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Abstract

People successfully communicate in everyday
situations using vague language. In particular,
colour terms have no clear boundaries as to the
ranges of colours they describe. We model peo-
ple’s reasoning process in a dyadic reference
game using the Rational Speech Acts (RSA)
framework and probabilistic semantics, and we
find that the implementation of probabilistic
semantics requires a modification from pure
theory to perform well on real-world data. In
addition, we explore approaches to handling tar-
get disagreements in reference games, an issue
that is rarely discussed in the RSA literature.

1 Introduction

Colour terms are vague. There are no clear bound-
aries for what red, green, blue, or other colour
words denote, causing uncertainty in their interpre-
tations, and yet we are able to effectively commu-
nicate using colours in everyday situations.

To explain how we work with this kind of uncer-
tainty, proponents of probabilistic semantics (for
example: Cooper et al., 2014; Sutton, 2015) con-
sider vagueness to be intrinsic to language, where
competent agents make graded judgements as to
whether a predicate applies to a situation. This
view of semantics allows us to model predicates
with conditional probabilities: for example, given
a colour patch (e.g. ), to what degree would an
agent believe that the term “green” is appropriate?

When we consider multiple such judgements
(for example, multiple colour patches), there are
in theory various ways that judgements could be
combined. These vary from simple fuzzy-logical
approaches to complex joint probability distribu-
tions, which we will discuss in detail in §2.1.

In this paper, we explore the practical feasibil-
ity of applying probabilistic semantics to model
vagueness. To ground the findings on real-world
data, we use a colour game dataset in English by
Monroe et al. (2017). The game displays three

Speaker: “red”

Figure 1: Illustration of Monroe et al. (2017)’s reference
game where three colours are shown, in a randomised
order, to a pair of participants. The speaker has to com-
municate the target colour (boxed) by typing messages
to the listener, who then selects the colour they believe
to be the target.

colours and requires the speaker to describe a target
colour, which the listener attempts to guess. Since
the colours are uniformly sampled from a colour
space, they are usually not canonical examples of
particular colour words. As such, successful com-
munication requires the participants to leverage the
vagueness of colour terms to solve the task.

Monroe et al. apply the Rational Speech Acts
(RSA) framework (Frank and Goodman, 2012) to
train a pragmatic model with a neural listener and
speaker, and find that pragmatic inference helps
in disambiguating similar colours. In this paper,
we first show that their model instantiates a fuzzy-
logical approach to vagueness. We then extend
their work by replacing the fuzzy-logical literal
listener model with one that uses probabilistic se-
mantics, and present three main contributions.

First, modelling real-world data with probabilis-
tic semantics requires an additional Gricean as-
sumption that not all world states be false in a
given context. Second, the RSA framework is sen-
sitive to the performance of the neural listener and
speaker models, with previously observed prag-
matic effects diminished after better tuning. Third,
we propose various ways to handle target disagree-
ments in dyadic reference games, and find that the
removal of disagreements significantly improves
model performance on Monroe et al.’s dataset.
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“red” 0.5 0.5
“pink” 0 1

(a) Literal listener L0 chooses a colour
based on the literal semantics of each ut-
terance u. When u is equally applicable
to both colours, L0 chooses at random.

“red” 1 0.33
“pink” 0 0.67

(b) Pragmatic speaker S1 weighs the in-
formativeness of each utterance in de-
scribing a target colour by softmaxing
L0’s choice distributions.

“red” 0.75 0.25
“pink” 0 1

(c) Pragmatic listener L2 infers the target
colour by reasoning about S1’s choice of
the given utterance over other possible
utterances.

Figure 2: Example of the RSA framework applied to a situation with two colours and a set of two possible utterances.
While both colours can be described as “red”, a pragmatic listener infers that such an utterance refers to the deeper
red patch (left), because a pragmatic speaker would have used the term “pink” if the target was the paler red (right).

2 Background & Related Work

Prior work has employed the RSA framework to
combine semantics and pragmatics in an effort to
quantify vagueness (Lassiter and Goodman, 2015;
Monroe et al., 2017; McDowell and Goodman,
2019). RSA formalises the theory of conversational
implicatures (Grice, 1975) by modelling people it-
eratively reasoning about each other’s actions to
infer their intentions. It quantifies the interaction by
defining explicit objectives for listener and speaker
agents. Note that the agents are not actual individu-
als, but representations of the layers of reasoning
that people perform as modelled by RSA. For a
survey, see: Degen (2023).

In the RSA framework, we assume that a speaker
wants to communicate knowledge about some
state c to a listener. A literal listener L0 chooses
a state c based on an utterance u’s literal inter-
pretation, L(u, c), and weighted by its prior P (c)
(Equation 1). Reasoning about such a listener, a
pragmatic speaker S1 chooses an utterance that
is most informative by considering the literal lis-
tener’s choices, subject to a rationality parameter α
and utterance cost κ(u) (Equation 2). Finally, rea-
soning about such a speaker, a pragmatic listener
L2 infers the intended state based on the speaker’s
choice of utterance (Equation 3). These three equa-
tions together define a pragmatic listener’s process
of understanding a single utterance.

L0(c | u;L) ∝ L(u, c)P (c) (1)

S1(u | c,L) ∝ eα log(L0(c|u;L))−κ(u) (2)

L2(c | u,L) ∝ S1(u | c,L)P (c) (3)

In Monroe et al.’s game, the states are equally
likely so the prior can be discounted. For simplicity,
we assume κ = 0 and α = 1. Figure 2 illustrates
an example of the agents’ reasoning process over
two context colours with two possible utterances.

2.1 Linguistic Approaches to Vagueness
Many approaches to modelling vagueness have
been proposed (for a recent survey, see: Burnett
and Sutton, 2020). Of particular interest are fuzzy
and probabilistic approaches, because of their com-
patibility with neural network models.

In fuzzy logic, truth is not binary, but instead
any real value from 0 to 1, which allows a di-
rect account of vagueness (Zadeh, 1965). Logical
operations such as AND and OR have fuzzy ver-
sions which are truth-functional, meaning that they
are defined as functions taking fuzzy truth-values
as input, and producing fuzzy truth-values as out-
put. The simplicity of a truth-functional approach
means that fuzzy logic is unable to express corre-
lations between truth-values (Fine, 1975). For ex-
ample, considering a borderline red/orange shade,
where “red” and “orange” are both 0.5 true, fuzzy
logic treats “red or orange” the same as “red or not
red”. This does not match empirical facts about the
use of vague terms (Sauerland, 2011).

In probabilistic logic, truth is binary but un-
certain, and this can also be used to account for
vagueness (Edgington, 1992, 1997). In contrast
to fuzzy logic, there can be correlations between
truth-values, which avoids the problems with the
fuzzy account. However, this requires us to define
a joint distribution over all truth-values.

To build up to a joint distribution, we first con-
sider marginal probabilities. For a predicate u, we
can define a probabilistic truth-conditional function
that gives the probability of the truth-value Tc be-
ing true, for state c, as in Equation 4. This function
gives the marginal probability for one truth-value,
ignoring the truth-values for other states c′.

tu(c) = P(Tc = ⊤;u) (4)

A simple approach to define a joint distribution
is to define a global threshold for truth, uniformly
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sampled from [0, 1], against which marginal proba-
bilities of truth are compared. Combining this with
the RSA framework can capture various aspects of
how vague terms are used (Lassiter, 2011; Lassiter
and Goodman, 2015).

However, using a global threshold is restrictive.
Emerson (2023) shows how we can see such a
model as one instance in a broader class of prob-
abilistic models. The most general model class
would consider all possible joint distributions, but
some distributions are computationally intractable.
Tractability can be maintained by restricting to
models that only require two things: the marginal
probability for each truth-value, and the correlation
between each pair of truth-values. A global thresh-
old corresponds to maximising all correlations.

3 Methodology

We adopt the model architectures in Monroe et al.,
with a few refinements, to train an RSA system on
the colour game dataset. As in Andreas and Klein
(2016), neural models enable listener and speaker
agents to be trained on real-world language use.

The literal listener uses an LSTM to process
utterances, and based on its final state it outputs
parameters for a score function. The literal speaker
generates utterances by encoding the colour context
as input to a second LSTM.

We refine Monroe et al.’s model by switching
the speaker’s decoding process from sampling to
beam search, as well as making the colour encoder
permutation-invariant to the order of inputs (Zaheer
et al., 2017), so as to improve performance.

The literal listener’s score function is given in
Equation 5, where f is the Fourier-transformed vec-
tor representation of a colour (a deterministic trans-
formation, following Monroe et al., 2016), and µ
and Σ are the outputs of the LSTM.

score(f) = −(f − µ)TΣ(f − µ) (5)

If Σ is positive definite, which Monroe et al. note
is the case for over 95% of their inputs, the score
is the logarithm of an unnormalised probability
density function (a multivariate Gaussian).

3.1 Base Literal Listener Model
Our baseline model follows Monroe et al. (2017),
normalising the scores with an exponential soft-
max to give the listener’s beliefs about the in-
tended colour. Viewing this under the approaches
in §2.1, it can be seen as implementing fuzzy logic,

since the exponential of the score is a fuzzy truth-
value and normalising fuzzy truth-values is a truth-
functional operation.

More precisely, for a given utterance u, the base
literal listener determines µ and Σ, then applies this
score function to each colour representation f . The
scores are passed through an exponential softmax
to give a probability distribution over the colours.

Given representations fi for a set of colours
C = {c0, . . . , cn}, the probability of choosing
each colour is therefore given by:

Lbase
0 (ci|u,C; (L)) =

exp(score(fi))∑
j exp(score(fj))

(6)

To define a Gaussian distribution, as suggested
by Monroe et al., the exp-scores must be rescaled
so that they integrate to 1. However, multiplying
all exp-scores by a constant leaves the distribution
in Equation 6 unchanged, and so does not change
any predictions of the model.

If Σ is positive definite, the score function
achieves its maximum value of 0 when f = µ.
The exp-scores are therefore guaranteed to lie in
the range [0, 1], and so can be interpreted as fuzzy
truth-values for the utterance u. The distribution
in Equation 6 is therefore a normalisation of these
fuzzy truth-values. The normalisation only depends
on the truth-values (with no further dependence on
u or fi), and so it is a truth-functional operation. In
other words, the model cannot express correlations
between truth-values.

As this interpretation only holds if Σ is positive
definite, we include a model in our experiments
where scores are clamped to be non-positive, so
that a fuzzy approach can be clearly contrasted
with probabilistic approaches.

3.2 Probabilistic Literal Listener Model Lprob
0

Instead of normalising the scores directly, our Lprob
0

probabilistic literal listener model interprets them
as log-probabilities of truth. We clamp the scores
to be non-positive and take their exponentials to
get marginal probabilities tu(c) for each colour c.

These marginals are then used to calculate the
joint distribution. Given three colours in the con-
text, there are 23 = 8 possible joint outcomes for
truth-values. The joint distribution is not fully de-
termined by the marginals, but also depends on
correlations between the truth-values. We assume
correlations are fixed (for more options, see: Emer-
son, 2023), and explore two possibilities: 1. truth-
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values are independent (Prob Indep), and 2. truth-
values are maximally correlated (Prob Max).

Finally, the joint distribution over truth-values
determines the distribution over listener actions. If
ties are randomly broken (u is true for more than
one colour, or false for all colours), then the chance
of picking the target colour is given in Equation 7,
where p··· is the joint probability of truth (⊤) or
falsehood (⊥) for each colour, and the first colour
is the target.

L
prob
0 (c0 | u,C; θ) = p⊤⊥⊥ +

1

2
p⊤⊤⊥

+
1

2
p⊤⊥⊤ +

1

3
p⊤⊤⊤ +

1

3
p⊥⊥⊥ (7)

However, we notice a problem with training a
model to maximise the “pure” probabilistic objec-
tive in Equation 7. Suppose an utterance is defi-
nitely false for some colour. In the case where all
truth-values are false, the “definitely false” colour
is chosen with a one-third chance. The only way
for the model to avoid this outcome is to set the
marginal probability of another colour to 1, but by
doing so it cannot convey uncertainty.

To avoid this problem, we introduce an “applied”
version of the model, where the all-false outcome
is excluded. In other words, if the speaker makes
an utterance, it must be true of something, which
is grounded on Grice’s maxim of quality.

3.3 Target Disagreements
In supervised learning, it is assumed there is an
objectively correct output for each input. This as-
sumption does not hold for our language reference
game. While there is a correct answer in the context
of the game (i.e. the target colour), the listener and
the speaker’s choices cannot be wrong given our
objective of modelling linguistic behaviour. From
the speaker’s perspective, the utterance they uttered
applies to the target colour; from the listener’s per-
spective, the colour they chose best matches the
utterance they received. As such, we propose and
investigate three alternative strategies for modelling
data with target disagreements:
Listener-Speaker (L-S): Train on the listener’s
choice but evaluate on the speaker’s target. The
aim is for the literal listener to emulate a human
listener’s literal interpretation function, and for the
pragmatic listener to apply pragmatic reasoning to
select the intended target.
Listener-Listener (L-L): Both train and evaluate
on the listener’s choice. This changes the objective

Model L0 Accuracy L2 Accuracy

Monroe et al. (2017) 85.08 86.981

Base 87.65 ± 0.05 88.03 ± 0.04
Base Clamped 87.51 ± 0.05 87.94 ± 0.04
Pure Prob Indep 76.06 ± 0.07 76.98 ± 0.12
Pure Prob Max 75.84 ± 0.08 76.85 ± 0.11
Applied Prob Indep 87.65 ± 0.03 87.96 ± 0.05
Applied Prob Max 87.58 ± 0.04 88.05 ± 0.06

Table 1: Mean accuracies for the main models evaluated
on the test set, shown with standard errors of the means.
Highest accuracy for each category in bold.

Model Far Split Close

Pure Prob Indep 93.00 75.04 62.76
Applied Prob Indep 96.25 87.76 79.78

∆ (Applied - Pure) 3.25 12.72 17.02

Table 2: Comparison of the mean accuracies between
the pure and applied probabilistic (Independent) mod-
els across different context types. Similar results were
obtained using the Max Correlation models.

to emulating listener behaviour rather than select-
ing the “correct” target.

No Disagreements (ND): Remove training data
with disagreements between speaker and listener,
but evaluate on the unaltered test set. The aim is to
understand if disagreements add noise to training.

3.4 Experiment Setup

Hyperparameters were determined with grid search
on the validation set, using the original data split.
Details of grid search and chosen hyperparameters
are given in Appendix A. Every model type was
trained 10 times to reduce the effect of random
initialisation (Reimers and Gurevych, 2017). Since
an RSA model contains two neural nets (listener
and speaker), they were arbitrarily paired up and
the same dyads used for all evaluations.

4 Results & Discussion

The accuracies of the main model types are sum-
marised in Table 1. Two-tailed p-values were above
0.1 between all pairs of the Base and Applied Prob
models,2 so there is no evidence to suggest a perfor-

1This is for Monroe et al.’s best performing blended model,
Le, as they did not report L2 accuracy on the test set.

2Bootstrap tests using 100,000 rounds of resampling were
performed over the six pairs of these four model types.
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Model tu(c) < 0.01 tu(c) > 0.99

Base Clamped 94.05% 3.98%
Pure Prob Indep 5.61% 89.22%
Applied Prob Indep 56.93% 7.91%

Table 3: Percentage of target colour samples that were
assigned extreme marginal probabilities tu(c).

Train-Test Target L0 Accuracy L2 Accuracy

S-S 87.65 ± 0.03 87.96 ± 0.05
L-S 86.32 ± 0.04 86.70 ± 0.05
L-L 85.02 ± 0.04 85.14 ± 0.04
S-S ND 87.85 ± 0.04 88.18 ± 0.06

Table 4: Mean accuracies for the probabilistic (indepen-
dent) models, using the specified target disagreement
strategy, shown with standard errors of the means. High-
est accuracy for each category in bold.

mance difference between these four model types.
Although the Base listener uses Monroe et al.’s

architecture, its accuracy is much higher, highlight-
ing the impact of model tuning and hyperparameter
selection. The best optimisation algorithm found in
grid search, AdamW, was not available at the time
their work was published. Also, they did not state
if their models were regularised, but we found a
dropout rate of 0.5 provided the best performance.
The narrower gap between our L0 and L2 accura-
cies suggests that some of the improvements from
pragmatic reasoning that Monroe et al. observed
could be attributed to an under-tuned model.

In addition, we find that the Base model pro-
duces positive scores for over 36% of the test set,
compared to less than 5% noted by Monroe et al..
For the Base Clamped model, this drops to 3.1%
for the raw scores before clamping, demonstrating
that training dynamics affect the interpretation of
the model as producing fuzzy truth-values.

4.1 Pure vs Applied Probabilistic Models
The performance differences between correspond-
ing Pure and Applied models are significant at
p<0.00001. The limitation of the Pure models is
apparent when comparing different difficulty con-
texts in Table 2. For the Pure models, the especially
poor results in contexts with two or more similar
colours (split and close) can be attributed to the
high marginal probabilities generated, as shown in
Table 3 (for full distributions, see Appendix B). If
two or more colours in a given context have high

marginal probability, the literal listener’s output
distribution will be skewed towards having equal
probabilities for those colours, drowning out any
signal from the utterance. In contrast, the Applied
models produce less extreme marginal probabilities
and achieve better performance in all context types.

4.2 Target Disagreements
The results of our proposed strategies to deal
with target disagreements are shown in Table 4.
The models trained on listener choices performed
poorer not only in predicting speaker targets, but
also in predicting listener choices. However, the
removal of target disagreements from training re-
sulted in significantly better performance than the
S-S models trained on the full dataset.3 This sug-
gests that the data samples with target disagree-
ments added noise during the training process, lead-
ing to poorer performance.

5 Conclusion

We demonstrated that a probabilistic semantic
model benefits from an assumption to exclude an
all-false outcome. While our results do not con-
clusively decide between probabilistic or fuzzy ap-
proaches to vagueness, this paper adds to a growing
body of work that people exhibit pragmatic be-
haviours as posited by the RSA framework. How-
ever, careful tuning of the literal listener model
reduces the effect size of pragmatic reasoning com-
pared to previous work. Finally, we explored the
previously undiscussed issue of target disagree-
ments. For the ‘Colors in Context’ dataset, we
found that disagreements may be best seen as noise.

Limitations

As our work focuses on one dataset, we are not
able to generalise about the effectiveness of our
proposed strategies to handle target disagreements
on other dyadic reference games. We have given
a theoretical justification and empirical analysis
of our results, and so we would expect our con-
clusions to generalise, but further work would be
needed to confirm this on other datasets. In addi-
tion, we applied fixed global correlations between
truth-values when exploring the probabilistic ap-
proach. We leave for future work to investigate the
impact of increasing correlation for more similar
inputs, as described by Emerson (2023).

3Two-tailed p-value of 0.0296 for the Prob Indep models in
Table 4. Results for other models are similar; see Appendix C.
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Figure 3: Mean deltas between L2 accuracy and L0

accuracy on the validation set, with varying numbers of
alternative utterances per colour. Shaded regions mark
the standard errors of the means. Number of utterances
were incremented by 1 between 1 and 20 utterances, and
incremented by 5 between 20 and 50 utterances.

A Grid Search and Hyperparameters

We performed grid search to identify the most per-
formant optimisation algorithms, learning rates,
and dropout values for training the neural listener
and speaker models. Five optimisation algorithms
were explored in the grid search process: Adam
(Kingma and Ba, 2015), AdamW (Loshchilov and
Hutter, 2019), NAdam (Dozat, 2016), Adadelta
(Zeiler, 2012), and Adagrad (Duchi et al., 2011).
The Adam and Adadelta algorithms were chosen
because they were used in Monroe et al. (2017),
while the other three were selected as alternative
adaptive optimisation algorithms. For the learning
rates, values ranging from 1 to 10−4 were selected
at regular logarithmic intervals, and dropout rates
ranging from 0 to 0.5 were selected at intervals of
0.1.

Based on the results from grid search, we trained
the listener models with AdamW using a learning
rate of 0.001 and 0.0004 for the base and proba-
bilistic models respectively, and the speaker model
with Adam using a learning rate of 0.001. Dropout
of 0.5 was applied to listener models, but not to
the speaker models as their performance degraded
significantly with any dropout. The neural models
used the same embedding and hidden dimension
sizes as in Monroe et al. (2017), which was 100.

We varied the beam size in the literal speaker’s
decoding process to analyse the impact on the
pragmatic listener’s performance. Since the lit-
eral speaker produces alternative utterances as a
proxy for the set of all possible utterances that

0 0.5 1
0%

20%

40%

60%

80%

100%

Pure: Target

0 0.5 1
0%

20%

40%

60%

80%

100%
Pure: Distractors

0 0.5 1
0%

20%

40%

60%

80%

100%

Applied: Target

0 0.5 1
0%

20%

40%

60%

80%

100%

Applied: Distractors

0 0.5 1
0%

20%

40%

60%

80%

100%

Base Clamped: Tar-
get

0 0.5 1
0%

20%

40%

60%

80%

100%

Base Clamped: Dis-
tractors

Figure 4: Distribution of marginal probabilities pro-
duced by literal listener models for the target and dis-
tractor colours in the test set.

theoretical pragmatic agents would consider, we
conjectured that generating a larger number of ut-
terances should improve pragmatic performance.
As seen in Figure 3, the pragmatic effect increases
until around 15 to 20 utterances per colour before
plateauing, so we chose a beam size of 15 to main-
tain the trade-off between computation time and
performance.

For the grid search process, analysis of alterna-
tive utterances, and model checkpointing, accuracy
was evaluated using the validation set based on
the train/validation/test data split that Monroe et al.
created.

B Full Distribution of Marginal
Probabilities

Illustrations of the full distributions of marginal
probabilities produced by the literal listener models
are shown in Figure 4, as opposed to the summary
statistics given in Table 3.
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Model L0 Accuracy L2 Accuracy

Base: Speaker-Speaker 87.65 ± 0.05 88.03 ± 0.04
Base: Listener-Speaker 86.29 ± 0.04 86.74 ± 0.05
Base: Listener-Listener 84.97 ± 0.04 85.16 ± 0.04
Base: Speaker-Speaker, No Disagreements 87.98 ± 0.04 88.27 ± 0.04

Applied Prob Independent: Speaker-Speaker 87.65 ± 0.03 87.96 ± 0.05
Applied Prob Independent: Listener-Speaker 86.32 ± 0.04 86.70 ± 0.05
Applied Prob Independent: Listener-Listener 85.02 ± 0.04 85.14 ± 0.04
Applied Prob Independent: Speaker-Speaker, No Disagreements 87.85 ± 0.04 88.18 ± 0.06

Applied Prob Max Correlation: Speaker-Speaker 87.58 ± 0.04 88.05 ± 0.06
Applied Prob Max Correlation: Listener-Speaker 86.15 ± 0.06 86.66 ± 0.07
Applied Prob Max Correlation: Listener-Listener 84.90 ± 0.05 85.11 ± 0.05
Applied Prob Max Correlation: Speaker-Speaker, No Disagreements 87.88 ± 0.04 88.20 ± 0.05

Table 5: Mean accuracies for the base and applied probabilistic models, using the specified target disagreement
strategy, shown with standard errors of the means. Highest accuracy for each category in bold.

C Target Disagreements – Full Results

Table 5 lists the full results of various target dis-
agreement strategies for each model type. Com-
pared against Table 4, we see the same trends where
the No Disagreements strategy performed the best,
followed by Speaker-Speaker, Listener-Speaker,
and lastly the Listener-Listener strategy.
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