpt-3.5-turbo for ChatGPT and
text-bison@001 for PaLM2 in API calls. For
both models, temperature is set as 0.2 while
the maximum token length of output (named as
max_tokens in ChatGPT and maxOutputTokens in
PaLM2) is configured as 1024.

A.4 Prompt
The following prompts are used in our experiments
when calling LLM APIs:

Few-shot prompting:
Without any explanation or modification,

add punctuation to the following Spanish

transcript from human conversations, use

only punctuation marks from this list:

comma(,), period(.), open_question(¿)

and close_question(?). Return the punc-

tuated utterance only. Here are some

examples:

### Input: {Unpunctuated Spanish Utter-

ance 1}

### Output: {Punctuated Spanish Utter-

ance 1}

### Input: {Unpunctuated Spanish Ut-

terance 2}

### Output: {Punctuated Spanish Utter-

ance 2}

### Input: {Unpunctuated Spanish Ut-

terance 3}

### Output: {Punctuated Spanish Utter-

ance 3}

Now, add punctuation marks to:

### Input: {text}

### Output:

Zero-shot prompting:
Without any explanation or modification,
add punctuation to the following Spanish
transcript from human conversations, use
only punctuation marks from this list:
comma(,), period(.), open_question(¿)
and close_question(?). Return the punc-
tuated utterance only.

Add punctuation marks to:

### Input: {text}

### Output:

where we put the unpunctuated test utterance
in the text field. Note that in all of our experi-
ments, we use three in-context examples for few-
shot prompting. In addition, we make sure to sam-
ple utterances with presence of all targeted punc-
tuation marks in these three in-context examples.
Note that both zero-shot and few-shot prompting
are used in the evaluation results as presented in
Table 3 and Table 4.
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Abstract
The similarity of representations is crucial for
WSD. However, a lot of information is encoded
in the contextualized representations, and it is
not clear which sentence context features drive
this similarity and whether these features are
significant to WSD. In this study, we address
these questions. First, we identify the sentence
context features that are responsible for the sim-
ilarity of the contextualized representations of
different occurrences of words. For this pur-
pose, we conduct an explainability experiment
and identify the sentence context features that
lead to the formation of the clusters in word
sense clustering with CWEs. Then, we pro-
vide a qualitative evaluation for assessing the
significance of these features to WSD. Our re-
sults show that features that lack significance
to WSD determine the similarity of the rep-
resentations even when different senses of a
word occur in highly diverse contexts and sen-
tence context provides clear clues for different
senses.

1 Introduction

Contextualization is a powerful tool as it enables
us to capture sentence context. This is crucial es-
pecially in word sense disambiguation (WSD) be-
cause sentence context provides valuable informa-
tion for resolving lexical ambiguity in both NLP
and human language processing.

The similarity of representations is crucial for
WSD. With contextualization, we expect the rep-
resentations of different occurrences of the same
sense to be similar to each other. This is based on
the assumption that different senses of a word occur
in different contexts and sentence context contains
explicit clues that signal one of the senses of the
word. Consider the sentences in (1) that demon-
strate two senses of ‘bank’. In both sentences, some
words successfully signal each sense of the word;
in (1-a), the words ‘money’ and ‘withdraw’ and in
(1-b), the words ‘picnic’ and ‘river’.

(1) ‘bank’ (homonymy):
a. financial institution:

I went to the bank to withdraw money.
b. geographical feature:

They had a picnic by the river bank.

(2) ‘pass’ (polysemy):
a. go across or through:

She passed through towns.
b. move past:

She passed the bakery on her way.

However, in practice, we lack clarity on which
specific sentence context features are responsible
for the similarity of the contextualized represen-
tations. It has been shown that a wide variety of
information is encoded in the contextualized rep-
resentations (Sajjad et al., 2022) and using contex-
tualized word embeddings (CWEs) of pre-trained
language models alone does not achieve good per-
formance in unsupervised settings (Yenicelik et al.,
2020).

The purpose of this study is to investigate which
sentence context features determine the similarity
of the representations of different occurrences of
words and whether these features are significant
to WSD. By doing so, we aim to provide a clearer
understanding of contextualized representations in
terms of their ability to capture different meanings
of words. For this purpose, we conduct an explain-
ability experiment. We focus on word sense clus-
tering with CWEs of BERT (Devlin et al., 2019)
and identify sentence context features that lead to
the formation of the clusters. This way, we de-
termine which features drive the similarity of the
representations.

Our cluster explainability method follows sev-
eral steps and is depicted in Figure 1. We start by
performing word sense clustering with CWEs and
cluster the sentences of a word. Our aim is essen-
tially to reverse the word sense clustering process
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Figure 1: Cluster Explainability Method: i) Perform Word Sense Clustering with CWEs, ii) Represent each sentence
with sentence context features, iii) Assign each sentence a label based on the cluster it belongs to, iv) Train a
classifier to predict the clusters that sentences belong to based on their sentence context features, v) Apply feature
selection to determine the sentence context features responsible for the performance of the classifier.

and recreate the clusters with a classification task.
For this purpose, we represent each sentence with
its sentence context features and assign it a label
based on the cluster that it belongs to. Then, we
train a classifier to predict the cluster labels of the
sentences based on their sentence context features.
As the final step, we apply a feature selection algo-
rithm to the classifier to determine which features
are the most relevant for the performance of the
classifier. This tells us which sentence context fea-
tures lead to the formation of the clusters. We use
this method to identify the features that lead to the
clusters for each word in our dataset. Finally, we
assess the significance of these features to WSD
for each word through qualitative evaluation.

In this study, we distinguish two types of lex-
ical ambiguity; homonymy and polysemy. The
most distinctive feature that distinguishes these
two types is the semantic relatedness of their
senses (Klepousniotou, 2002; Klepousniotou and
Baum, 2007; Klepousniotou et al., 2008, 2012).
Homonyms have less semantically related senses
compared to polysemes. As a result, homonyms
occur in more diverse contexts. Consider the exam-
ples in (1) and (2). The provided senses of ‘bank’
are homonymous, whereas those of ‘pass’ are poly-
semous. The senses of ‘bank’ are not related seman-
tically and the noun co-occurs with semantically
different words in its different senses (‘money’,
‘withdraw’ vs. ‘river’, ‘picnic’). However, this is
not true for ‘pass’. The meaning difference be-
tween the senses of ‘pass’ is less clear and the verb

co-occurs with words that are similar in meaning
in its different senses, specifically words that are
related to a location.

Their inherent differences also result in differ-
ences in NLP performance. For example, WSD
performance is better with homonyms (Nair et al.,
2020; Haber and Poesio, 2021) and contextualiza-
tion affects homonyms more (Sevastjanova et al.,
2021) compared to polysemes. Therefore, it’s im-
portant to consider that not all words present an
equal challenge for WSD. In addition to that, it’s
important to consider that different lexical ambigu-
ity types have different relations to context, and as
a result, the information that is required for their
disambiguation might not always be the same. In
this study, we expect different results for each type.
Considering that homonyms occur in more diverse
contexts, we expect sentence context to provide
clearer clues for their different senses and the simi-
larity of the representations to be affected by these
clues.

Our results show that the sentence context fea-
tures that are responsible for the similarity of the
representations and lead to the formation of clus-
ters lack significance to WSD in most cases. This
is true for both lexical ambiguity types. Even with
homonyms—where different senses of a word oc-
cur in highly diverse contexts and sentence context
provides clear clues for different senses—the simi-
larity of the representations does not arise from the
significant features.
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2 Related Work

Studies have shown that the similarity of the em-
beddings is primarily influenced by the sentence
context rather than the meaning of words. Etha-
yarajh (2019) have shown that words have different
representations based on their contextual variation,
rather than their meaning variation. Similarly, Gar-
cia (2021) have shown that the similarity between
a word and its synonym is lost when the sentence
context is identical for different words; the simi-
larity between a word and a random word is not
different from the similarity between a word and its
synonym when their sentence contexts are similar.

One reason for this is that a lot of information is
encoded in the contextualized representations and
they affect the similarity of the representations. Saj-
jad et al. (2022) have shown that the information
encoded in the contextualized representations can
be explained to some extent by semantic, morpho-
logical, syntactic, and lexical concepts. These con-
cepts include the words’ POS tags, CCG super-tags,
ngrams, casings, WordNet concepts, and so on. Ad-
ditionally, Mickus et al. (2020) have shown that the
similarity of the representations is affected by the
segment embeddings that the model assigns to to-
kens to indicate their sentences. In this study, this
is not an issue because we only use one sentence as
an input. However, we aim to investigate whether a
similar effect can be found for the positional encod-
ing, resulting words in the same position having
similar representations.

Clustering reveals these similarities within the
representations. Sajjad et al. (2022) have shown
that the clusters of contextualized representations
overlap with the concepts that are found to be en-
coded in the representations. Furthermore, it has
been shown that word sense clustering with CWEs
of the BERT model doesn’t achieve good perfor-
mance and sentence context similarities have been
observed within the clusters (Yenicelik et al., 2020).
The effects of the sentence context have been also
observed in similarity ranking for WSD with CWEs
of BERT (Gessler and Schneider, 2021). However,
there hasn’t been any effort to systematically ex-
plain the relation between sentence context and
contextualized representations of different occur-
rences of the same word and with a focus on WSD.
This study aims to fill this gap.

Finally, the studies that distinguish different
types of lexical ambiguity have shown that WSD
performance with CWEs changes depending on the

type and it is easier to disambiguate homonymy
than polysemy (Nair et al., 2020; Haber and Poe-
sio, 2021). Similarly, contextualization of BERT
affects different types differently and homonyms
are affected more by contextualization due to the
fact that they occur in more diverse contexts (Sev-
astjanova et al., 2021). In this study, we also expect
the results to be different for each type. In the
case of homonymy, we expect sentence context to
provide clearer clues for different senses and the
similarity of the representations to be affected by
these clues.

3 Data

We use SemCor (Miller et al., 1993) which pro-
vides sentences that are annotated with WordNet
senses for a wide variety of words (Fellbaum, 2010)
for English. We restrict our focus to nouns and
verbs. A word can be both homonymous and poly-
semous at the same time because different senses
of a word can have different relations, e.g. two
senses can be homonymous while another two can
be polysemous. Because of this, we don’t focus
on homonymous or polysemous words but sense
groups of words. These sense groups are formed
by grouping the senses of a word according to their
relations, so we end up with sense groups in which
all pairs are homonymous or polysemous to each
other.

In order to decide if a sense pair is homony-
mous or polysemous, we use the data provided
in Nair et al. (2020). This data contains seman-
tic relatedness judgment scores for a subpart of
WordNet. Semantic relatedness determines where
on the homonymy-polysemy continuum a word is
(Klepousniotou, 2002; Klepousniotou and Baum,
2007; Klepousniotou et al., 2008, 2012) and se-
mantic relatedness judgments of speakers overlap
with different types of lexical ambiguity (Klepous-
niotou et al., 2008; Nair et al., 2020). In Nair et al.
(2020), semantic relatedness judgement scores are
collected for each sense pair from several speakers.
We use the average of the scores for each sense pair
to decide if the word is homonymous or polyse-
mous in those senses. We consider the sense pairs
that have a distance over 0.8 as homonymy pairs
and a distance below 0.5 as polysemy pairs.1

1Psycholinguistics studies have shown that some polysemy
types show homonymy-like behaviors and have less semantic
relatedness (Klepousniotou and Baum, 2007; Klepousniotou
et al., 2008). Due to this, we leave a certain range out to avoid
these mixed types.
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Lexical Clustering Sentence-Feature Classifiers
Ambiguity Sense Sense WSD Cluster 10-Cluster 10-Rand.

Group Group
# ARI # F1 P R F1 P R F1 P R F1

Homo. 19 0.68 5 0.80 0.80 0.80 0.87 0.87 0.87 0.85 0.86 0.85 0.42
Poly. 39 0.36 5 0.72 0.76 0.72 0.78 0.80 0.78 0.86 0.86 0.87 0.37
Overall 58 0.52 10 0.76 0.78 0.76 0.82 0.83 0.82 0.85 0.86 0.86 0.39

Table 1: Data size and experimental results summary. WSD refers to the classifiers that are trained for WSD, Cluster
for cluster assignment. 10-Cluster classifiers refer to the classifiers that are trained for cluster assignment with only
the top 10 features. 10-Rand. refers to the classifiers that are trained for cluster assignment with random 10 features.
F1, Precision and Recall scores are given. The best F1 score overall and for each type is given in bold.

As our data, we use the sentences of the selected
senses from SemCor. We do not include the senses
that have less than 10 sentences in SemCor. We
balance the number of sentences for each group
by random under-sampling. We exclude the words
that show inherent and metonymical polysemy be-
cause different types of polysemy have different
characteristics (Klepousniotou and Baum, 2007;
Klepousniotou et al., 2008) and we focus only on
irregular polysemy.2

4 Method

The goal of this study is to first, identify the sen-
tence context features that determine the similar-
ity of the contextualized representations. For this
purpose, we identify the sentence context features
that lead to the formation of clusters in word sense
clustering with CWEs. Then, we evaluate these
features’ significance to WSD.

In order to identify these features, we conduct
a cluster explainability experiment. First, we per-
form word sense clustering and cluster the sen-
tences of a word (Section 4.1). As the next step,
we aim to determine the sentence context features
that are responsible for the formation of the clus-
ters. For this, we try to recreate the clusters using
the sentence context information of the sentences
alone. We formulate this task as a classification
task. We represent each sentence with a set of sen-
tence context features and we assign the sentences
to the clusters based on these features using clas-
sifiers. These classifiers are trained to predict the
cluster labels from the sentence context features
of the sentences (referred to as sentence-feature
classifiers) (Section 4.2).

This gives us the advantage of representing sen-
tences with discrete features, as opposed to con-
textualized representations which are continuous.

2See Appendix B for the list of words and the number of
their senses used in this study.

This enables us to identify the specific sentence
context features that contribute to the classifier per-
formance. For this purpose, we use recursive fea-
ture elimination and we determine the top 10 fea-
tures that are most important for the performance
of the classifiers. Finally, we qualitatively evaluate
the significance of the selected features to WSD
(Section 4.3).

4.1 Clustering

As explained in Section 3, we focus on sense
groups and each sense group contains several
senses of a word. We perform word sense cluster-
ing with each sense group, clustering the sentences
of senses within each group.

We cluster the sentences using the word’s CWEs
in these sentences. We extract the CWEs from
the English BERT model (base, cased)3 from each
layer.4 In cases where the words are tokenized into
subwords, only the first subword’s embedding is
used.

We use the K-means clustering algorithm, select-
ing k as the number of senses in each group.5 We
evaluate the performance by comparing cluster la-
bels to the sense labels using Adjusted Rand Index
(ARI). To be able to compare the performance of
each lexical ambiguity type, first, we determine the
performance for each sense group within a type,
then calculate their average and this average rep-
resents the performance of each lexical ambiguity
type. We compare the performance change across
layers and also the performances based on the best-
performing layer. We expect homonymy to per-
form better in word sense clustering based on the

3We choose the BERT cased model because it encodes
more concepts relevant to WSD, such as words’ WordNet
concepts, compared to the uncased model, which encodes
more linguistic concepts (Sajjad et al., 2022).

4We use the Transformers library (Wolf et al., 2020) for
extracting the embeddings.

5Sci-kit learn library is used for the implementation (Pe-
dregosa et al., 2011).
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findings of the previous studies (Nair et al., 2020;
Haber and Poesio, 2021).

4.2 Sentence-Feature Classifiers

We use the resulting clusters from the previous
experiments for training and testing the classifiers.
We use the last layer’s results because this layer
performs best in the clustering experiment. For
each sense group, we train a classifier for cluster
assignment: to predict which cluster a sentence
belongs to. We only select the sense groups that
have more than 25 sentences in each cluster since
this experiment requires data for training. This
reduces the number of sense groups we focus on
in this experiment. Additionally, even though we
do not limit the number of senses in each group,
we end up with only two senses per group. See
Table 1 for the number of sense groups for each
experiment.

Our aim is to predict the cluster that each sen-
tence belongs to based on its sentence context fea-
tures. First, we represent each sentence with a
manually selected sentence context features; bag-
of-words, morphological properties of the target
word (tense, number, etc.), POS tag of the word’s
neighbors, the syntactic role of the target word, and
the position of the target word in the sentence. We
create a sentence feature matrix by binarizing and
combining features, resulting in a one-hot represen-
tation for each sentence. We select these features
to be able to represent the sentences with their con-
text as much as possible. Additionally, we aim
to investigate whether the position of the word in
the sentence affects the similarity of the representa-
tions, considering that positional embeddings are
added to the word’s representations with the BERT
model.6

We process the sentences with the spaCy library7

to automatically extract this information from the
sentences. For the morphological properties of the
target word, we use the fine-grained POS tag of the
word. Similarly, we use the dependency label of
the words as their syntactic role.8 Bag-of-words
representations of the sentences are created by first
lemmatizing the sentences, also with spaCy.

For each sense group, we use the sentences in all
clusters as our training and test data (split by 3:1).
We give each cluster a label (0, 1). For each sen-

6For detailed information about the size of the data and the
feature matrices for each word, see Appendix D.

7Available at: https://spacy.io/
8See Appendix A for the tags used and their desciptions.

tence, the input is its sentence feature matrix and
the output is the label of its cluster. We use the lin-
ear SVM algorithm to train the classifiers because
it is ideal in cases where the number of features
is larger than the number of samples. Since each
sense group contains two senses in this experiment,
our task is to do binary classification to assign the
correct cluster label.

We evaluate the performance of the classifiers
based on lexical ambiguity type. We calculate the
average F1 score (as well as precision and recall
scores) for all sense groups within a type and con-
sider it as each type’s performance. The high per-
formance of the classifiers will be an indication that
clusters can be recreated with these features and
therefore these features can explain the clusters.

Additionally, we train another type of classifiers:
classifiers for WSD. These classifiers are trained
similarly to the classifiers for cluster assignment;
for each sense group and using sentence features
as the input. But this time instead of predicting the
cluster labels, the classifiers are tasked to predict
the sense labels. We compare the performances of
the classifiers trained for cluster assignment and
WSD. This way, we aim to understand how help-
ful these features are for WSD to begin with. If
the classifiers for cluster assignment perform bet-
ter than the classifiers for WSD, this can suggest
that the clusters are more distinguishable by the
sentence context features than the senses and this
is already an indication that clusters are formed by
the sentence context features that are insignificant
to WSD. Additionally, we expect these classifiers
to perform better with homonymy compared to pol-
ysemy because sentence context is more helpful for
the disambiguation of homonymy.

4.3 Feature Importance
In order to identify the sentence context features
that are responsible for the clusters, we need to
identify the features that are important for the per-
formance of the classifiers for cluster assignment.
For this purpose, we apply recursive feature elimi-
nation (RFE) on top of the classifiers.9 RFE func-
tions as a wrapper feature selection algorithm. It
assesses the importance of each feature and itera-
tively removes the least important ones. The model
is then re-fitted with the reduced feature set, and
this process continues until the desired number of
features is achieved.

9Sci-kit learn library is used both for the implementation
of RFE and the training of the classifiers.
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Figure 2: Layer-wise clustering performance with
homonymy and polysemy.

We apply RFE to reduce the sentence feature
matrix to 10 features. We train the classifiers with
RFE using the same training and test datasets as
the classifiers trained with the full-sentence feature
matrices. By selecting the top 10 features from
the sentence feature matrix, we determine which
features are important for the correct classification.
Then, we evaluate the performance of the classi-
fiers that are trained only with the top 10 features
on cluster assignment. Additionally, we train classi-
fiers for cluster assignment with randomly selected
10 features for each sense group in order to es-
tablish a baseline. The baseline is determined by
averaging the performance of the classifiers across
5 runs for all sense groups. The high performance
of the classifiers that are trained with the top 10
features will indicate that these features are respon-
sible for the formation of the clusters.

Finally, we assess the significance of these fea-
tures to WSD for each word through qualitative
evaluation. There are two reasons why we opt for
qualitative evaluation. First, there might be coin-
cidental similarities in sentence context within the
sentences of one sense that help the clustering pro-
cess but that are insignificant to WSD. For example,
a verb’s most past tense occurrences might coinci-
dentally overlap with one sense, and generalizing
over this pattern can help the WSD process. How-
ever, relying on these patterns is less than ideal. In
such cases, performance-based evaluation cannot
effectively capture the significance of these features
because they might artificially boost performance.
Our primary aim is to uncover these features. The
second reason is the limited data size. Qualitative
evaluation allows for a deeper understanding, even
in situations where the data is limited.

5 Results

5.1 Clustering
As shown in Figure 2, the clustering performance
improves across the layers, with the highest per-
formance observed in the final layer for both
types. Word sense clustering performs better with
homonymy than polysemy. In the last layer, ARI
score is 0.68 for homonymy and 0.36 for poly-
semy, as shown in Table 1. Regarding the layer-
wise performance of the clustering, the pattern for
homonymy and polysemy is different. There is a
significant performance improvement observed be-
tween the 3rd and 5th layers for homonymy. How-
ever, there isn’t that steep gain in performance for
polysemy overall. This suggests that homonymous
senses are mostly disambiguated early in the model
layers. Overall, these results are in line with our
expectations; the performance with homonymy is
higher than with polysemy.

5.2 Sentence-Feature Classifiers
The classifiers for WSD achieve an F1 score of
0.80 for homonymy and 0.72 for polysemy. This
difference supports our hypothesis; sentence con-
text features are more useful for the disambiguation
of homonymy than polysemy. Regarding the clas-
sifiers for cluster assignment, there are also perfor-
mance differences for each lexical ambiguity type.
The performance is better with homonymy (0.87)
than with polysemy (0.78). Overall, they achieve
an F1 score of 0.82.

The classifiers for cluster assignment show better
performance compared to the classifiers for WSD,
with an overall increase of 0.06 point. There is an
increase for both homonymy (0.07) and polysemy
(0.05). This increase suggests that the sentence
context features are more prominent in the clusters
than the original sense sentences and the clusters
are more easily distinguishable by their features
compared to the senses. Finally, the overall high
performance of the classifiers for cluster assign-
ment suggests that the selected sentence context
features are a good starting point for feature selec-
tion. The results of the classifier performances can
be seen in Table 1.

5.3 Feature Importance

Top 10-Feature Classifiers for Cluster Assign-
ment. The classifiers trained with the top 10 fea-
tures for cluster assignment achieve good perfor-
mance with an overall F1 score of 0.85, surpassing
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Figure 3: Count of each feature category. The cate-
gories are punctuation marks, function words (fw), con-
tent words (cw), neighboring words, the position of the
target words in the sentences, and morphological prop-
erties and syntactic roles of the target words.

the random baseline (F1: 0.39) by a large margin
(see Table 1). This indicates that: the selected top
10 features are able to recreate the clusters to a
great extent.

Evaluation of the Selected Features. We group
the top 10 features selected for all sense groups
by their similarities and 6 categories are formed.
These categories are punctuation marks, func-
tion words, content words, POS tags of neighbor-
ing words, morphological properties of the target
words, syntactic roles of the target words, and po-
sitions of the target words in the sentences. Their
counts can be seen in Figure 3.10

Punctuation marks (‘-’, ‘;’, etc.), function words
(‘if’, ‘not’, etc.), and content words (‘river’, ‘bed’,
etc.) are the items that are found in the bag-of-
words representations of the sentences and are se-
lected as important features. This means that the
fact that there are certain items in the sentence de-
termines the decision of the classifiers.

Furthermore, morphological properties of the
target word, e.g. whether the verb is in past tense
or not, and the syntactic role of the target word, e.g.
whether the noun is the direct object of the sentence
or not, determine the decision of the classifiers.
Similarly, the POS tags of neighboring words also
is a determining feature. For example, whether a
verb is followed by an adverb or not or whether a
verb is followed by a punctuation or not. Finally,
the position of the target word is also a determining

10A detailed list can be seen in Appendix C.

feature. However, only the 6th, 7th, 8th, 9th and
10th positions are found to be important.

First, without looking at the details, it is apparent
that certain feature categories lack significance or
have little significance to WSD. These categories
include punctuation marks, the position of the tar-
get word in the sentence, the syntactic role and
the morphological properties of the target words.
On the other hand, features such as POS tags of
the neighboring words, and the existence of some
content words in the sentence can carry more sig-
nificance. For example, whether a verb is followed
by a preposition or not can be a good indicator of
a sense. Similarly, the presence of a word in the
sentence can signal one sense, as previously shown
in (1) for ‘bank’.

Yet, a closer examination reveals even more strik-
ing results. In most cases, the important features
are insignificant to WSD, except for a few words
and this explains the poor clustering performance.
The main issue is that most of the time, a partic-
ular insignificant feature is found in both sense
sentences and causes these sentences to cluster to-
gether. The features from all categories affect the
performance like this. For example, sentences of
different senses of a verb are clustered together be-
cause, in all of them, the verb is in the past tense,
as illustrated in example (3) with two senses of the
verb ‘indicate’.

(3) a. be a signal for or a symptom of:
“The statistics hardly indicated that...”

b. to state or express briefly:
“He indicated that requests would...”

Other times, one feature that is not significant to
WSD is found only in the sentences of one sense co-
incidentally and causes these sentences to cluster
together. While this might affect the performance
positively, it does so for reasons that are not ideal.
This finding aligns with our expectations. For ex-
ample, the word ‘other’ is selected as an important
feature for the clusters of ‘time’. This feature is not
significant to the WSD of this word and it is even
not found in direct syntactic relation with the target
word in the sentences as in example (4).

(4) The debris of his other careers was piled
everywhere; a pile of wire cages for mice
from his time as a geneticist and a micro-
scope lying on its side on the window sill...

Finally, we do not observe specific patterns for dif-
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Figure 4: PCA visualization of the embeddings of
‘foot’ in different sense sentences and important features
found in each sentence cluster of the word. The em-
beddings are extracted from the last layer of the BERT
model. The features are ‘inch’, NUM-l (the left neighbor
is a numeral), PRON-l (the left neighbor is a pronoun)
and DET-l (the left neighbor is a determiner).

ferent lexical ambiguity types, however, in general,
we observe that for some words, there are more
clear clues in the sentence context that are helpful
for disambiguation.

An Example: ‘ask’ vs. ‘foot’. ‘ask’ in its first
sense means “to request something” as in (5-a)
and in its second sense means literally “to ask a
question” and in this sense, it is also frequently
used with direct speech as in (5-b). ‘foot’ in its first
sense is the body part and in its second sense, it is
the measuring unit, as illustrated in (6).

(5) ‘ask’:
a. to request something: “He asked her

for recommendation.”
b. to ask a question: “Don’t ask a ques-

tion.”, “‘Who said that?’ he asked.”

(6) ‘foot’:
a. body part: “He hit his feet.”
b. measuring unit: “She is five feet tall.”

Even though both of these words are homony-
mous, there are performance differences between
them.11 Word sense clustering achieves perfect per-
formance with ‘foot’ (1.0) and bad performance
with ‘ask’ (0.16). However, the sentence-feature
classifiers for cluster assignment perform well with
both words (‘ask’: 0.77, ‘foot’: 1). Looking at the
classifier performance, we can conclude that the
clusters of both words are distinguishable based on
their sentence context features. However, looking

11See Appendix D for a performance comparison of all
words in the last experiment.
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Figure 5: PCA visualization of the embeddings of
‘ask’ in different sense sentences and important features
found in each sentence cluster of the word. The em-
beddings are extracted from the last layer of the BERT
model. The features are ‘go’, ‘and’, VB (the verb is in
base form), and pos6 (the word is the 6th token in the
sentence).

at the word sense clustering performance, we can
understand that these features are not equally sig-
nificant to WSD for both words; they are significant
in the case of ‘foot’, but not ‘ask’.

The clusters of ‘foot’ represent each sense well
as shown in Figure 4, and features for each cluster
are also related to different senses of ‘foot’. For the
cluster related to the ‘measuring unit’ sense, the
features ‘inch’, and NUM-l (the left neighbor is a
numeral, as in “5 feet”) are selected as important
features. Whereas, for the cluster related to the
‘body part’ sense, the features PRON-l (the left
neighbor is a pronoun, as in “his feet”), and the
feature DET-l (the left neighbor is a determiner,
as in “the feet”) are selected. These features are
indeed good indicators of these senses.

On the other hand, we do not see nicely formed
clusters for ‘ask’ (see Figure 5) and we see that
the similarity of the representations is driven by
the features that are not significant to WSD. For
example, all sentences in which the verb is in base
form (VB) or the word is the 6th token (pos6) or
the sentences that have the words ‘go’ or ‘and’ are
clustered together.

Two senses of ‘ask’ occur in different sentence
structures: the first sense occurs with prepositional
objects, as in (5-a), and the second sense with direct
speech as in (5-b). It is interesting to see that these
distinctions are not captured by the clusters and
these features do not determine the similarity of
the representations. We also see that the sentence-
feature classifier for WSD performs better (0.81)
than the sentence-feature classifier for cluster as-
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signment (0.77) with ‘ask’. This contrasts with
the general pattern. This might indicate that the
senses are actually distinguishable by their sen-
tence context features, however, not these features
but insignificant features are responsible for the
formation of the clusters.

6 Discussion

In order to identify the sentence context features
that are responsible for the similarity of the con-
textualized representations, we conducted a clus-
ter explainability study and identified the sentence
context features that lead to the formation of the
clusters in word sense clustering with CWEs. Our
results have shown that features from different cat-
egories determine the similarity of the representa-
tions; function words, punctuation marks, content
words in the sentences, position of the target word
in the sentence, neighboring words, morphological
properties and the syntactic role of the target word.
Our results are in line with Sajjad et al. (2022) who
have shown that the CWEs encode both grammat-
ical and semantic properties of the words and the
clusters of CWEs reveal these similarities.

Furthermore, we qualitatively evaluated the iden-
tified features for each word and have shown that
they are mostly insignificant to WSD. We observed
that even when different senses of a word occur in
diverse contexts and the sentence context provides
clear clues for different senses (as in the case with
‘ask’), the significant features do not determine the
similarity of the representations in most cases. This
contradicts our expectations. When the sentence
context provides clear clues for different senses,
e.g. in the case of homonymy, we expected the
similarity of contextualized representations to be
determined by these clues. However, this is not
the case and there are other features in the sen-
tences that are insignificant to WSD, that affect the
similarity of the representations more.

Our analysis also has revealed that insignificant
features affect the clustering performance nega-
tively in several ways. Most commonly, some in-
significant features occur in the sentences of both
word senses and they lead these sentences to cluster
together. This explains the poor clustering perfor-
mance reported previously (Yenicelik et al., 2020)
and also in this study. Additionally, in some cases,
certain insignificant features occur only in the sen-
tences of one sense by chance and they lead to the
formation of clusters. Although these cases don’t

affect the performance negatively, this shows how
the randomness in the data can affect the clustering
performance.

In relation to the performance with different lex-
ical ambiguity types, the findings of our study are
in line with previous studies (Nair et al., 2020;
Haber and Poesio, 2021; Sevastjanova et al., 2021).
Clustering performs better with homonymy than
polysemy. In addition to previous studies, our re-
sults have shown that homonyms are more distin-
guishable by sentence context features than pol-
ysemes and their disambiguation can be more eas-
ily achieved with a simple classifier trained with
these features. However, contextualized representa-
tions’ similarity is not consistently determined by
the sense-significant features even for homonyms.

7 Conclusion

The information encoded in contextualized repre-
sentations which determines their similarity is not
significant to WSD in most cases. This shows that
these representations do not capture the different
meanings of words as expected, explaining why
using CWEs of pre-trained language models alone
does not yield sufficient performance in unsuper-
vised WSD. In the future, we plan to explore pos-
sible strategies to create contextualized representa-
tions that are more suitable to WSD by limiting the
information that is insignificant to WSD encoded in
the representations. This way, we aim to enhance
unsupervised WSD performance.
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Tag Description
nsubj nominal subject
pobj object of a preposition
attr attribution
xcomp open clausal complement
npadvmod noun phrase as adverbial modifier

Table 2: Dependency labels used in this study, from
spaCy model en_core_web_trf.

Tag Description
NN Noun, singular or mass
NNS Noun, plural
VBD Verb, past tense
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
VB Verb, base form

Table 3: Fine-grained POS tags used in this study, from
Penn Tree Bank (Marcus et al., 1993).

Tag Description
ADP adposition
PUNCT punctuation
PART particle
SCONJ subordinating conjunction
PRON pronoun
DET determiner
ADV adverb
NUM numeral

Table 4: POS tags used in this study, from Universal
Dependencies (Nivre et al., 2016).

A Feature Tags

The feature tags for the morphological properties
of the words, the syntactic role of the words, and
the POS tags of neighboring words that are used

ask: 1 heart: 2 life: 5
begin: 3 produce: 2 point: 5
degree: 3 put: 3 raise: 3
drive: 3 table: 2 time: 2
foot: 2 right: 2 way: 4
heart: 2 case: 3 world: 4
indicate: 2 consider: 4 plane: 2
light: 3 cover: 2 lead: 7
man: 3 door: 2

Table 5: The words that are found in our dataset with
their sense counts. All the words are used in the word
sense clustering and the bold words are used in the
cluster explainability experiment.

in this study can be found in Table 2, 3, 4. For the
morphological properties of the words, we use their
fine-grained POS tag (Table 3). For the syntactic
role of the words, we use their dependency label
(Table 2). All the labels are obtained by processing
the sentences with spaCy.

B Selected Words

A list of the words that are found in our dataset can
be seen in Table 5. All the words and senses are
used in the word sense clustering experiment. Only
10 words and 2 sense each are used in the cluster
explainability experiment.

C Selected Features List

A detailed list of selected features from each cate-
gory can be seen in Table 6.

D Performance with Individual Words

The individual performance of each word can be
seen in Table 7. Only the performances of the
words that are used in the last experiment are re-
ported. Both clustering performance and the per-
formance of the sentence-feature classifiers are re-
ported. The data size (number of sentences) of each
word can be also seen in Table 7.
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Feature Category Features
Neighbouring Word (right) ADP: 3, PUNCT: 2, PART: 2, SCONJ: 1, PRON: 1, DET: 1, ADV: 1
Neighbouring Word (left) DET: 4, PART: 2, PRON: 2, NUM: 2, ADP: 2, ADJ: 2, PUNCT: 1
Punctuation ‘.’: 2, ‘-’: 1,
Function Word ‘and’: 1, ‘after’: 1, ‘can’: 1, ‘she’: 1, ‘might’: 1, ‘the’: 3, ‘to’: 2, ‘when’: 1, ‘my’: 1, ‘on’: 1,

‘through’: 1, ‘no’: 1, ‘with’: 1, ‘just’: 1, ‘a’: 1, ‘by’: 1, ‘however’: 1, ‘in’: 1, ‘or’: 1, ‘’s’: 1,
‘each’: 2, ‘which’: 1, ‘her’: 1 ‘other’: 1, ‘their’: 1, ‘once’: 1, ‘such’: 1

Content Word ‘mean’: 1, ‘nothing’: 1, ‘high’: 1, ‘outside’: 1, ‘see’: 1, ‘first’: 1, ‘route’: 1, ‘Spencer’: 1,
‘new’: 1, ‘plan’: 1, ‘event’: 1, ‘God’: 1, ‘three’: 1, ‘hand’: 1, ‘go’: 1, ‘take’: 1, ‘inch’: 1,
‘age’: 1, ‘feel’: 1

Syntactic Role nsubj: 2, pobj: 1, xcomp: 1, attr: 1, npadvmod: 1
Morphological Properties NNS: 3, VBD: 2, NN: 2, VBP:1, VBZ: 1, VB: 1
Word Position 6th: 1, 7th: 1, 8th: 1, 9th: 1, 10th: 1

Table 6: Selected important features in each category and their counts. POS tags of the word’s neighbors are given
for neighboring words, the dependency label of the word is given for the syntactic role, and the fine-grained POS
tag is given for the word’s morphological properties. See Appendix A for the descriptions of the tags used.

Clustering Sentence-Feature Classifiers
Word Data# Performance Feature# WSD Cluster 10-Cluster

F1 P R F1 P R F1 P R
Homonymy
ask 278 0.16 1668 0.81 0.82 0.81 0.77 0.77 0.77 0.77 0.77 0.77
begin 90 0.34 1007 0.87 0.87 0.87 0.91 0.93 0.92 0.80 0.80 0.80
foot 119 1 1008 1 1 1 1 1 1 1 1 1
indicate 70 0.12 809 0.62 0.62 0.62 0.85 0.86 0.85 0.85 0.89 0.85
man 92 0.54 932 0.71 0.71 0.70 0.82 0.83 0.82 0.85 0.86 0.85
Polysemy
life 74 0.34 775 0.59 0.60 0.60 0.81 0.83 0.81 0.86 0.86 0.86
man 54 0.16 690 0.66 0.81 0.68 0.84 0.84 0.84 0.94 0.95 0.94
time 56 0.69 762 0.71 0.76 0.71 0.84 0.84 0.84 0.94 0.95 0.94
way 110 0.55 1179 0.81 0.81 0.81 0.86 0.86 0.86 0.73 0.74 0.73
world 56 0.35 692 0.84 0.84 0.84 0.53 0.66 0.55 0.83 0.88 0.83

Table 7: Data size and performance details of individual words. Data# refers to the number of sentences. Clustering
performance is evaluated using ARI. Feature# is the size of the sentence feature matrix. WSD refers to the classifiers
trained for WSD, Cluster for cluster assignment. 10-Cluster classifiers refer to the classifiers trained for cluster
assignment with only the top 10 features. F1, Precision and Recall scores are given for each classifier. The best F1
score for each word is given in bold.
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Abstract

Literary language presents an ongoing chal-
lenge for Sentiment Analysis (SA) due to its
complex, nuanced, and layered form of expres-
sion. It is often suggested that effective literary
writing is evocative, operates beneath the sur-
face and understates emotional expression. To
explore features of implicitness in literary ex-
pression, this study takes Ernest Hemingway’s
The Old Man and the Sea as a case-study, fo-
cusing specifically at implicit sentiment expres-
sion in this text. We examine sentences where
automatic sentiment scoring shows substantial
divergences from human sentiment annotation,
and probe these sentences for distinctive traits.
We find that sentences where humans perceived
a strong sentiment while models did not are
significantly lower in arousal and higher in con-
creteness than sentences where humans and
models were more aligned, suggesting the im-
portance of simplicity and concreteness for im-
plicit sentiment expression in literary prose.

1 Introduction

The concept of “implicit” expression is particularly
relevant and complex in literary writing. Several
theories of literary writing point to the importance
of avoiding to present concepts or ideas in an ex-
plicit way. For example, the widely known precept
of “Show Don’t Tell” points at least partly in this
direction. As is also made clear by Booth (1983),
the distinction between types of narration (showing
vs. telling) is not always adequate, though critics
often rely on terms like emotional “evocativeness”
and “understatement” to describe writing styles
(Strychacz, 2002; Daoshan and Shuo, 2014). It is
far from clear whether implicit, evocative and ex-
pressive strategies can be reliably tracked in text
and whether more implicit types of narration dis-
play linguistically recognizable marks.

†
The authors contributed equally to this work.

In this study, we use The Old Man and the
Sea, often considered the exemplary masterpiece
of Ernest Hemingway, as a case study for explor-
ing such implicitness.1 Hemingway’s writing style
is known for its emotional subtlety and is charac-
terized (also by Hemingway himself) by its “ice-
berg” (Hemingway, 1996), or “omissive” tech-
nique, where: “the emotion is plentiful, though hid-
den and not exposed” (Daoshan and Shuo, 2014).
Moreover, Hemingway’s style is direct and limited
in use of figurative language (Heaton, 1970). It thus
avoids “overt emotional display”, presenting ac-
tions and situations that imply emotions, and leave
their inference up to the reader (Strychacz, 2002).
As such, it may be that Hemingway’s “omissive”
writing can be tracked by looking at the amount
and intensity of emotion expressions detectable in
the text itself, comparing this to how “expressive”
the text is perceived by readers.

2 Related works

Literary language may convey emotions in a vari-
ety of ways beyond simply using words directly
associated with emotional states (e.g., “happy”).In
the case of Hemingway, the apparent aversion to
“emotional display and rhetorical overflow” in his
prose has been linked to the Modernists’ and New
Critics’ emphasis on concreteness over abstraction
(Strychacz, 2002). A key example of this perspec-
tive is Brooks and Warren (1976)’s seminal descrip-
tion of poetry as “incorrigibly particular and con-
crete – not general and abstract”. The connection
of concreteness to emotional expression is continu-
ally formalized in modern literary theory, also with
regard to prose, where the most prominent con-
cept is probably that of the objective correlative
of T.S. Eliot. Eliot defined it as “a set of objects,
a situation, a chain of events which shall be the
formula of [a] particular emotion” (Eliot, 1948),

1The annotated text is available at: https://github.com/
PascaleFMoreira/Annotated_Hemingway
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suggesting a focus on concrete objects and actions
over explicit emotion expression as the effective
method for communicating emotion in literature.
In support of this idea, Auracher and Bosch (2016)
indicate that the concreteness of literary language
impacts the emotional engagement of readers and
their experiences of literary suspense.

We concentrate our study on implicitness in the
expression and readers’ experience of sentiments
in The Old Man and the Sea. Sentiment Analysis
(SA) has become an increasingly central method
for computational literary studies research (Rebora,
2023), often used as a tool to gauge the sentiment
arcs of novels (i.e., the consecutive highs and lows
of sentiment throughout a narrative)(Jockers, 2014;
Reagan et al., 2016) also in connection with as-
sessing reader appreciation (Bizzoni et al., 2023).
While divergences between human and model SA
scores generally indicate shortcomings in SA meth-
ods, we suggest that such divergences may also
be informative – both for model improvement and
for gaining a deeper understanding of sentiment
expression in literary texts – if we test whether
certain textual features characterize such instances.
First, we seek to find sentences where human sen-
timent annotation diverges from model scores, the
latter of which may not capture implicit or omis-
sive sentiment as well (Zhou et al., 2021; Li et al.,
2021). Then, we test whether these sentences of im-
plicit sentiment expression can be told apart from
other by certain features, the choice of which are
informed by the mentioned literary theory and de-
scriptions of implicitness in Hemingway’s style:
the mean valence,2 arousal,3 and dominance,4 as
well as their mean concreteness.5

3 Method

In this preliminary analysis of implicit or omissive
writing, we focus on the sentiments in The Old Man
and the Sea. As noted, the style of the novel is sim-
ple and direct. While the feelings of the characters
are sometimes stated, their experiences and states
of mind are often left to the reader to interpret from
similes and object descriptions. For example, the
protagonist is introduced as a fisherman who hasn’t

2The degree of positiveness or negativeness (/pleasure or
displeasure) (Mohammad, 2018).

3The degree to which a word prepares for action, captures
or focuses attention (Borelli et al., 2018).

4The degree of control evoked (Warriner et al., 2013).
5The degree to which a word denotes a perceptible entity

(Brysbaert et al., 2014).

caught a fish in a long time. Instead of mentioning
his feelings, the narrator describes his scars: “They
were as old as erosions in a fishless
desert”. This simile can be seen as a case of im-
plicit sentiment as it arguably evokes a sense of
despair for the lack of success but without any ex-
plicit sentiment expression. The reference to the
pain and the fear of the characters is also often pow-
erfully implied without any direct mention: “‘Ay’,
he said aloud. There is no translation for
this word and perhaps it is just a noise
such as a man might make, involuntarily,
feeling the nail go through his hands and
into the wood”. These descriptions, full of con-
crete objects such as the nail going through the
hand, may be seen as a prime example of Eliot’s
objective correlative, where a “set of objects” is
set in place to evoke emotion in the reader. Fur-
thermore, when the protagonist is challenged in his
final reckoning with the sharks, his fear and tension
are rarely stated, but implied in the description of
the sharks themselves.

While such passages may appear powerful for
the human reader, it is likely that standard SA mod-
els would miss their sentimental charge. Words
such as “nail” and “hand” gain emotional charge
only in the certain composition that Hemingway
creates, but will not appear emotionally charged
when observed as isolated words. To create a subset
of such sentences that appear powerful to human
readers but may not be so for automatic annotation
systems, we used the distance between SA models’
and humans’ annotations of sentences. We thus op-
erationalized “implicit sentiment” as those cases in
which human readers perceived sentimental charge
(whether positive or negative), but where models
did not, selecting all such sentences. We proceeded
by the following steps:

3.1 Annotation, scoring and selection

1) Two independent human annotators scored each
sentence of the novel on a 1-10 sentiment scale.
The annotators were instructed to avoid rating how
a sentence made them feel but assess the valence
of each sentence, without overthinking the story’s
narrative, reducing – as far as possible – contex-
tual interpretation. We thereafter assigned each
sentence of the novel the mean annotator score for
each sentence.6 Both annotators had extensive ex-
perience of literary analysis, and hold degrees in

6The Spearman correlation between annotators is 0.65.
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literature.7 Annotators worked independently, not
discussing nor changing their scores.

2) There are a variety of SA methods from
machine learning to dictionary-based approaches,
each displaying advantages and shortcomings (Öh-
man, 2021). (Reagan et al., 2017). More recent
Transformer-based approaches have shown both po-
tential and pitfalls in SA for literary texts (Elkins,
2022), so that an ensemble of models has been sug-
gested (Elkins, 2022). We used several SA mod-
els, transformer- and dictionary-based, to score the
same book for valence. Our chosen models for
annotation on a sentence-base were:
(i) The VADER dictionary (Hutto and Gilbert,
2014), arguably the most widespread dictionary-
based method for SA.
(ii) The Syuzhet dictionary (Jockers, 2014), ex-
tracted from 165,000 human coded sentences of
contemporary literary novels.8

(iii) roBERTa base, fine-tuned for SA on tweets
(Barbieri et al., 2020).9

3) Excluding mid-valued sentences, we selected
all the sentences that the human annotators scored
as having some sentimental charge (all sentences
scoring lower than 5 or higher than 6). Since the
human readers did detect some sentiment in these
sentences, they are candidates for implicit senti-
ment expression. This subset accounted for less
than half of the sentences of the novel: a total of
835 out of 1923 sentences.

4) Of this subset, we selected only those sen-
tences that did not elicit a strong sentiment score
from the SA models: we only kept sentences which
normalized absolute score was smaller than 0.1 in
all three models. In short, we selected all sentences
that appeared sentiment charged to humans, while
being scored as neutral or almost neutral by all
three SA systems. This left us with 101 sentences
in what we call the “implicit” group (Fig. 1).

5) For comparison, we selected sentences where

7Both were academics, male and female, at ages 31 and
34, who were non-native but very proficient English speakers,
and who finished a literature degree more than 2 years ago.

8Developed by Matthew L. Jockers in the Nebraska Liter-
ary Lab (Jockers, 2015).

9Note that we converted the categorical Transformer output
is to continuous SA scores by using the confidence score of
roBERTA’s labels as a proxy for sentiment intensity. If the
model classifies a sentences as positive with a confidence of,
for example, 0.89, we interpret it as a valence score of +0.89
for this sentence, and so on. Note that we converted scores of
the neutral category to 0.0. This procedure of translating SA
Transformer output to a continuous scale is detailed in Bizzoni
and Feldkamp (2023).

Figure 1: Division of sentences of The Old Man and
the Sea into groups of: 101 sentences where human and
model sentiment scoring diverged significantly, and 714
sentences where it converged.

human and models were more aligned in their sen-
timent scoring, what we call the “explicit” group
(Fig. 1). These are sentences where both humans
and models found either a positive or a negative
sentiment (above an absolute 0.1), and agree on the
sentiment direction (positive/negative).

We then compared the “implicit” group of sen-
tences to the where SA models were neutral but
humans were not, to the set of sentences where
model and human score were more aligned. We
compared the groups in terms of the selected fea-
tures: valence, arousal, dominance,10 and concrete-
ness.11 Finally, we used a Mann-Whitney U test to
examine differences between the groups (to further
validate our results, we performed additional tests;
see the Appendix for an overview of these results).

4 Results

Our selected group of 101 sentences represent a
divergence between human and text-based SA sys-
tems: humans found them to express some form
of sentiment not detected by the three SA models.
Notably, the average absolute human score of the
“implicit” group was slightly higher (0.23) than the
average score of the “explicit” group (0.22). For
example, the sentence “The other watched the
old man with his slitted yellow eyes and
then came in fast with his half circle of
jaws wide to hit the fish where he had
already been bitten” is perceived as negative

10We used the VAD lexicon (Mohammad, 2018) to retrieve
the valence, arousal and dominance scores for each word, av-
eraging scores over each sentence: https://saifmohammad.
com/WebPages/nrc-vad.html

11To retrieve concreteness scores of words and lemmatized
sentences individually, we used the concreteness lexicon by
Brysbaert et al. (2014): http://crr.ugent.be/archives/
1330
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Valence Dominance Arousal Concreteness

Word-based Implicit 0.581 ±0.163 0.476 ±0.152 0.379 ±0.155 2.759 ±1.174
Explicit 0.559 ±0.230 0.482 ±0.170 0.433 ±0.189 2.677 ±1.146

MWU test 724.263 696.247 582.587* 6196.182*

Sentence-based Implicit 0.596 ±0.109 0.495 ±0.118 0.401 ±0.106 2.732 ±0.37
Explicit 0.572 ±0.164 0.494 ±0.110 0.446 ±0.110 2.649 ±0.328

MWU test 39.308 36.558 25.146* 45.660*

Table 1: Mean and st.d. feature values of the implicit and explicit groups, where features are computed, respectively,
on a word basis (rows above) and on a sentence basis (rows below), as well as the results of the MWU test between
the groups in each setup. In the implicit group: sentences perceived non-neutral by humans but neutral by models
(below an absolute score of .1); in the explicit group: sentences where human and models were more aligned. *
p-value < 0.05.

Figure 2: Boxplots comparing implicit (n=101) and explicit (n=714) groups of sentences by scores of each of the
four features.

by human annotators, but does not contain any of
the explicit expressions of negative emotion that
text-based SA models usually pick up on.

We tokenized all the sentences using Word-
Net’s lemmatizer. For each sentence lemmatized,
we computed the average Valence, Arousal and
Dominance using the NRC-VAD-Lexicon. These
measures attempt to position a word in a three-
dimensional sentiment space, detailing different as-
pects of a word’s affective semantics. For example,
lion is higher than shark in valence and dominance,
but lower in arousal. For concreteness, we used
Brysbaert et al. (2014)’s lexicon of English lemmas.
This resource complements the elements modelled
by the NRC Lexicon, as it attempts to quantify the
concreteness of each word independently from its
affective aspect, even if it has been suggested that
abstract words are connected to a stronger valence
than concrete words (Kousta et al., 2011). These
dimensions of lexical semantics can appear quite

uncorrelated, but their interplay appears evident
when looking at many of the “implicit sentiment”
sentences from the novel, like the one cited above.
We then compared the average valence, arousal,
dominance, and concreteness of the words used in
the sentences perceived by at least one SA model as
having an absolute sentimental intensity stronger
than .1 (714 sentences) with those of the words
used in the sentences that only humans perceived
as sentimentally charged (101 sentences). Using
the Mann Whitney U test, we computed which of
the differences in textual features between the two
groups are significant. Here, we find that while
valence and dominance do not show significant
differences between the two groups, “implicit sen-
timent” sentences have a much lower arousal and a
slightly higher concreteness, on average, than the
set of “explicit” sentence – as can be seen in Ta-
ble 1. Two of the four feature dimensions appear
to be significant in the sentences that implicitly ex-
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Figure 3: Cumulative Empirical Distribution (CED) of features per group and statistics of the two-sample
Kolmogorov-Smirnov test (KS) for goodness of fit (on top). **p-value < 0.01.

press a sentiment: their level of concreteness and
their level of arousal.12 Valence in sentences with
lower arousal and higher concreteness appear more
detectable to the human eye than to models, point-
ing to a discrepancy between them. The statistical
significance of the two relevant categories is even
stronger when they are measured on a sentence-
rather than word base (Table 1).

This interplay could be precisely one of the com-
ponents of the “omissive prose” effect. For ex-
ample, one sentence which was perceived very
positive by human readers and neutral by mod-
els also holds high concreteness (2.78): “The boy
took the old army blanket off the bed
and spread it over the back of the chair
and over the old man’s shoulders”. It seems
to exemplify the notion of objective correlative –
that is, the literary technique of transmitting senti-
ment to readers without using emotion associated
words, through an exposition of concrete objects or
actions.13

To further validate these results, we examined
the distribution of our data, performing the The
Kolmogorov-Smirnov (KS) test14 on the empiri-
cal cumulative distribution of the groups (Fig. 3).
Considering the test values, we may reject the null
hypothesis that the two groups are drawn from the
same continuous distribution in the case of valence,
arousal, and concreteness (see Fig. 3).15

12The lack of difference in valence is likely an effect of
groups confounding positive and negative sentences.

13We only suggest this effect as the method we use – the
VAD and concreteness scores – may be considered a relatively
crude way of operationalizing this concept.

14We used the implementation of this test in the SciPy li-
brary: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.ks_2samp.html.

15The significance of valence is predictable, as we have
selected the sentences based on their valence. However, it is
not picked by all models as it “crosses over” the distribution
of explicit sentences. That is, implicit sentences are more
positive than the most negative explicit sentences, and more
negative than the most positive explicit sentences.

5 Conclusions and Future Works

In examining human and model sentiment annota-
tions in The Old Man and the Sea, we observed
a distinct group of sentences that garnered high
human scores but received neutral ratings from our
three SA models. Looking into textual features
of this group, we found that they can be distin-
guished by their levels of arousal and concreteness.
Because we might assume that humans in these
cases pick up on contextual information not avail-
able to the models, we find the difference in terms
of textual features between the groups particularly
interesting. More than just context appear to be
giving these sentences an evocative strength that is
not captured by the models.

The finding of higher levels of concreteness and
lower levels of arousal of this group of sentences
aligns with literary theories suggesting that writing
styles that employ techniques like “omissive writ-
ing” or the objective correlative technique evoke
a perception of sentiments in human readers with-
out any explicit emotional reference and without
using words directly associated to emotional states.
Rather, the evocative strength of these sentences
relies at least in part on words with a low arousal
profile, and higher concreteness levels, managing
to be particularly subtle in how sentiment charge
is transmitted to the reader. Our findings support
supplementing sentiment models with feature de-
tection when dealing with the literary domain, since
it may be that fiction texts use language differently
than non-fiction, e.g., employing objective correl-
atives to evoke sentiment in the reader. Further
exploration into arousal and concreteness may hold
promise for a more comprehensive understanding
of sentiment in prose in fiction with that in non-
fiction. Finally, broader quantitative studies of fic-
tion would help understanding how concreteness
and arousal resonate with readers, particularly re-
garding their appreciation of implicit sentiments’
evocation in prose.
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Limitations

We want to underline that the present work is an
examination of one work of fiction only, also due
to the fact that large-scale annotation of texts is a
complex and costly undertaking. Moreover, as this
study examined and drew conclusions from what
can be considered a particularly “canonical” text of
Western literary production, we note that it situates
the study in (prestigious) Western literary culture,
where certain norms of writing style may prevail.
As such, further study is needed to draw more far-
reaching conclusions, and the present study should
be considered only a step toward a more compre-
hensive examination of implicit sentiment expres-
sion in literary fiction.
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Test Valence Dominance Arousal Concreteness

MWU 724.263.0 696.247 582.588** 619.618*
T-test 1.8548 -0.7048 -5.6028** 2.3346*
T(W)-test 2.4353 -0.7703 -6.4615** 2.2885*
T(W)-test, 100 permutations 2.4353 -0.7703 -6.4615** 2.2885**

MWU 39.308 36.558 25.146** 45.660**
T-test 1.4119 0.1118 -3.8562** 2.4327*
T(W)-test 1.8972 0.1148 -3.6547** 2.2209*
T(W)-test, 100 permutations 1.8972 0.1148 -3.6547** 2.2209*

Table 2: Additional test between groups where features were calculated per word (above) and sentence (below).
Regarding the t-test, we also ran it without assuming equal population variance, we thus performed a Welch’s
(W) t-test with and without permutations (n=200). * p-value < 0.05, ** p-value < 0.05. Note that the p-value for
concreteness tends to be higher than for arousal (even if in all cases < 0.05, which might indicate that the difference
between groups are more strongly distinguished by arousal.

Constant Valence Arousal Dominance Concreteness

Coefficient -2.1609 -3.4922** -7.2940** 8.9520** 1.1254**

Table 3: The table presents the coefficients and associated p-values resulting from the Ordinary Least Squares
(OLS) regression analysis. We performed the regression on the combined “implicit”/“explicit” groups of sentences
(n=714+101), using the difference between human and roBERTa sentiment score as the dependant variable. The
coefficients represent the estimated effect of each independent variable (our four features) on the dependent variable,
score divergence. * p-values < 0.01 indicate that all variables have a statistically significant impact on score
divergence.
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Abstract
This paper investigates the language of propa-
ganda and its stylistic features. It presents the
PPN dataset, standing for Propagandist Pseudo-
News, a multisource, multilingual, multimodal
dataset composed of news articles extracted
from websites identified as propaganda sources
by expert agencies. A limited sample from this
set was randomly mixed with papers from the
regular French press, and their URL masked, to
conduct an annotation-experiment by humans,
using 11 distinct labels. The results show that
human annotators were able to reliably discrim-
inate between the two types of press across
each of the labels. We propose different NLP
techniques to identify the cues used by the an-
notators, and to compare them with machine
classification. They include the analyzer VAGO
to measure discourse vagueness and subjectiv-
ity, a TF-IDF to serve as a baseline, and four
different classifiers: two RoBERTa-based mod-
els, CATS using syntax, and one XGBoost com-
bining syntactic and semantic features.

1 Introduction

In times of warfare as well as in authoritarian
regimes, state propaganda is an informational
weapon whose aim is to damage the opponents’
reputation and to maintain trust in the state’s ac-
tions (Jowett and O’Donnell, 2019). With the devel-
opment of the internet and social networks, propa-
ganda has new media to sprawl and to cross borders
(Da San Martino et al., 2020a). Current trends on
news consumption show an increase in the num-
ber of people getting informed on digital device.1

Internet platforms are a new playground for pro-
pagandists, where they can disseminate partisan

1https://www.pewresearch.org/journalism/
fact-sheet/news-platform-fact-sheet/

pieces among news articles and opinions shared on
social media.

The rhetorical techniques of propagandists differ
and their detection is currently a topic of inter-
est (Da San Martino et al., 2020b; Quaranto and
Stanley, 2021). In this paper, we pursue this gen-
eral line of analysis, by examining the language of
propaganda and its stylistic features. More specif-
ically, we propose a comparison between human
classification and machine classification of propa-
ganda.

We present the PPN dataset, standing for Pro-
pagandist Pseudo-News, a multisource, multilin-
gual, multimodal dataset composed of news ar-
ticles extracted from websites identified as pro-
paganda sources by Newsguard and Viginum, a
French state-backed misinformation and foreign in-
terference surveillance organisation. Composition
of the dataset is detailed in Section 2.

To analyse the corpus and deepen our under-
standing of the language of propaganda, we also
conducted a multilabel annotation experiment in-
volving randomly mixing articles from that corpus
with a sample of articles from mainstream French
newspapers. The experiment is detailed in Sec-
tion 3, and the results are presented in Section 4,
showing that regular press articles and articles from
the corpus are recognizably different to annotators,
despite sharing topics.

To find the cues characteristic of each corpus,
we then used different techniques. In Section 5,
we use the expert system VAGO to check on the
occurrence of subjective and vagueness markers
in either type of corpus, since intentional vague-
ness (Égré and Icard, 2018) is among recognized
techniques of propaganda (Da San Martino et al.,
2020b) and its higher prevalence detectable in fake
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news (Guélorget et al., 2021). Then in Section 6,
we train machine learning models to detect articles
from propagandist sources, three based on text pro-
cessing and one on stylistic and syntactic features.
Explainability capabilities of the models are used
to confirm the features learnt by the models and to
discuss ways in which they can be improved.

2 The PPN dataset

The proposed PPN dataset is diverse in terms of
sources, topics and used languages. The corpus has
been extracted from 5 sources (news distribution
by source is shown in Table 1), all of which were
created after the Russian invasion of Ukraine on
February 24, 2022:

• rrn.media: Reliable Recent News (previously
named Reliable Russian News) has the form
of a news website publishing articles contain-
ing a pro-Russia or anti-Occident stance. The
website contains news in 9 languages (Arabic,
Chinese, English, French, German, Italian, Rus-
sian, Spanish and Ukrainian), which receive a
different coverage over time.

• tribunalukraine.info: this website aims at ac-
cusing Ukraine of committing war crimes and
financially benefiting from the conflict. The
writing style is more aggressive than rrn, as it
aims at damaging Ukraine’s reputation. All ar-
ticles from this source are available in English,
French, German, Russian and Spanish.

• waronfakes.com: the counterpart of tri-
bunalukraine, it aims at denying Russian war
crimes allegations. It does not publish news arti-
cles, but short summaries of allegations, and as
such it qualifies as fake news. All “debunked"
facts are available in Arabic, Chinese, English,
French, German and Spanish.

• notrepays.today and lavirgule.news: these
French-writing websites publish polarizing
news with the aim of damaging trust in Western
institutions. Contrarily to the first three sources,
which were created at the beginning of the Rus-
sian invasion, notrepays and lavirgule were cre-
ated one year later, with a related agenda.

Unlike some previous publications (Heppell
et al., 2023), we present the propaganda articles
in their original language for analysis, but know-
ing that several of the sites present translations

Source Number of documents
rrn 12,427
tribunalukraine 4,975
waronfakes 344
notrepays 480
lavirgule 503

Table 1: PPN articles distribution by source.

Language Number of documents
Arabic 1,079
Chinese 794
English 3,219
French 4,141
German 3,341
Italian 1,796
Russian 1,435
Spanish 2,485
Ukrainian 439

Table 2: PPN articles distribution by language.

in different languages. We share the collected
dataset on the following GitHub repository: https:
//github.com/hybrinfox/ppn. The distribution
of articles by languages is shown in Table 2.

3 Annotated corpus and labels

To understand how propaganda can be perceived
and its characteristics, we conducted an annota-
tion experiment on a subset of the French PPN
dataset. In order to balance the dataset, we added
articles from five French national newspapers of
different political orientations, namely lefigaro.fr,
lemonde.fr, marianne.fr, liberation.fr and media-
part.fr. The articles were randomly selected among
those sources. They had to be published after the
beginning of the Ukraine invasion (February 24,
2022) and to contain at least the mention of Rus-
sia or Ukraine. An additional filter, based on arti-
cle length, was applied to limit bias linked to the
length of articles. All annotated articles contained
between 1,000 and 10,000 characters (shorter arti-
cles belong almost exclusively to the propaganda
class and longer articles always belong to the regu-
lar class). A total of 48 articles were selected for
each type of press, with a maximum of 14 and a
minimum of 7 articles by source in the alternative
press, and a maximum of 15 vs. a minimum of 1
by source in the regular press, and roughly similar
distributions across the two types.

Eleven labels were used for the annotations. Fig-
ure 1 presents them in the order in which annotators
had to mark them, with a summary of their defi-
nition. The 11 labels included 5 labels targeting
manipulative content proscribed by the deontology
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• Vague: the information contained in the article is general with few details
or specific facts.

• Subjective: the article essentially presents opinions and the explicit or
implicit subjective viewpoint of its author.

• Exaggeration: the article presents information in an exaggerated or
excessive manner.

• Pejorative: the article primarily aims to vilify individuals or institutions.

• Descriptive: the article essentially reports facts or events rather than
opinions.

• Propaganda: the article gives a biased presentation of the situation and
seems to serve above all the interests of a state or organization.

• Satirical: the article is intended to make people laugh and is written in a
joking tone.

• Dishonest Title: the title reports false or artificially inflated information.

• Adequate Sources: the article cites its sources sufficiently and accu-
rately.

• Fake News: in your opinion, the article deserves to be called "fake
news".

• False Information: the article contains at least one false information.

Figure 1: Description of the 11 labels used for the anno-
tation task.

of journalism2 and the Gricean norms of coopera-
tive discourse (Quality in particular, Grice 1975),
namely “Dishonest Title”, “Fake News”, “False
Information”, “Exaggeration”, and “Propaganda”.
We also included 2 labels “Satirical” and “Pejora-
tive”, targeting jocular and adversarial intention;
and finally, 4 labels for features susceptible to be ap-
plicable to either type of press, with 2 labels target-
ing the expression of opinion or its absence, namely
“Subjective” and “Descriptive”, and 2 labels tar-
geting the quality of justification, namely “Vague”
and “Adequate Sources”. Each label was explicitly
defined and accompanied by examples in the an-
notation manual, except for “Fake News”, which
was deliberately left up to the annotator to judge
without explicit criteria, in order to find out about
its best predictors among the other labels. The label
“False Information” was presented last, since the
annotators were told they had the option to do some
research and fact-checking on each topic if neces-
sary, but in order to minimize the risk of the anno-
tators coming across the source of the articles. The
labels were binary (1 for “applies” and 0 for “does
not apply”) and the annotators forced to choose be-
tween them (with the option of giving a free com-

2See the 1971 Charter of Munich.

Figure 2: Topic distribution of articles from the anno-
tated corpus.

mentary). Some of our labels, finally, overlap with
the propaganda techniques listed in Da San Mar-
tino et al. (2020a), in particular our label “Pejo-
rative” with their “Name calling” and “Doubt”,
“Exaggeration” with “Exaggeration/Minimization”,
“Satirical/Pejorative/Subjective” with their “Loaded
language”, and “Vague” with their “Obfusca-
tion/Intentional vagueness”, except that they define
vagueness mostly in terms of confusion and unclar-
ity, whereas our definition targets generality/lack
of specificity.

After the annotation experiment, an additional
analysis of the topics was conducted to ensure that
regular articles were roughly about the same top-
ics as propaganda articles, in order to validate the
experiment results. To this end, we labeled the
articles depending on whether they were directly
about the armed conflict (labeled Related) or about
other topics such as economic sanctions or politics
(labeled Unrelated). The articles’ distribution is
shown in Figure 2.

Every source, with the exception of waronfakes
and mediapart, had articles in both classes. media-
part had only one article meeting our filtering con-
ditions, and waronfakes aims at denying war crimes
allegations, so it is logical that it only contains
articles directly about the armed conflict. Unex-
pectedly, the sample from lavirgule and notrepays
contained more articles not directly linked to the
conflict. Those articles seem to aim at polarizing
the public debate not only on the war in Ukraine,
but on other topics as well, including French pol-
itics. Overall, the annotated dataset is balanced,
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with 27 Related regular articles, 21 Unrelated reg-
ular articles, 20 Related propaganda articles, and
28 Unrelated propaganda articles.

4 Analysis of the annotations

The 6 annotators included the designers of the ex-
periment. Only one of them had briefly seen the
texts prior to annotating, in order to upload them on
the form used for the annotation task, but without
verifying their content. The articles were presented
in a common random order for all participants. To
avoid bias by source, the URL was removed, in
contrast to other datasets (viz. ISOT, Ahmed et al.
2018 or Horne and Adali 2017).

One article happened to contain mostly video
links, leaving a meta-content description of the jour-
nal’s policies on cookies: it could not be annotated,
and was removed, leaving a total of 48 alternative
vs. 47 regular articles for analysis. Among those,
five articles (4 regular, 1 alternative) happened to
bear an indication of their source by self-citation in
their content. Eleven articles were also truncated
because they were behind a paywall (ending on the
necessity to subscribe in order to access content).
We kept them for analysis, but knowing that they
might introduce a confound. Importantly, however,
post-hoc analyses made after exclusion of those 16
articles show the same main contrasts as reported
below.

The combined dataset presents individual anno-
tations grouped by annotator, instead of aggregate
data (as PolitiFact and GossipCop, Shu et al. 2018),
dropping personal commentaries on the articles to
secure anonymity.

In order to assess the quality of the annotations,
we calculated the inter-rater agreement based on
the percentage of agreement between annotators,
rescaled to 0 in a case of equal split between annota-
tors (3:3), and to 1 in case of unanimity (6:0). That
is, for each document, we computed the proportion
x of 1-answers, rescaled by the function returning
the value |2x − 1|. For example, a value of 0.4
indicates that 70% of the raters go in the same di-
rection, while a value of .6 or above indicates 80%
of agreement or more.

As shown in Figure 3b, for both the regular and
the alternative press articles, all labels reached a
mean value above .4, indicative of moderate to high
agreement. The agreement between annotators in-
creases systematically from the alternative to the
regular corpus, meaning that for each label, the

(a) Mean inter-annotator scores per label.

(b) Mean inter-annotator agreement per label.

Figure 3: Mean scores and agreement by label (error
bars=standard error of the mean).

agreement is higher in the regular corpus, com-
pared to the alternative corpus.

Regarding the labels themselves, Figure 3a
shows a strong contrast between the two types of
corpora. Except for the label “Satirical”, which
is almost never used in either type of corpus, the
other 10 labels are used in very distinct proportions
in either type of corpora (paired t-tests between
the two corpora by label are all significant at the
α = .01 significance level). While each of the 10
remaining labels is applied to some extent in the
alternative corpus, two labels are conspicuously
never applied in the case of the regular corpus,
namely: “False Information” and “Fake News”.
The labels “Descriptive” and “Adequate Sources”,
used for both types of corpora, are used in much
higher proportion in the regular case. The labels
“Subjective” and “Vague”, while occurring for the
regular corpus, are much less prevalent in the reg-
ular corpus. Finally, all other labels, in particular
“Exaggeration”, “Propaganda”, “Pejorative”, “Dis-
honest Title”, are applied only marginally in the
regular corpus.

The correlation matrix of the labels is displayed
in Figure 4. The label “Satirical” is not corre-
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Figure 4: Correlation matrix of the 11 labels used for
human annotations.

lated to other labels, due to its low frequency in
the annotations (about 1.5% of annotations), and
is left out in the remaining of the analysis. Two
main groups of labels emerge from the matrix: the
labels “Descriptive” and “Adequate Sources” are
strongly correlated with each other and inversely
with the others, and the remaining labels, including
“Vague”, “Subjective”, etc., are positively corre-
lated to various degrees. Our main label of interest,
“Propaganda”, correlates most strongly with “Fake
News”, “Pejorative”, and “Exaggeration”.

In summary, the annotators were able to reliably
discriminate between the two corpora, across each
of the dimensions selected by a specific label, and
moreover the strong correlation between the labels
“Propaganda” and “Exaggeration” legitimizes an
analysis in terms of stylistic cues.

5 Analysis with the VAGO tools

To see what textual features might explain the
difference between the two classes, we used the
lexical database and analyzer VAGO (Icard et al.,
2022). For a given text, VAGO calculates three
scores: a score of vagueness, a score of opin-
ion, and a score of relative detail (compared to
vagueness). To calculate the vagueness score of
a text, the system checks for the occurrence of
vague expressions, subcategorized into four types:
generality VG (“some”, “or”), approximation VA

(“about”, “almost”), one-dimensional vagueness
VD (“old”, “many”), and multi-dimensional vague-
ness VC (“good”, “effective”). For opinion, VAGO
checks for the occurrence of implicit markers of
subjectivity (all expressions of type VD and VC , in-

cluding evaluative adjectives and pejorative terms),
as well as explicit markers (first-person pronouns,
exclamation marks). For detail, finally, the sys-
tem compares the ratio of named entities to vague
terms.

While VAGO does not incorporate any world-
knowledge, previous studies on larger corpora have
shown that the VAGO scores of vagueness and opin-
ion were positively correlated with the label “bi-
ased” in news articles (Guélorget et al., 2021;
Icard et al., 2023), and that the score of detail-vs-
vagueness was negatively correlated with the label
“Satirical” (Icard et al., 2023). Hence, we asked if
the VAGO scores of vagueness, opinion, and detail
might be good predictors of the human annotations,
and in particular of labels such as “Exaggeration”,
“Pejorative”, “Propaganda” and “Dishonest Title”.

To investigate this question, we calculated the
correlation between the VAGO scores for each article
of the corpus and the mean inter-annotator scores
for all of the 10 labels (“Satirical” left aside). As
shown in Table 3, the labels “Subjective”, “Exag-
geration” and “Pejorative” turned out to be posi-
tively correlated to the VAGO scores of vagueness
and opinion, and negatively correlated to the scores
of detail-vs-vagueness. Consistent with these re-
sults, the scores of vagueness and opinion were also
negatively correlated with labels “Descriptive” and
“Adequate Sources”. By contrast, labels “Propa-
ganda”, “Dishonest Title”, “Fake News” and “False
Information” turned out to be positively correlated
to the scores of vagueness only. All these correla-
tions are weak to moderate, but they replicate re-
sults found in previous studies, with an even higher
order of magnitude in the labels “Subjective” and
“Descriptive” connected to VAGO’s opinion score, as
presented in Figure 5.

Human annotations of the label “Vague” did
not correlate with VAGO scores of either vagueness
or detail, however, contrary to expectations. We
conjecture that this could be due to a discrepancy
between the definition given of the label, which
targets generality vagueness, and the fact that the
VAGO vagueness score is based on more types of
vagueness, in particular the semantic vagueness of
one-dimensional and multi-dimensional adjectives,
which represent 96% of the VAGO lexicon.

Despite that, what Table 3 shows is that the VAGO
scores track the clustering of labels found in Figure
4: the polarity of the correlations for the labels
“Descriptive” and “Adequate sources” is inverse to
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that of the other labels. In summary, VAGO scores
are correlated with the separating features of the
alternative vs. regular press, but they explain only
part of the variance in the annotations. In the next
section, we examine classification models properly
in order to get further insights.

Label vague opinion detail
Vague 0.163 0.188 −0.180
Subjective 0.344∗ 0.384∗∗ −0.238
Exaggeration 0.282 0.222 −0.225
Pejorative 0.289 0.222 −0.265
Descriptive −0.371∗∗ −0.367∗∗ 0.228
Propaganda 0.249 0.165 −0.152
Dishonest Title 0.257 0.164 −0.206
Adequate Sources −0.210 −0.210 0.130
Fake News 0.233 0.178 −0.148
False Information 0.214 0.140 −0.099

Table 3: Pearson correlations between the labels’ mean
scores and the VAGO scores (∗ and ∗∗ indicate p-value
< .05 and < .01), with Bonferroni correction.

Figure 5: Pearson correlations between the VAGO mean
opinion score per article and the mean scores for la-
bels “Subjective” (left) and “Descriptive” (right). Blue
data points correspond to regular articles while red data
points correspond to alternative press articles.

6 Machine learning for propaganda
detection

Propaganda detection (Da San Martino et al.,
2020b) from texts can be a difficult task depending
on the form of the content. Classifying sentences
(Mapes et al., 2019) is harder, even for large lan-
guage models (LLMs) such as BERT (Devlin et al.,
2018). In this section, a methodology for train-
ing a propaganda detection model is explained and
evaluated. Smaller models with explainability capa-
bilities were also trained in order to identify which
parts of the articles the model considers when tak-
ing its decision.

6.1 Dataset for detecting propaganda related
to the conflict

In order to train a model that could be used to iden-
tify propaganda articles, it is required to also col-
lect regular press articles on a related topic. Here,

we present the larger corpus of regular press from
which the French subset of the previous section was
drawn. This larger corpus also contains English ar-
ticles, since the classification model is supposed to
handle classification in French and in English.

English regular articles were collected from 11
reliable news outlets, with constraints of date (be-
ing post Ukraine invasion), length (between 1,000
and 10,000 characters), and topic (mention Russia
and Ukraine). English regular articles were col-
lected using news-please (Hamborg et al., 2017)
before being filtered. The articles distribution by
source is given in Table 4. The wider set of French
regular articles was collected in the same way, but
with a more limited choice of sources, their distri-
bution is given in Table 5.

Source Number of articles
apnews.com 520
cbsnews.com 63
dailymail.co.uk 43
cnn.com 10
usatoday.com 10
forbes.com 42
foxnews.com 5
nbcnews.com 10
nytimes.com 4
theguardian.com 185
washingtonpost.com 12
Total 1,004

Table 4: English language regular articles distribution
by source.

Source Number of articles
lefigaro.fr 3
lemonde.fr 449
liberation.fr 386
marianne.net 523
mediapart.fr 6
Total 1,367

Table 5: French regular articles distribution by source.

6.2 Models
Five models were chosen for propaganda detection,
two in English and three in French. The English3

and French4 models are available on Huggingface-
hub and can be freely downloaded and tested.

The first English model used for classification
is a RoBERTa-base model (Liu et al., 2019) with a
classification layer using the last hidden state. For
practicality, we load pre-trained English RoBERTa

3https://huggingface.co/hybrinfox/
ukraine-operation_propaganda-detection-EN

4https://huggingface.co/hybrinfox/
ukraine-operation_propaganda-detection-FR
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weights and fine-tune the model using the Hugging-
Face transformers library.

The first French model combines the
“CamemBERT-base” version (Martin et al., 2019)
based on the RoBERTa architecture (Liu et al.,
2019) (Batch Size=10, Learning Rate=1e-05,
Epochs=5) with one classification layer and a BCE
loss function to detect whether the articles of our
French larger dataset counts as propaganda or not.

The second French model is an XGBoost (Chen
and Guestrin, 2016) (Extreme Gradient Boosting)
model. It is a scalable, distributed gradient-boosted
decision tree. Contrarily to the other three models
which process texts directly, XGBoost only takes
numerical values as input. In our case it takes
the following parameters: the length of the sen-
tence, the three VAGO scores (vagueness, opinion,
detail), the sentiment of the sentence, positive or
negative (using the HuggingFace sentiment classi-
fication model “Monsia/camembert-fr-covid-tweet-
sentiment-classification”), the number of verbs, ad-
jectives, adverbs and nouns present in the sentence
and the number of occurrences of dependencies
between the words (using the spaCy python library
for Natural Language Processing).5 The sentence
features are then aggregated by an operator. Sev-
eral aggregation operators were tested and gave
similar results so the sum operator was chosen.

Models applicable to both languages were tested.
The first is the neurosymbolic model CATS (Faye
et al., 2023). It does not use a priori knowledge
on the language except for the English syntax. It
is lighter than RoBERTa, and has explainability ca-
pabilities that will be useful to identify what the
model considers a marker of propaganda. It can
also be used for other languages and results for
a French version have also been reported. The
second one is TF-IDF, with which the texts are vec-
torized after removing stopwords and lemmatizing
the remaining words. This representation is then
processed by a random forest, predicting the class
of the article.

The datasets for each language were initially
split between training, validation and test using a
80/10/10 ratio with no overlap. The models were
chosen on the best validation score and the reported
results are on the test set, which was never used
during the training procedure.

5https://universaldependencies.org/u/dep/all.
html#al-u-dep/nmod

6.3 Results

Language Models Test accuracy
English RoBERTa 0.997

CATS - EN 0.953
TF-IDF - EN 0.985

French CamemBERT 0.997
CATS - FR 0.946
XGBoost 0.921

TF-IDF - FR 0.963

Table 6: Test accuracies for Ukraine invasion propa-
ganda detection models.

The models’ performances on their test sets are
reported in Table 6. Propaganda detection on this
specific topic is easily achieved by LLMs, and even
by shallow models like CATS or XGBoost. The per-
formance of CATS is slightly lower than RoBERTa’s,
but this is expected since it contains only 0.6 mil-
lion parameters, about 200 times fewer parameters
than RoBERTa-base with its 125 million parame-
ters. XGBoost’s performance is even lower, but the
model processes high-level features of the texts,
lacking other features that other models can use.

6.4 Identified markers of propaganda

The interest of training a smaller model like CATS
on the texts is to identify which markers are learnt
by this machine learning model. To this end, each
token’s contribution to the final decision is aggre-
gated by sentence, enabling us to recover the most
salient sentences from propaganda articles. These
sentences contain more markers of propaganda and
can help us understand what the model is tracking
when classifying articles between propaganda and
regular.

A representative example is given in Figure 6.
In this example, the first underlined sentence is a
case of laudatory exaggeration; the second one is
pejorative, and the third is again pejorative, with
even a racist insinuation. Other sentences in the
text contain propagandist cues, however, making
the selection hard to directly interpret. For com-
parison, we run VAGO on the text. In this case,
the scores of vagueness, opinion, and detail were
0.13, 0.08 and 0.42, respectively. The underlined
items correspond to vague and subjective mark-
ers found by VAGO. VAGO detects several adjectives
used pejoratively (“Old [Joe]”, “trivial” and “sim-
ple” in particular). It misses out on others (“smug”,
“round lost”), and on more complex syntactic mark-
ers (“even” in “even a child”, “by the way” to intro-
duce a derogatory and covertly racist remark). But
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it identifies several subjective adjectives reflecting
the implicit viewpoint of the writer.

“Round Lost Joe Biden made a rant in Warsaw about the " unity
of the West " and the" power of democracy ". But in his own
country , Vladimir Putin was more believable . The American
president’ s speech in Poland was not intended as a direct
response to the Russian leader , who addressed the Federal
Assembly the day before - and the entire world as well. Biden
’ s national security adviser Jake Sullivan claimed it was "
not a rhetorical contest with anybody " . But the 80 - year -
old politician ’ s smug stand - up proved otherwise: he tried
to confront his opponent from Moscow - and appeared to yield
to him. Old Joe was satisfied with a 20 - minute monologue on
the lawn of the Royal Castle - by comparison , Vladimir Putin
spoke for 1 hour 45 minutes. Biden’ s entire message was made
up of high-pitched quotations - especially for the applause
he prepared : " Democracies have become stronger , not weaker.
Autocracies have grown weaker , not stronger." Quite trivial
and as simple as possible - so that even a child would get
the point . By the way , there were a lot of children at the
President’ s speech , and of different races too. And all of
them had Ukrainian flags - in the best traditions of American
propaganda.”

Figure 6: Example of an article classified as propaganda
by CATS. The sentences contributing the most to the
propaganda class according to CATS are highlighted in
red while the VAGO vocabulary is underlined.

6.5 Explainability of the XGBoost model

We used the SHAP tool (Lundberg and Lee, 2017) to
analyze which features were the most useful for the
XGBoost classification. The results are reported in
Figure 7. We observe that overall syntactic features
bear more weight than other features in the detec-
tion of propaganda, with the number of punctuation
marks (PUNCTUATION) having greater impact than
the length of sentences (LENGTH_SENT), the num-
ber of clausal modifiers (ACL), of nominal subjects
(NSUBJ) and of sentences (ROOT) all receiving simi-
lar weight.

In Figure 8, we observe that the frequency per-
centage of punctuation compared to other tokens
is significantly higher in regular articles than in
propaganda articles (p = 8.31 × 10−240). We
observed more precisely which type of punctua-
tion was more represented in regular versus pro-
paganda articles. Compared to other tokens, we

Figure 7: SHAP explainability of the XGBoost model
for propaganda classification. Only the top 5 syntactic
features are displayed.

Figure 8: Percentage frequency distributions of “punct”
dependence in regular articles vs. propaganda articles.

Figure 9: Relative weight of punctuation marks in either
article type.

observed that propaganda articles contain signifi-
cantly more question marks (p = 2.12 × 10−32),
more quotation marks (p = 1.12 × 10−06), more
periods (p = 2.09 × 10−78), but fewer commas
(p = 1.47 × 10−290) than regular articles (see
Figure 9). Since propaganda articles happened
to be significantly shorter than regular articles
(p = 7.12 × 10−26), the data was normalized by
the length of the article, corresponding to the total
number of tokens in the article.

Looking at the VAGO-N scores on the corpora,
we observe that, besides punctuation, the VAGO-N
mean score of detail vs vagueness per article is sig-
nificantly higher for regular articles than for propa-
ganda articles (p = 2.66× 10−44, with Bonferroni
correction). By contrast, the differences between
the VAGO-N scores of vagueness and opinion are no
longer significant after Bonferroni correction.

6.6 Potential biases of machine learning
models

The near perfect accuracy of the models reported in
Table 6 concerning Large Language Models raises
questions about the shallowness of the learnt fea-
tures and about potential biases in the dataset.
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Regarding the first aspect, the high performance
of models such as TF-IDF and CATS shows that
these simpler models can also detect propaganda
when trained on a large dataset. The deeper models,
as a result of their higher complexity, can achieve
better scores, very close to 100%.

The high accuracy of TF-IDF, which uses only
lexical features, manifests a clear distinction be-
tween the language of regular articles versus pro-
paganda articles when they deal with the topic of
Ukraine operation. While the models are perform-
ing well on this specific topic, there is no guarantee
that they would perform equally well on other pro-
paganda topics.

We analyzed the terms whose TF-IDF scores
differ significantly between the two classes in the
French corpus. Among the terms more prevalent
in the propaganda corpus compared to the regu-
lar corpus, we find terms like “état” (state), “pays”
(country), “unis” (united), “déclaré” (declared),
“ue” (EU), “zelensky”, “biden”, “kiev”,“allemagne”
(Germany), “armes” (weapons). By contrast, terms
like “lire” (read), “russe” (Russian), “poutine”,
“kyiv”, “invasion”, “vladimir”, “guerre” (war),
“jeudi” (thursday), “mars” (march) and “lundi”
(monday) are more prevalent in the regular corpus.
We notice that “Kiev/Kyiv” is not spelled the same
way depending on the corpus. The name “Zelen-
sky” is cited more in propaganda articles, whereas
“Putin” is cited more in the regular articles of the
corpus. Finally, the regular corpus contains more
markers of precise time indications than the pro-
paganda corpus, consistently with the higher VAGO
score of detail.

7 Conclusion and perspectives

In this paper, we introduced PPN, a multilingual pro-
paganda dataset, and we conducted an experiment
to investigate the basis on which human annotators,
and then classification algorithms, can discriminate
propagandist articles from non-propagandist arti-
cles on a specific topic. The annotations reveal that
exaggeration, combined with lesser descriptive con-
tent, and absence of adequate sources, are prevalent
in assessments of propagandist press. The VAGO an-
alyzer confirmed that the use of vague markers is
significantly correlated with those features. Further
analyses based on different families of classifiers
revealed further syntactic cues, pertaining in partic-
ular to punctuation, but also to the lexicon.

Further work is needed to refine this analysis.
Machine learning models, while efficient at detect-
ing topic-specific propaganda, still have room for
improvement regarding explainability and general-
ization to other topics. If some alignment has been
observed with what humans attend to when judging
an article, there is still no guarantee that language
models process the text as humans would. The use
of propaganda technique classifiers to identify ma-
nipulative articles yields more explainability, but
at the cost of performance, especially for topic-
specific propaganda.

In addition to that, while the given scores are
very high, they were obtained for the task of topic-
specific propaganda detection, which is an easier
task than general propaganda detection. However,
topic-specific models still have use and can prevent
the spread of disinformation in cases of conflict
similar to the one used here.

While only a model for English and French pro-
paganda detection on the Ukraine invasion is pro-
vided here, we encourage the community to use the
parts of the dataset corresponding to their native
language to train more classifiers. Collaborations
could be considered to train a multilingual model,
based on the dataset and collected regular articles
from the other languages of the dataset. The same
goes for annotation experiments on the way pro-
paganda is perceived by readers, as propaganda
strategies may change by languages and by target
audience.

Last, in this paper we see that symbolic AI tools
explain part of the classifications operated by hu-
mans as well as by classifiers. We see two ways
in which explainability can be further improved:
firstly, by continuing to enrich tools like VAGO with
lexical and even syntactic units highlighted by clas-
sifiers or by annotators in this task; secondly by
considering more labels in order to improve the
quality of annotations and identify more stylistic
features. We introduced a label for “Pejorative”
speech, we may also have introduced a dual label
“Laudatory”, to identify cases of glorification also
typical of state propaganda, and to refine the cate-
gory of “Exaggeration”. Similarly, we may want
to better control the positive and negative connota-
tions of the labels, for instance by using labels such
as “Precise” rather than “Vague”, or “Objective”
instead of “Subjective”.
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Limitations

Annotation experiments were only run on a subset
of the French data. While an additional manual
verification of the data quality has been done for
English articles, other languages have not been
manually reviewed. There may be parsing errors
for some languages, and further analysis from na-
tive speakers of other languages may be required
before using these parts of the dataset.

Experiments on propaganda detection were only
run on two examples of Romance and Germanic
languages. While language models for these types
of languages are common, there is no guarantee
that performant language models exist for all pro-
posed languages from the dataset.

Ethics statement

This article deals with the topic of propaganda and
proposes a dataset to help improve propaganda de-
tection. Proposing and sharing propaganda detec-
tion methods is crucial to keep the information
space clean and safe to use for everyone.

Human exposition to propaganda should be con-
tained. To this end, we ensured that all annotators
were performing the annotation task voluntarily,
with a content warning, and the possibility to stop
the experiment at any time.

We encourage future works on the dataset to be
conducted cautiously and on limited parts of the
global dataset.
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Abstract

Named Entity Recognition (NER) is a key in-
formation extraction task with a long-standing
tradition. While recent studies address and aim
to correct annotation errors via re-labeling ef-
forts, little is known about the sources of human
label variation, such as text ambiguity, annota-
tion error, or guideline divergence. This is espe-
cially the case for high-quality datasets and be-
yond English CoNLL03. This paper studies dis-
agreements in expert-annotated named entity
datasets for three languages: English, Danish,
and Bavarian. We show that text ambiguity and
artificial guideline changes are dominant fac-
tors for diverse annotations among high-quality
revisions. We survey student annotations on a
subset of difficult entities and substantiate the
feasibility and necessity of manifold annota-
tions for understanding named entity ambigui-
ties from a distributional perspective.

1 Introduction

Named Entity Recognition (NER) is a fundamental
task in Natural Language Processing (NLP) (Yadav
and Bethard, 2018). The task involves identify-
ing named entities (NEs), such as Justin Bieber,
UNESCO, and Costa Rica, and classifying them
into semantic types, PER(son), ORG(anization),
and LOC(ation), etc. Despite recent successes
in achieving 93%+ strict F1 (Rücker and Akbik,
2023) on the English CoNLL03 benchmark (Tjong
Kim Sang and De Meulder, 2003), recent research
has observed that the percentage of noise in the
data, particularly in the test partition, is comparable
or even exceeding the error rates of state-of-the-art
(SOTA) models (Wang et al., 2019; Reiss et al.,
2020; Rücker and Akbik, 2023). They each con-
ducted manual corrections or re-annotations, and
model performances on their revised versions were
higher than on the original. However, label varia-
tion in NEs, as shown in Table 1, remains an issue
and hinders model performance.

Sentence P
E

R

L
O

C

O
R

G

M
IS

C

O

a. UK bookmakers [William Hill] ...

b. [ALPINE] SKIING ...

c. ... that there is no [God] .

Table 1: Distribution of qualified student annotations
on disagreed named entities in CoNLL03.

Human label variation (i.e., disagreement) refers
to linguistically debatable cases where multiple la-
bels are acceptable or appropriate in context (Plank
et al., 2014; Jiang and de Marneffe, 2022). Recent
studies that examine and benefit from disagree-
ments among annotators challenge the conventional
assumption of a single gold label. Learning from
disagreements provides further insights into label
distributions and preferences among human annota-
tors (Uma et al., 2021a; Plank, 2022; Fetahu et al.,
2023). However, there remains a gap for disagree-
ment analyses on expert-labeled manifold NEs.

This paper presents quantitative and qualitative
analyses of annotators’ disagreements on labeling
NEs in three Germanic variants: English, Danish,
and Bavarian, in which multiple annotation efforts
exist on the same documents. Unlike earlier stud-
ies that look at crowd-sourced data of unreliable
quality (Rodrigues et al., 2014; Lu et al., 2023), we
examine disagreements among expert annotations
that went through iterations of published revisions
and contrast them with the usual setting of indepen-
dent annotators. §2 presents related work in dis-
agreements and §3 demonstrates our setups. We an-
alyze entity and label disagreements in §4, sources
of disagreements in §5, and a student-surveyed an-
notation study in §6. §7 summarizes our work. We
release our annotations and analyses on Github.1

1https://github.com/mainlp/NER-disagreements/
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2 Related Work

Despite disagreements between human judgments
in subjective tasks (Prabhakaran et al., 2021; Da-
vani et al., 2022; Fetahu et al., 2023; Leonardelli
et al., 2023), annotation variation studies in NLP
are recently on the rise (Uma et al., 2021a; Plank,
2022; Fetahu et al., 2023). These include part-
of-speech tagging (Plank et al., 2014), anaphora
and pronoun resolution (Poesio and Artstein, 2005;
Poesio et al., 2019; Haber and Poesio, 2020), dis-
course relation labeling (Marchal et al., 2022; Py-
atkin et al., 2023), word sense disambiguation
(Passonneau et al., 2012; Navigli et al., 2013;
Martínez Alonso et al., 2015), natural language
inference (Nie et al., 2020; Jiang and de Marneffe,
2022; Liu et al., 2023), question answering (Min
et al., 2020; Ferracane et al., 2021), to name a few.

In NER, Rodrigues et al. (2014) crowd-sourced
problematic annotations from 47 Turkers on
CoNLL03, scoring F1 of 17.60% the lowest and∼60% on average against CoNLL03 annotations,
considerably under-performing the 90%+ inter-
annotator agreement among expert annotators and
SOTA model performances (Lu et al., 2023). Re-
cently, Rücker and Akbik (2023) brought for-
ward the newest CoNLL03 correction and thor-
oughly compared it with previous versions (Tjong
Kim Sang and De Meulder, 2003; Wang et al.,
2019; Reiss et al., 2020). However, many correc-
tions are due to project-dependent guideline alterna-
tions and 2.34% of entities remain unresolved due
to ambiguities. Thus, an onlooker assessment of
NE disagreements and label variations is missing,
particularly for expert annotations.

3 Datasets & Preprocessing

We analyze label variations in CoNLL03-styled
PER/LOC/ORG/MISC NE annotations in three Ger-
manic languages: English, Danish, and Bavarian
(a Germanic dialect without standard orthography),
where multiple annotation efforts on the same text
documents are (or will be) available. Since the En-
glish CoNLL03 (Tjong Kim Sang and De Meulder,
2003) and Danish DDT (Plank, 2019) texts under-
went iteration(s) of re-annotations or corrections
by subsequent scholars, we conduct a diachronic
comparison of the revisions for English and Dan-
ish. We also analyze disagreements on an in-house
NE dataset for Bavarian German to distinguish dis-
agreements among full-fledged corpora from inde-
pendent unadjudicated annotations.

English The seminal English CoNLL03 dataset
(henceforth original, Tjong Kim Sang and
De Meulder 2003) presents the renowned NLP
task to label flat and named entity spans into four
major semantic types (PER, LOC, ORG, MISC) us-
ing (B)IO-encoding. The dataset includes 14.04K,
3.25K, and 3.45K sentences in its train, dev, and
test partitions sourced from Reuters News between
1996-1997. Despite achieving 93%+ F1 score of
the best systems on original, CoNLL03 anno-
tations underwent several revisions (Wang et al.,
2019; Reiss et al., 2020; Rücker and Akbik, 2023).

Wang et al. (2019) (conllpp) manually corrected
186 (5.38%) test sentences. Reiss et al. (2020)
(reiss) used a semi-automatic approach to flag
a larger quantity of error-prone labels (3.18K) in
the entire dataset, and manually corrected 1.32K,
including 421 in the test, as well as fixing tokeniza-
tion and sentence splitting. They categorize these
errors into six types: Tag, Span, Both, Wrong,

Sentence, and Token. Rücker and Akbik (2023)
(clean) present the most comprehensive relabeling
effort by correcting 7.0% of all labels and adding a
novel layer for entity linking. Though 5%+ of an-
notation errors were fixed compared to original,
2.34% of entities in clean remain ambiguous.

To establish fair comparisons, we manually align
tokenization in the test partitions of original,

conllpp, reiss, and clean. These include re-
moving redundant line breaks, splitting hyphenized
compounds, etc. Our alignment results in 46,738
test tokens across the four versions and 5,629,
5,683, 5,636, 5,725 annotated entities respectively.

Danish Plank (2019) annotates NEs on the dev
and test partitions of the Danish Universal De-
pendencies (DDT, Johannsen et al. 2015). Plank
et al. (2020) (plank) revise annotations, expand
to more data and genres, and add -part/deriv suf-
fixed labels and second-level nesting. Hvingelby
et al. (2020) (hvingelby) re-annotate the dev and
test sets of Plank (2019) by adding POS-marked
proper nouns as NEs, resulting in ∼0.75 and ∼3.0
times more ORG and MISC NEs, such as national-
ities and derived adjectives. We focus on the test
partition (10,023 tokens) and compare hvingelby

to the more recent plank, removing nesting and -
part/deriv entities for cross-lingual analogy, leading
to 564 and 531 NEs in hvingelby and plank.

Bavarian We additionally analyze the test parti-
tion of an in-house Bavarian NE dataset with ∼12K
tokens and ∼400 entities on Wikipedia and Twitter
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Figure 1: Proportions of entity-level disagree-
ments in English original-clean, conllpp-clean,

reiss-clean, Danish plank-hvingelby, and Bavarian.

(X) annotated in 2023. Compared to the more estab-
lished and iteratively revised English and Danish
datasets, our Bavarian corpus represents the more
common scenario of disagreements between two
independent and unadjudicated annotations.

4 Entity-level Disagreements

Given our manually aligned tokenization across
datasets, we modify Reiss et al. (2020)’s six error
types into four entity-level disagreement types:

• Tag: same span selection, but different as-
signed tags, e.g., [a b]LOC vs. [a b]ORG;

• Span: different overlapping spans but the
same tag, e.g., [a b]LOC vs. [a]LOC b;

• Both: overlapping spans with different tags,
e.g., [a b]LOC vs. [a]ORG b;

• Missing: one annotator misses the entity com-
pletely, e.g., [a b]LOC vs. a b.

Figure 1 presents the frequencies and proportions
of entity-level disagreements in five paired compar-
isons: English original-clean, conllpp-clean,

reiss-clean, Danish plank-hvingelby, and be-
tween two Bavarian annotators. Tag disagreements
contribute to most cases among repeatedly deve-
loped English corpora. On the other hand, Dan-
ish and Bavarian contain more Missing disagree-
ments. Nevertheless, combining Tag and Missing

accounts for 85%+ of disagreements in all compar-
isons across three languages. That is, entity tagging
remains a bigger issue compared to span selection.

Tag and Missing disagreements are comparable
in that both concern tagging the same entity span
with different labels: the former with two differ-
ent entity types (i.e., two non-O labels), and the

Figure 2: Proportions of top 5 label pairs in Tag and
Missing disagreements in English, Danish, and Bavar-
ian.

latter with one entity type (a non-O label) and an
O. Figure 2 displays the proportions of the top 5
disagreed label pairs in Tag and Missing disagree-
ments across the five comparison scenarios (see
Appendix A for a full list of label pairs). LOC-ORG,
O-MISC and ORG-MISC are the most frequently dis-
agreed label pairs in English comparisons, totaling
70%+ label disagreements. On the other hand, most
(80%+) of Danish label disagreements concern
MISC, whereas O-related (i.e., Missing) disagree-
ments donate the majority (70%+) to Bavarian. To
understand which factors trigger these label dis-
agreements, §5 qualitatively analyzes the sources
of human label variations in three languages.

5 Sources of Disagreements

Taxonomy We attribute NE label variations to
three sources (Aroyo and Welty, 2015; Jiang and
de Marneffe, 2022): 1) text ambiguity for uncertain-
ties in the sentence meaning, 2) guideline update
where NE type definitions vary across different
guideline versions, and 3) annotator error. Text
ambiguity could be caused by different interpreta-
tions with or without enough context that hinders
pinpointing a definitive reference. Guideline up-
date occurs when one annotation version is inco-
herent with another guideline. This is dominant in
our analyses since annotation projects consist of
iterations of guidelines and annotation revisions.
For instance, whether proper noun-derived adjec-
tives, e.g., [ALPINE] in Table 1, should be LOC,
MISC, or not an entity (i.e., O); whether polyse-
mous LOC/ORG entities are labeled LOC or ORG

depending on context, or always as MISC. The
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Source types English Danish Bavarian
text ambiguity 19 ∣ 9.5% 7 ∣ 6.0% 10 ∣ 15.6%
guideline update 160 ∣ 80.0% 62 ∣ 52.5% 11 ∣ 17.2%
annotator error 21 ∣ 10.5% 49 ∣ 41.5% 43 ∣ 67.2%
Total 200 ∣ 100.0% 118 ∣ 100.0% 64 ∣ 100.0%

Table 2: Sources of label disagreements and their distri-
butions in English, Danish, and Bavarian samples.

last category, annotator error, refers to annotations
that differ from a single deterministic ground truth.
Closer inspections could fix annotators’ attention
slip errors, whereas special cultural knowledge is
needed for resolving knowledge gap disagreements.
We manually annotate a small sample of disagree-
ments in three languages using these source cat-
egories to separate guideline changes and textual
ambiguities from annotators’ mistakes.
Setup For English, we sample 200 disagreed test
entities between the original and the most re-
cent clean annotation. Since the Danish plank-

hvingelby comparisons and the Bavarian double
annotations have much smaller test sets, we sample
all test disagreements in the two languages, 118 en-
tities in Danish and 64 in Bavarian. Each language
sample is assessed by one computational linguist
who speaks that language. Table 2 presents the
source of disagreement results.

Additionally, we measure inter-annotator agree-
ment (IAA) on source classes between two asses-
sors2 on 50 ambiguous English original-clean

test entities and achieve 61.73% Cohen’s kappa.
Assessors find the hardest differentiating whether
the lack of contextual information resulted from
annotators’ personal knowledge backgrounds (an-
notator error) or the settings behind text segments
(text ambiguity). Even though surrounding sen-
tences are provided, NE annotators tend to focus
on the nearer context for NE tagging.
English In the original-clean comparison,
most (80.0%) of disagreements stem from differ-
ences in guideline update. To disambiguate incon-
sistent cases in original, clean updated the guide-
line to be less context-dependent: 1) ORG instead
of LOC for national sports teams as well as pub-
lic facilities, even for the flight to [Atlanta]ORG;
2) MISC is used for more abstract institutions and
adjectival affiliations e.g., [Czech]MISC politics;
3) instead of further correcting tokenizations and
splitting hyphenated compounds, they assign labels
that are relevant to part of the compound to the

2We use “assessors” to refer to our source of disagreement
coders and differentiate from “annotators” of the NE datasets.

entirety, e.g., [German-born]MISC. Aside from
guideline update, ambiguities occur for religious
deities, such as whether [Allah] or [God] should
be PER, MISC or O (see Table 1). Previous auto-
matic conversions from IO-encodings in original

to BIO in clean also caused disagreements since
it is hard to tell apart if a sequence of I-tags is
one entity or multiple, e.g., [Spanish]MISC [Super
Cup]MISC or [Spanish Super Cup]MISC.

Danish Akin to the English analysis, we found
that large parts (52.5%) of the ambiguous cases
in Danish stem from guideline updates, e.g., fre-
quently mentioned ferry routes are labeled LOC in
hvingelby but MISC in plank. Besides, we found
41.5% of disagreements are annotator errors, and
the majority are ORG-MISC disagreements and con-
cern a single hyphen-joint token with two sports
clubs, e.g., [Vejle-Ikast]. This points out a disad-
vantage of the current cross-lingual comparable
analysis — compounding morphology prevails in
Danish and Bavarian, and removing -part/deriv la-
bels leads to information loss.

Bavarian We present the less developed but
more common scenario of disagreements be-
tween two unadjudicated annotations in Bavarian.
Though achieving 85%+ Span IAA, annotator er-
ror (67.2%) remains the highest source of disagree-
ments. Apart from local entities, e.g., [Feucht]loc
(a small town in Bavaria), that require geographical
knowledge or detailed search, many of these anno-
tator errors classified based on the Bavarian guide-
line are indeed acceptable under certain versions
of the English CoNLL guidelines. For example,
when [Edeka] (a supermarket chain) functions as a
destination, the disagreement between LOC-ORG is
classified as annotator error in Bavarian, but would
rather be a guideline update in English.

6 Surveying Student Annotations

Though NE guidelines can be meticulously differ-
ent from each other, the underlying concepts of
PER, LOC, ORG are cognitively straightforward. To
inspect the distribution of multiple interpretations,
we follow Liu et al. (2023) to survey annotations
from 27 bachelor and master students in computa-
tional linguistics at LMU Munich. We gave them a
7-minute introduction to NEs, walked through the
CoNLL03 guideline,3 and showed some examples
of type ambiguities in NE annotations. Students

3www.cnts.ua.ac.be/conll2003/ner/annotation.txt
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were instructed in the classroom to annotate en-
tity types in English and Bavarian selected from
difficult examples in §5.4 We further sample 10
representative English CoNLL entities for the qual-
itative evaluation below.5 To ensure the quality
of student-surveyed annotations, we only keep an
annotation if 80%+ of entity labels match any of
the four CoNLL annotations. Table 1 demonstrates
the distribution of 14 qualified student annotations
on three examples (see Appendix B for the ten
representative English CoNLL entities).

Results demonstrate that label variation across
annotation projects are also prevalent in the student-
surveyed annotations. On one side, even with a
brief training, students were able to disambiguate
the contextual interpretations between [the away
team]ORG and [the home team]LOC in [LA CLIP-
PERS]ORG AT [NEW YORK]LOC. Our partici-
pants also recognize the collectiveness of [White
House]ORG, [Australia]ORG, etc., and the fixed-
ness of [EST]MISC (Eastern Standard Time). On
the other hand, knowledge gap or insufficient con-
text contribute to the high variance of [William
Hill], whether it refers to [the businessman]PER or
[the gambling bookstore he created]ORG. Annota-
tors also diverge in marginal cases: whether [God]
is PER or MISC and whether nominal derivatives
ALPINE and Fascist are NEs.

7 Conclusion

This paper examines named entity disagreements
across expert annotations and contrasts them with
the more common setting of individual annotations.
We demonstrate that human label variation, e.g.,
LOC-ORG and ORG-MISC, contribute to most En-
glish, Danish, and Bavarian disagreements. We
also discover that guideline updates and text am-
biguities are leading sources of disagreements in
established English and German datasets, whereas
annotator errors remain the dominant cause for
the new Bavarian corpus. Lastly, we survey stu-
dent annotations and encourage more researchers
to explore NE label variations to narrow the gap to
model performance.

Though modeling NER from label variation is
out of the scope of this paper, we embrace the
prospect of learning from disagreements (Uma

4Students acknowledge that their annotations could be
used for research purposes.

5The full English and Bavarian student-surveyed annota-
tions are available on GitHub.

et al., 2021b). Particularly, we look forward to con-
ducting annotations on a much larger scale in terms
of both the number of participants and annotated
instances to provide more statistically meaningful
NE distributions for NER models. Future work
also includes separating valid label variations from
true annotation mistakes by leveraging Automatic
Error Detection (AED) methods (Klie et al., 2023;
Weber and Plank, 2023). We hope tackling NER
through label variations can remedy the conflicts
among versions of annotation guidelines.
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A Proportions of Disagreed Label Pairs

Figure 3: Proportions of label pairs (full) in Tag and
Missing disagreements in English, Danish, and Bavar-
ian.

B Student Surveyed NE Annotations
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Sentence PER LOC ORG MISC O abstained
[ALPINE] SKIING 6

clean

3 4
original

conllpp

reiss

1

[LA CLIPPERS] AT NEW YORK 13
original

conllpp

reiss

clean

1

LA CLIPPERS AT [NEW YORK] 14
original

conllpp

reiss

0
clean

[White House] spokesman Mike McCurry said Clinton plans
to have regular news conferences during his second term .

2
original

conllpp

reiss

11
clean

1

UK bookmakers [William Hill]6 said on Friday they
have lengthened the odds of a Conservative victory .

5
original

conllpp

reiss

9
clean

The man who kicked [Australia] to defeat with a last-ditch
drop-goal in the World Cup quarter-final in Cape Town .

5
original

conllpp

reiss

9
clean

The years I spent as (soccer team) manager of
the [Republic of Ireland] were the best years of my life .

4
original

conllpp

reiss

9
clean

1

I bear witness that there is no [God] . 10
original

conllpp

reiss

4
clean

The granddaughter of Italy’s [Fascist]7 dictator Benito Mussolini 3 3
clean

8
original

conllpp

reiss

at about 3 A.M. local time / 1:30 A.M. [EST] 10
clean

2
original

conllpp

reiss

2

Table 3: 14 classroom surveyed and qualified annotations on difficult disagreement cases in CoNLL03 test.
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Abstract

People successfully communicate in everyday
situations using vague language. In particular,
colour terms have no clear boundaries as to the
ranges of colours they describe. We model peo-
ple’s reasoning process in a dyadic reference
game using the Rational Speech Acts (RSA)
framework and probabilistic semantics, and we
find that the implementation of probabilistic
semantics requires a modification from pure
theory to perform well on real-world data. In
addition, we explore approaches to handling tar-
get disagreements in reference games, an issue
that is rarely discussed in the RSA literature.

1 Introduction

Colour terms are vague. There are no clear bound-
aries for what red, green, blue, or other colour
words denote, causing uncertainty in their interpre-
tations, and yet we are able to effectively commu-
nicate using colours in everyday situations.

To explain how we work with this kind of uncer-
tainty, proponents of probabilistic semantics (for
example: Cooper et al., 2014; Sutton, 2015) con-
sider vagueness to be intrinsic to language, where
competent agents make graded judgements as to
whether a predicate applies to a situation. This
view of semantics allows us to model predicates
with conditional probabilities: for example, given
a colour patch (e.g. ), to what degree would an
agent believe that the term “green” is appropriate?

When we consider multiple such judgements
(for example, multiple colour patches), there are
in theory various ways that judgements could be
combined. These vary from simple fuzzy-logical
approaches to complex joint probability distribu-
tions, which we will discuss in detail in §2.1.

In this paper, we explore the practical feasibil-
ity of applying probabilistic semantics to model
vagueness. To ground the findings on real-world
data, we use a colour game dataset in English by
Monroe et al. (2017). The game displays three

Speaker: “red”

Figure 1: Illustration of Monroe et al. (2017)’s reference
game where three colours are shown, in a randomised
order, to a pair of participants. The speaker has to com-
municate the target colour (boxed) by typing messages
to the listener, who then selects the colour they believe
to be the target.

colours and requires the speaker to describe a target
colour, which the listener attempts to guess. Since
the colours are uniformly sampled from a colour
space, they are usually not canonical examples of
particular colour words. As such, successful com-
munication requires the participants to leverage the
vagueness of colour terms to solve the task.

Monroe et al. apply the Rational Speech Acts
(RSA) framework (Frank and Goodman, 2012) to
train a pragmatic model with a neural listener and
speaker, and find that pragmatic inference helps
in disambiguating similar colours. In this paper,
we first show that their model instantiates a fuzzy-
logical approach to vagueness. We then extend
their work by replacing the fuzzy-logical literal
listener model with one that uses probabilistic se-
mantics, and present three main contributions.

First, modelling real-world data with probabilis-
tic semantics requires an additional Gricean as-
sumption that not all world states be false in a
given context. Second, the RSA framework is sen-
sitive to the performance of the neural listener and
speaker models, with previously observed prag-
matic effects diminished after better tuning. Third,
we propose various ways to handle target disagree-
ments in dyadic reference games, and find that the
removal of disagreements significantly improves
model performance on Monroe et al.’s dataset.
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“red” 0.5 0.5
“pink” 0 1

(a) Literal listener L0 chooses a colour
based on the literal semantics of each ut-
terance u. When u is equally applicable
to both colours, L0 chooses at random.

“red” 1 0.33
“pink” 0 0.67

(b) Pragmatic speaker S1 weighs the in-
formativeness of each utterance in de-
scribing a target colour by softmaxing
L0’s choice distributions.

“red” 0.75 0.25
“pink” 0 1

(c) Pragmatic listener L2 infers the target
colour by reasoning about S1’s choice of
the given utterance over other possible
utterances.

Figure 2: Example of the RSA framework applied to a situation with two colours and a set of two possible utterances.
While both colours can be described as “red”, a pragmatic listener infers that such an utterance refers to the deeper
red patch (left), because a pragmatic speaker would have used the term “pink” if the target was the paler red (right).

2 Background & Related Work

Prior work has employed the RSA framework to
combine semantics and pragmatics in an effort to
quantify vagueness (Lassiter and Goodman, 2015;
Monroe et al., 2017; McDowell and Goodman,
2019). RSA formalises the theory of conversational
implicatures (Grice, 1975) by modelling people it-
eratively reasoning about each other’s actions to
infer their intentions. It quantifies the interaction by
defining explicit objectives for listener and speaker
agents. Note that the agents are not actual individu-
als, but representations of the layers of reasoning
that people perform as modelled by RSA. For a
survey, see: Degen (2023).

In the RSA framework, we assume that a speaker
wants to communicate knowledge about some
state c to a listener. A literal listener L0 chooses
a state c based on an utterance u’s literal inter-
pretation, L(u, c), and weighted by its prior P (c)
(Equation 1). Reasoning about such a listener, a
pragmatic speaker S1 chooses an utterance that
is most informative by considering the literal lis-
tener’s choices, subject to a rationality parameter α
and utterance cost κ(u) (Equation 2). Finally, rea-
soning about such a speaker, a pragmatic listener
L2 infers the intended state based on the speaker’s
choice of utterance (Equation 3). These three equa-
tions together define a pragmatic listener’s process
of understanding a single utterance.

L0(c | u;L) ∝ L(u, c)P (c) (1)

S1(u | c,L) ∝ eα log(L0(c|u;L))−κ(u) (2)

L2(c | u,L) ∝ S1(u | c,L)P (c) (3)

In Monroe et al.’s game, the states are equally
likely so the prior can be discounted. For simplicity,
we assume κ = 0 and α = 1. Figure 2 illustrates
an example of the agents’ reasoning process over
two context colours with two possible utterances.

2.1 Linguistic Approaches to Vagueness
Many approaches to modelling vagueness have
been proposed (for a recent survey, see: Burnett
and Sutton, 2020). Of particular interest are fuzzy
and probabilistic approaches, because of their com-
patibility with neural network models.

In fuzzy logic, truth is not binary, but instead
any real value from 0 to 1, which allows a di-
rect account of vagueness (Zadeh, 1965). Logical
operations such as AND and OR have fuzzy ver-
sions which are truth-functional, meaning that they
are defined as functions taking fuzzy truth-values
as input, and producing fuzzy truth-values as out-
put. The simplicity of a truth-functional approach
means that fuzzy logic is unable to express corre-
lations between truth-values (Fine, 1975). For ex-
ample, considering a borderline red/orange shade,
where “red” and “orange” are both 0.5 true, fuzzy
logic treats “red or orange” the same as “red or not
red”. This does not match empirical facts about the
use of vague terms (Sauerland, 2011).

In probabilistic logic, truth is binary but un-
certain, and this can also be used to account for
vagueness (Edgington, 1992, 1997). In contrast
to fuzzy logic, there can be correlations between
truth-values, which avoids the problems with the
fuzzy account. However, this requires us to define
a joint distribution over all truth-values.

To build up to a joint distribution, we first con-
sider marginal probabilities. For a predicate u, we
can define a probabilistic truth-conditional function
that gives the probability of the truth-value Tc be-
ing true, for state c, as in Equation 4. This function
gives the marginal probability for one truth-value,
ignoring the truth-values for other states c′.

tu(c) = P(Tc = ⊤;u) (4)

A simple approach to define a joint distribution
is to define a global threshold for truth, uniformly
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sampled from [0, 1], against which marginal proba-
bilities of truth are compared. Combining this with
the RSA framework can capture various aspects of
how vague terms are used (Lassiter, 2011; Lassiter
and Goodman, 2015).

However, using a global threshold is restrictive.
Emerson (2023) shows how we can see such a
model as one instance in a broader class of prob-
abilistic models. The most general model class
would consider all possible joint distributions, but
some distributions are computationally intractable.
Tractability can be maintained by restricting to
models that only require two things: the marginal
probability for each truth-value, and the correlation
between each pair of truth-values. A global thresh-
old corresponds to maximising all correlations.

3 Methodology

We adopt the model architectures in Monroe et al.,
with a few refinements, to train an RSA system on
the colour game dataset. As in Andreas and Klein
(2016), neural models enable listener and speaker
agents to be trained on real-world language use.

The literal listener uses an LSTM to process
utterances, and based on its final state it outputs
parameters for a score function. The literal speaker
generates utterances by encoding the colour context
as input to a second LSTM.

We refine Monroe et al.’s model by switching
the speaker’s decoding process from sampling to
beam search, as well as making the colour encoder
permutation-invariant to the order of inputs (Zaheer
et al., 2017), so as to improve performance.

The literal listener’s score function is given in
Equation 5, where f is the Fourier-transformed vec-
tor representation of a colour (a deterministic trans-
formation, following Monroe et al., 2016), and µ
and Σ are the outputs of the LSTM.

score(f) = −(f − µ)TΣ(f − µ) (5)

If Σ is positive definite, which Monroe et al. note
is the case for over 95% of their inputs, the score
is the logarithm of an unnormalised probability
density function (a multivariate Gaussian).

3.1 Base Literal Listener Model
Our baseline model follows Monroe et al. (2017),
normalising the scores with an exponential soft-
max to give the listener’s beliefs about the in-
tended colour. Viewing this under the approaches
in §2.1, it can be seen as implementing fuzzy logic,

since the exponential of the score is a fuzzy truth-
value and normalising fuzzy truth-values is a truth-
functional operation.

More precisely, for a given utterance u, the base
literal listener determines µ and Σ, then applies this
score function to each colour representation f . The
scores are passed through an exponential softmax
to give a probability distribution over the colours.

Given representations fi for a set of colours
C = {c0, . . . , cn}, the probability of choosing
each colour is therefore given by:

Lbase
0 (ci|u,C; (L)) =

exp(score(fi))∑
j exp(score(fj))

(6)

To define a Gaussian distribution, as suggested
by Monroe et al., the exp-scores must be rescaled
so that they integrate to 1. However, multiplying
all exp-scores by a constant leaves the distribution
in Equation 6 unchanged, and so does not change
any predictions of the model.

If Σ is positive definite, the score function
achieves its maximum value of 0 when f = µ.
The exp-scores are therefore guaranteed to lie in
the range [0, 1], and so can be interpreted as fuzzy
truth-values for the utterance u. The distribution
in Equation 6 is therefore a normalisation of these
fuzzy truth-values. The normalisation only depends
on the truth-values (with no further dependence on
u or fi), and so it is a truth-functional operation. In
other words, the model cannot express correlations
between truth-values.

As this interpretation only holds if Σ is positive
definite, we include a model in our experiments
where scores are clamped to be non-positive, so
that a fuzzy approach can be clearly contrasted
with probabilistic approaches.

3.2 Probabilistic Literal Listener Model Lprob
0

Instead of normalising the scores directly, our Lprob
0

probabilistic literal listener model interprets them
as log-probabilities of truth. We clamp the scores
to be non-positive and take their exponentials to
get marginal probabilities tu(c) for each colour c.

These marginals are then used to calculate the
joint distribution. Given three colours in the con-
text, there are 23 = 8 possible joint outcomes for
truth-values. The joint distribution is not fully de-
termined by the marginals, but also depends on
correlations between the truth-values. We assume
correlations are fixed (for more options, see: Emer-
son, 2023), and explore two possibilities: 1. truth-
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values are independent (Prob Indep), and 2. truth-
values are maximally correlated (Prob Max).

Finally, the joint distribution over truth-values
determines the distribution over listener actions. If
ties are randomly broken (u is true for more than
one colour, or false for all colours), then the chance
of picking the target colour is given in Equation 7,
where p··· is the joint probability of truth (⊤) or
falsehood (⊥) for each colour, and the first colour
is the target.

L
prob
0 (c0 | u,C; θ) = p⊤⊥⊥ +

1

2
p⊤⊤⊥

+
1

2
p⊤⊥⊤ +

1

3
p⊤⊤⊤ +

1

3
p⊥⊥⊥ (7)

However, we notice a problem with training a
model to maximise the “pure” probabilistic objec-
tive in Equation 7. Suppose an utterance is defi-
nitely false for some colour. In the case where all
truth-values are false, the “definitely false” colour
is chosen with a one-third chance. The only way
for the model to avoid this outcome is to set the
marginal probability of another colour to 1, but by
doing so it cannot convey uncertainty.

To avoid this problem, we introduce an “applied”
version of the model, where the all-false outcome
is excluded. In other words, if the speaker makes
an utterance, it must be true of something, which
is grounded on Grice’s maxim of quality.

3.3 Target Disagreements
In supervised learning, it is assumed there is an
objectively correct output for each input. This as-
sumption does not hold for our language reference
game. While there is a correct answer in the context
of the game (i.e. the target colour), the listener and
the speaker’s choices cannot be wrong given our
objective of modelling linguistic behaviour. From
the speaker’s perspective, the utterance they uttered
applies to the target colour; from the listener’s per-
spective, the colour they chose best matches the
utterance they received. As such, we propose and
investigate three alternative strategies for modelling
data with target disagreements:
Listener-Speaker (L-S): Train on the listener’s
choice but evaluate on the speaker’s target. The
aim is for the literal listener to emulate a human
listener’s literal interpretation function, and for the
pragmatic listener to apply pragmatic reasoning to
select the intended target.
Listener-Listener (L-L): Both train and evaluate
on the listener’s choice. This changes the objective

Model L0 Accuracy L2 Accuracy

Monroe et al. (2017) 85.08 86.981

Base 87.65 ± 0.05 88.03 ± 0.04
Base Clamped 87.51 ± 0.05 87.94 ± 0.04
Pure Prob Indep 76.06 ± 0.07 76.98 ± 0.12
Pure Prob Max 75.84 ± 0.08 76.85 ± 0.11
Applied Prob Indep 87.65 ± 0.03 87.96 ± 0.05
Applied Prob Max 87.58 ± 0.04 88.05 ± 0.06

Table 1: Mean accuracies for the main models evaluated
on the test set, shown with standard errors of the means.
Highest accuracy for each category in bold.

Model Far Split Close

Pure Prob Indep 93.00 75.04 62.76
Applied Prob Indep 96.25 87.76 79.78

∆ (Applied - Pure) 3.25 12.72 17.02

Table 2: Comparison of the mean accuracies between
the pure and applied probabilistic (Independent) mod-
els across different context types. Similar results were
obtained using the Max Correlation models.

to emulating listener behaviour rather than select-
ing the “correct” target.

No Disagreements (ND): Remove training data
with disagreements between speaker and listener,
but evaluate on the unaltered test set. The aim is to
understand if disagreements add noise to training.

3.4 Experiment Setup

Hyperparameters were determined with grid search
on the validation set, using the original data split.
Details of grid search and chosen hyperparameters
are given in Appendix A. Every model type was
trained 10 times to reduce the effect of random
initialisation (Reimers and Gurevych, 2017). Since
an RSA model contains two neural nets (listener
and speaker), they were arbitrarily paired up and
the same dyads used for all evaluations.

4 Results & Discussion

The accuracies of the main model types are sum-
marised in Table 1. Two-tailed p-values were above
0.1 between all pairs of the Base and Applied Prob
models,2 so there is no evidence to suggest a perfor-

1This is for Monroe et al.’s best performing blended model,
Le, as they did not report L2 accuracy on the test set.

2Bootstrap tests using 100,000 rounds of resampling were
performed over the six pairs of these four model types.
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Model tu(c) < 0.01 tu(c) > 0.99

Base Clamped 94.05% 3.98%
Pure Prob Indep 5.61% 89.22%
Applied Prob Indep 56.93% 7.91%

Table 3: Percentage of target colour samples that were
assigned extreme marginal probabilities tu(c).

Train-Test Target L0 Accuracy L2 Accuracy

S-S 87.65 ± 0.03 87.96 ± 0.05
L-S 86.32 ± 0.04 86.70 ± 0.05
L-L 85.02 ± 0.04 85.14 ± 0.04
S-S ND 87.85 ± 0.04 88.18 ± 0.06

Table 4: Mean accuracies for the probabilistic (indepen-
dent) models, using the specified target disagreement
strategy, shown with standard errors of the means. High-
est accuracy for each category in bold.

mance difference between these four model types.
Although the Base listener uses Monroe et al.’s

architecture, its accuracy is much higher, highlight-
ing the impact of model tuning and hyperparameter
selection. The best optimisation algorithm found in
grid search, AdamW, was not available at the time
their work was published. Also, they did not state
if their models were regularised, but we found a
dropout rate of 0.5 provided the best performance.
The narrower gap between our L0 and L2 accura-
cies suggests that some of the improvements from
pragmatic reasoning that Monroe et al. observed
could be attributed to an under-tuned model.

In addition, we find that the Base model pro-
duces positive scores for over 36% of the test set,
compared to less than 5% noted by Monroe et al..
For the Base Clamped model, this drops to 3.1%
for the raw scores before clamping, demonstrating
that training dynamics affect the interpretation of
the model as producing fuzzy truth-values.

4.1 Pure vs Applied Probabilistic Models
The performance differences between correspond-
ing Pure and Applied models are significant at
p<0.00001. The limitation of the Pure models is
apparent when comparing different difficulty con-
texts in Table 2. For the Pure models, the especially
poor results in contexts with two or more similar
colours (split and close) can be attributed to the
high marginal probabilities generated, as shown in
Table 3 (for full distributions, see Appendix B). If
two or more colours in a given context have high

marginal probability, the literal listener’s output
distribution will be skewed towards having equal
probabilities for those colours, drowning out any
signal from the utterance. In contrast, the Applied
models produce less extreme marginal probabilities
and achieve better performance in all context types.

4.2 Target Disagreements
The results of our proposed strategies to deal
with target disagreements are shown in Table 4.
The models trained on listener choices performed
poorer not only in predicting speaker targets, but
also in predicting listener choices. However, the
removal of target disagreements from training re-
sulted in significantly better performance than the
S-S models trained on the full dataset.3 This sug-
gests that the data samples with target disagree-
ments added noise during the training process, lead-
ing to poorer performance.

5 Conclusion

We demonstrated that a probabilistic semantic
model benefits from an assumption to exclude an
all-false outcome. While our results do not con-
clusively decide between probabilistic or fuzzy ap-
proaches to vagueness, this paper adds to a growing
body of work that people exhibit pragmatic be-
haviours as posited by the RSA framework. How-
ever, careful tuning of the literal listener model
reduces the effect size of pragmatic reasoning com-
pared to previous work. Finally, we explored the
previously undiscussed issue of target disagree-
ments. For the ‘Colors in Context’ dataset, we
found that disagreements may be best seen as noise.

Limitations

As our work focuses on one dataset, we are not
able to generalise about the effectiveness of our
proposed strategies to handle target disagreements
on other dyadic reference games. We have given
a theoretical justification and empirical analysis
of our results, and so we would expect our con-
clusions to generalise, but further work would be
needed to confirm this on other datasets. In addi-
tion, we applied fixed global correlations between
truth-values when exploring the probabilistic ap-
proach. We leave for future work to investigate the
impact of increasing correlation for more similar
inputs, as described by Emerson (2023).

3Two-tailed p-value of 0.0296 for the Prob Indep models in
Table 4. Results for other models are similar; see Appendix C.
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Figure 3: Mean deltas between L2 accuracy and L0

accuracy on the validation set, with varying numbers of
alternative utterances per colour. Shaded regions mark
the standard errors of the means. Number of utterances
were incremented by 1 between 1 and 20 utterances, and
incremented by 5 between 20 and 50 utterances.

A Grid Search and Hyperparameters

We performed grid search to identify the most per-
formant optimisation algorithms, learning rates,
and dropout values for training the neural listener
and speaker models. Five optimisation algorithms
were explored in the grid search process: Adam
(Kingma and Ba, 2015), AdamW (Loshchilov and
Hutter, 2019), NAdam (Dozat, 2016), Adadelta
(Zeiler, 2012), and Adagrad (Duchi et al., 2011).
The Adam and Adadelta algorithms were chosen
because they were used in Monroe et al. (2017),
while the other three were selected as alternative
adaptive optimisation algorithms. For the learning
rates, values ranging from 1 to 10−4 were selected
at regular logarithmic intervals, and dropout rates
ranging from 0 to 0.5 were selected at intervals of
0.1.

Based on the results from grid search, we trained
the listener models with AdamW using a learning
rate of 0.001 and 0.0004 for the base and proba-
bilistic models respectively, and the speaker model
with Adam using a learning rate of 0.001. Dropout
of 0.5 was applied to listener models, but not to
the speaker models as their performance degraded
significantly with any dropout. The neural models
used the same embedding and hidden dimension
sizes as in Monroe et al. (2017), which was 100.

We varied the beam size in the literal speaker’s
decoding process to analyse the impact on the
pragmatic listener’s performance. Since the lit-
eral speaker produces alternative utterances as a
proxy for the set of all possible utterances that
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Figure 4: Distribution of marginal probabilities pro-
duced by literal listener models for the target and dis-
tractor colours in the test set.

theoretical pragmatic agents would consider, we
conjectured that generating a larger number of ut-
terances should improve pragmatic performance.
As seen in Figure 3, the pragmatic effect increases
until around 15 to 20 utterances per colour before
plateauing, so we chose a beam size of 15 to main-
tain the trade-off between computation time and
performance.

For the grid search process, analysis of alterna-
tive utterances, and model checkpointing, accuracy
was evaluated using the validation set based on
the train/validation/test data split that Monroe et al.
created.

B Full Distribution of Marginal
Probabilities

Illustrations of the full distributions of marginal
probabilities produced by the literal listener models
are shown in Figure 4, as opposed to the summary
statistics given in Table 3.
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Model L0 Accuracy L2 Accuracy

Base: Speaker-Speaker 87.65 ± 0.05 88.03 ± 0.04
Base: Listener-Speaker 86.29 ± 0.04 86.74 ± 0.05
Base: Listener-Listener 84.97 ± 0.04 85.16 ± 0.04
Base: Speaker-Speaker, No Disagreements 87.98 ± 0.04 88.27 ± 0.04

Applied Prob Independent: Speaker-Speaker 87.65 ± 0.03 87.96 ± 0.05
Applied Prob Independent: Listener-Speaker 86.32 ± 0.04 86.70 ± 0.05
Applied Prob Independent: Listener-Listener 85.02 ± 0.04 85.14 ± 0.04
Applied Prob Independent: Speaker-Speaker, No Disagreements 87.85 ± 0.04 88.18 ± 0.06

Applied Prob Max Correlation: Speaker-Speaker 87.58 ± 0.04 88.05 ± 0.06
Applied Prob Max Correlation: Listener-Speaker 86.15 ± 0.06 86.66 ± 0.07
Applied Prob Max Correlation: Listener-Listener 84.90 ± 0.05 85.11 ± 0.05
Applied Prob Max Correlation: Speaker-Speaker, No Disagreements 87.88 ± 0.04 88.20 ± 0.05

Table 5: Mean accuracies for the base and applied probabilistic models, using the specified target disagreement
strategy, shown with standard errors of the means. Highest accuracy for each category in bold.

C Target Disagreements – Full Results

Table 5 lists the full results of various target dis-
agreement strategies for each model type. Com-
pared against Table 4, we see the same trends where
the No Disagreements strategy performed the best,
followed by Speaker-Speaker, Listener-Speaker,
and lastly the Listener-Listener strategy.
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Loftus, Sebastian, 73

Madureira, Brielen, 1
Maine, François, 62

Peng, Siyao, 73
Plank, Barbara, 22, 73

Robertson, Jonas, 33
Rossouw, David, 33

Schlangen, David, 1
Sun, Zihang, 73

Zhu, Xiliang, 33

Égré, Paul, 62

90


	Title page
	Copyright
	Introduction
	Organizing Committee
	Program Committee
	Table of Contents
	Program
	Taking Action Towards Graceful Interaction: The Effects of Performing Actions on Modelling Policies for Instruction Clarification Requests
	More Labels or Cases? Assessing Label Variation in Natural Language Inference
	Resolving Transcription Ambiguity in Spanish: A Hybrid Acoustic-Lexical System for Punctuation Restoration
	Assessing the Significance of Encoded Information in Contextualized Representations to Word Sense Disambiguation
	Below the Sea (with the Sharks): Probing Textual Features of Implicit Sentiment in a Literary Case-study
	Exposing propaganda: an analysis of stylistic cues comparing human annotations and machine classification
	Different Tastes of Entities: Investigating Human Label Variation in Named Entity Annotations
	Colour Me Uncertain: Representing Vagueness with Probabilistic Semantics

