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Abstract

The similarity of representations is crucial for
WSD. However, a lot of information is encoded
in the contextualized representations, and it is
not clear which sentence context features drive
this similarity and whether these features are
significant to WSD. In this study, we address
these questions. First, we identify the sentence
context features that are responsible for the sim-
ilarity of the contextualized representations of
different occurrences of words. For this pur-
pose, we conduct an explainability experiment
and identify the sentence context features that
lead to the formation of the clusters in word
sense clustering with CWEs. Then, we pro-
vide a qualitative evaluation for assessing the
significance of these features to WSD. Our re-
sults show that features that lack significance
to WSD determine the similarity of the rep-
resentations even when different senses of a
word occur in highly diverse contexts and sen-
tence context provides clear clues for different
senses.

1 Introduction

Contextualization is a powerful tool as it enables
us to capture sentence context. This is crucial es-
pecially in word sense disambiguation (WSD) be-
cause sentence context provides valuable informa-
tion for resolving lexical ambiguity in both NLP
and human language processing.

The similarity of representations is crucial for
WSD. With contextualization, we expect the rep-
resentations of different occurrences of the same
sense to be similar to each other. This is based on
the assumption that different senses of a word occur
in different contexts and sentence context contains
explicit clues that signal one of the senses of the
word. Consider the sentences in (1) that demon-
strate two senses of ‘bank’. In both sentences, some
words successfully signal each sense of the word;
in (1-a), the words ‘money’ and ‘withdraw’ and in
(1-b), the words ‘picnic’ and ‘river’.
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(D) ‘bank’ (homonymy):
a. financial institution:
I went to the bank to withdraw money.
b.  geographical feature:
They had a picnic by the river bank.
2) ‘pass’ (polysemy):
a.  go across or through:
She passed through towns.
b.  move past:

She passed the bakery on her way.

However, in practice, we lack clarity on which
specific sentence context features are responsible
for the similarity of the contextualized represen-
tations. It has been shown that a wide variety of
information is encoded in the contextualized rep-
resentations (Sajjad et al., 2022) and using contex-
tualized word embeddings (CWEs) of pre-trained
language models alone does not achieve good per-
formance in unsupervised settings (Yenicelik et al.,
2020).

The purpose of this study is to investigate which
sentence context features determine the similarity
of the representations of different occurrences of
words and whether these features are significant
to WSD. By doing so, we aim to provide a clearer
understanding of contextualized representations in
terms of their ability to capture different meanings
of words. For this purpose, we conduct an explain-
ability experiment. We focus on word sense clus-
tering with CWEs of BERT (Devlin et al., 2019)
and identify sentence context features that lead to
the formation of the clusters. This way, we de-
termine which features drive the similarity of the
representations.

Our cluster explainability method follows sev-
eral steps and is depicted in Figure 1. We start by
performing word sense clustering with CWEs and
cluster the sentences of a word. Our aim is essen-
tially to reverse the word sense clustering process
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Figure 1: Cluster Explainability Method: i) Perform Word Sense Clustering with CWEs, ii) Represent each sentence
with sentence context features, iii) Assign each sentence a label based on the cluster it belongs to, iv) Train a
classifier to predict the clusters that sentences belong to based on their sentence context features, v) Apply feature
selection to determine the sentence context features responsible for the performance of the classifier.

and recreate the clusters with a classification task.
For this purpose, we represent each sentence with
its sentence context features and assign it a label
based on the cluster that it belongs to. Then, we
train a classifier to predict the cluster labels of the
sentences based on their sentence context features.
As the final step, we apply a feature selection algo-
rithm to the classifier to determine which features
are the most relevant for the performance of the
classifier. This tells us which sentence context fea-
tures lead to the formation of the clusters. We use
this method to identify the features that lead to the
clusters for each word in our dataset. Finally, we
assess the significance of these features to WSD
for each word through qualitative evaluation.

In this study, we distinguish two types of lex-
ical ambiguity; homonymy and polysemy. The
most distinctive feature that distinguishes these
two types is the semantic relatedness of their
senses (Klepousniotou, 2002; Klepousniotou and
Baum, 2007; Klepousniotou et al., 2008, 2012).
Homonyms have less semantically related senses
compared to polysemes. As a result, homonyms
occur in more diverse contexts. Consider the exam-
ples in (1) and (2). The provided senses of ‘bank’
are homonymous, whereas those of ‘pass’ are poly-
semous. The senses of ‘bank’ are not related seman-
tically and the noun co-occurs with semantically
different words in its different senses (‘money’,
‘withdraw’ vs. ‘river’, ‘picnic’). However, this is
not true for ‘pass’. The meaning difference be-
tween the senses of ‘pass’ is less clear and the verb
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co-occurs with words that are similar in meaning
in its different senses, specifically words that are
related to a location.

Their inherent differences also result in differ-
ences in NLP performance. For example, WSD
performance is better with homonyms (Nair et al.,
2020; Haber and Poesio, 2021) and contextualiza-
tion affects homonyms more (Sevastjanova et al.,
2021) compared to polysemes. Therefore, it’s im-
portant to consider that not all words present an
equal challenge for WSD. In addition to that, it’s
important to consider that different lexical ambigu-
ity types have different relations to context, and as
a result, the information that is required for their
disambiguation might not always be the same. In
this study, we expect different results for each type.
Considering that homonyms occur in more diverse
contexts, we expect sentence context to provide
clearer clues for their different senses and the simi-
larity of the representations to be affected by these
clues.

Our results show that the sentence context fea-
tures that are responsible for the similarity of the
representations and lead to the formation of clus-
ters lack significance to WSD in most cases. This
is true for both lexical ambiguity types. Even with
homonyms—where different senses of a word oc-
cur in highly diverse contexts and sentence context
provides clear clues for different senses—the simi-
larity of the representations does not arise from the
significant features.



2 Related Work

Studies have shown that the similarity of the em-
beddings is primarily influenced by the sentence
context rather than the meaning of words. Etha-
yarajh (2019) have shown that words have different
representations based on their contextual variation,
rather than their meaning variation. Similarly, Gar-
cia (2021) have shown that the similarity between
a word and its synonym is lost when the sentence
context is identical for different words; the simi-
larity between a word and a random word is not
different from the similarity between a word and its
synonym when their sentence contexts are similar.

One reason for this is that a lot of information is
encoded in the contextualized representations and
they affect the similarity of the representations. Saj-
jad et al. (2022) have shown that the information
encoded in the contextualized representations can
be explained to some extent by semantic, morpho-
logical, syntactic, and lexical concepts. These con-
cepts include the words’ POS tags, CCG super-tags,
ngrams, casings, WordNet concepts, and so on. Ad-
ditionally, Mickus et al. (2020) have shown that the
similarity of the representations is affected by the
segment embeddings that the model assigns to to-
kens to indicate their sentences. In this study, this
is not an issue because we only use one sentence as
an input. However, we aim to investigate whether a
similar effect can be found for the positional encod-
ing, resulting words in the same position having
similar representations.

Clustering reveals these similarities within the
representations. Sajjad et al. (2022) have shown
that the clusters of contextualized representations
overlap with the concepts that are found to be en-
coded in the representations. Furthermore, it has
been shown that word sense clustering with CWEs
of the BERT model doesn’t achieve good perfor-
mance and sentence context similarities have been
observed within the clusters (Yenicelik et al., 2020).
The effects of the sentence context have been also
observed in similarity ranking for WSD with CWEs
of BERT (Gessler and Schneider, 2021). However,
there hasn’t been any effort to systematically ex-
plain the relation between sentence context and
contextualized representations of different occur-
rences of the same word and with a focus on WSD.
This study aims to fill this gap.

Finally, the studies that distinguish different
types of lexical ambiguity have shown that WSD
performance with CWEs changes depending on the
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type and it is easier to disambiguate homonymy
than polysemy (Nair et al., 2020; Haber and Poe-
sio, 2021). Similarly, contextualization of BERT
affects different types differently and homonyms
are affected more by contextualization due to the
fact that they occur in more diverse contexts (Sev-
astjanova et al., 2021). In this study, we also expect
the results to be different for each type. In the
case of homonymy, we expect sentence context to
provide clearer clues for different senses and the
similarity of the representations to be affected by
these clues.

3 Data

We use SemCor (Miller et al., 1993) which pro-
vides sentences that are annotated with WordNet
senses for a wide variety of words (Fellbaum, 2010)
for English. We restrict our focus to nouns and
verbs. A word can be both homonymous and poly-
semous at the same time because different senses
of a word can have different relations, e.g. two
senses can be homonymous while another two can
be polysemous. Because of this, we don’t focus
on homonymous or polysemous words but sense
groups of words. These sense groups are formed
by grouping the senses of a word according to their
relations, so we end up with sense groups in which
all pairs are homonymous or polysemous to each
other.

In order to decide if a sense pair is homony-
mous or polysemous, we use the data provided
in Nair et al. (2020). This data contains seman-
tic relatedness judgment scores for a subpart of
WordNet. Semantic relatedness determines where
on the homonymy-polysemy continuum a word is
(Klepousniotou, 2002; Klepousniotou and Baum,
2007; Klepousniotou et al., 2008, 2012) and se-
mantic relatedness judgments of speakers overlap
with different types of lexical ambiguity (Klepous-
niotou et al., 2008; Nair et al., 2020). In Nair et al.
(2020), semantic relatedness judgement scores are
collected for each sense pair from several speakers.
We use the average of the scores for each sense pair
to decide if the word is homonymous or polyse-
mous in those senses. We consider the sense pairs
that have a distance over 0.8 as homonymy pairs
and a distance below 0.5 as polysemy pairs.

"Psycholinguistics studies have shown that some polysemy
types show homonymy-like behaviors and have less semantic
relatedness (Klepousniotou and Baum, 2007; Klepousniotou
et al., 2008). Due to this, we leave a certain range out to avoid
these mixed types.



Lexical Clustering Sentence-Feature Classifiers
Ambiguity  Sense Sense WSD Cluster 10-Cluster 10-Rand.
Group Group
# ARI # F1 P R F1 P R F1 P R F1
Homo. 19 0.68 5 0.80 0.80 0.80 | 0.87 087 087 | 0.85 0.86 0.85 0.42
Poly. 39 0.36 5 072 076 0.72 | 0.78 0.80 0.78 | 0.86 0.86 0.87 0.37
Overall 58 0.52 10 076 078 0.76 | 0.82 083 082 | 0.85 0.86 0.86 0.39

Table 1: Data size and experimental results summary. WSD refers to the classifiers that are trained for WSD, Cluster
for cluster assignment. 10-Cluster classifiers refer to the classifiers that are trained for cluster assignment with only
the top 10 features. /0-Rand. refers to the classifiers that are trained for cluster assignment with random 10 features.
F1, Precision and Recall scores are given. The best F1 score overall and for each type is given in bold.

As our data, we use the sentences of the selected
senses from SemCor. We do not include the senses
that have less than 10 sentences in SemCor. We
balance the number of sentences for each group
by random under-sampling. We exclude the words
that show inherent and metonymical polysemy be-
cause different types of polysemy have different
characteristics (Klepousniotou and Baum, 2007;
Klepousniotou et al., 2008) and we focus only on
irregular polysemy.?

4 Method

The goal of this study is to first, identify the sen-
tence context features that determine the similar-
ity of the contextualized representations. For this
purpose, we identify the sentence context features
that lead to the formation of clusters in word sense
clustering with CWEs. Then, we evaluate these
features’ significance to WSD.

In order to identify these features, we conduct
a cluster explainability experiment. First, we per-
form word sense clustering and cluster the sen-
tences of a word (Section 4.1). As the next step,
we aim to determine the sentence context features
that are responsible for the formation of the clus-
ters. For this, we try to recreate the clusters using
the sentence context information of the sentences
alone. We formulate this task as a classification
task. We represent each sentence with a set of sen-
tence context features and we assign the sentences
to the clusters based on these features using clas-
sifiers. These classifiers are trained to predict the
cluster labels from the sentence context features
of the sentences (referred to as sentence-feature
classifiers) (Section 4.2).

This gives us the advantage of representing sen-
tences with discrete features, as opposed to con-
textualized representations which are continuous.

2See Appendix B for the list of words and the number of
their senses used in this study.
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This enables us to identify the specific sentence
context features that contribute to the classifier per-
formance. For this purpose, we use recursive fea-
ture elimination and we determine the top 10 fea-
tures that are most important for the performance
of the classifiers. Finally, we qualitatively evaluate
the significance of the selected features to WSD
(Section 4.3).

4.1 Clustering

As explained in Section 3, we focus on sense
groups and each sense group contains several
senses of a word. We perform word sense cluster-
ing with each sense group, clustering the sentences
of senses within each group.

We cluster the sentences using the word’s CWEs
in these sentences. We extract the CWEs from
the English BERT model (base, cased)’ from each
layer.* In cases where the words are tokenized into
subwords, only the first subword’s embedding is
used.

We use the K-means clustering algorithm, select-
ing k as the number of senses in each group.> We
evaluate the performance by comparing cluster la-
bels to the sense labels using Adjusted Rand Index
(ARI). To be able to compare the performance of
each lexical ambiguity type, first, we determine the
performance for each sense group within a type,
then calculate their average and this average rep-
resents the performance of each lexical ambiguity
type. We compare the performance change across
layers and also the performances based on the best-
performing layer. We expect homonymy to per-
form better in word sense clustering based on the

3We choose the BERT cased model because it encodes
more concepts relevant to WSD, such as words’ WordNet
concepts, compared to the uncased model, which encodes
more linguistic concepts (Sajjad et al., 2022).

*We use the Transformers library (Wolf et al., 2020) for
extracting the embeddings.

3Sci-kit learn library is used for the implementation (Pe-
dregosa et al., 2011).



findings of the previous studies (Nair et al., 2020;
Haber and Poesio, 2021).

4.2 Sentence-Feature Classifiers

We use the resulting clusters from the previous
experiments for training and testing the classifiers.
We use the last layer’s results because this layer
performs best in the clustering experiment. For
each sense group, we train a classifier for cluster
assignment: to predict which cluster a sentence
belongs to. We only select the sense groups that
have more than 25 sentences in each cluster since
this experiment requires data for training. This
reduces the number of sense groups we focus on
in this experiment. Additionally, even though we
do not limit the number of senses in each group,
we end up with only two senses per group. See
Table 1 for the number of sense groups for each
experiment.

Our aim is to predict the cluster that each sen-
tence belongs to based on its sentence context fea-
tures. First, we represent each sentence with a
manually selected sentence context features; bag-
of-words, morphological properties of the target
word (tense, number, etc.), POS tag of the word’s
neighbors, the syntactic role of the target word, and
the position of the target word in the sentence. We
create a sentence feature matrix by binarizing and
combining features, resulting in a one-hot represen-
tation for each sentence. We select these features
to be able to represent the sentences with their con-
text as much as possible. Additionally, we aim
to investigate whether the position of the word in
the sentence affects the similarity of the representa-
tions, considering that positional embeddings are
added to the word’s representations with the BERT
model.®

We process the sentences with the spaCy library’
to automatically extract this information from the
sentences. For the morphological properties of the
target word, we use the fine-grained POS tag of the
word. Similarly, we use the dependency label of
the words as their syntactic role.® Bag-of-words
representations of the sentences are created by first
lemmatizing the sentences, also with spaCy.

For each sense group, we use the sentences in all
clusters as our training and test data (split by 3:1).
We give each cluster a label (0, 1). For each sen-

®For detailed information about the size of the data and the
feature matrices for each word, see Appendix D.

7 Available at: https://spacy.io/

8See Appendix A for the tags used and their desciptions.
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tence, the input is its sentence feature matrix and
the output is the label of its cluster. We use the lin-
ear SVM algorithm to train the classifiers because
it is ideal in cases where the number of features
is larger than the number of samples. Since each
sense group contains two senses in this experiment,
our task is to do binary classification to assign the
correct cluster label.

We evaluate the performance of the classifiers
based on lexical ambiguity type. We calculate the
average F1 score (as well as precision and recall
scores) for all sense groups within a type and con-
sider it as each type’s performance. The high per-
formance of the classifiers will be an indication that
clusters can be recreated with these features and
therefore these features can explain the clusters.

Additionally, we train another type of classifiers:
classifiers for WSD. These classifiers are trained
similarly to the classifiers for cluster assignment;
for each sense group and using sentence features
as the input. But this time instead of predicting the
cluster labels, the classifiers are tasked to predict
the sense labels. We compare the performances of
the classifiers trained for cluster assignment and
WSD. This way, we aim to understand how help-
ful these features are for WSD to begin with. If
the classifiers for cluster assignment perform bet-
ter than the classifiers for WSD, this can suggest
that the clusters are more distinguishable by the
sentence context features than the senses and this
is already an indication that clusters are formed by
the sentence context features that are insignificant
to WSD. Additionally, we expect these classifiers
to perform better with homonymy compared to pol-
ysemy because sentence context is more helpful for
the disambiguation of homonymy.

4.3 Feature Importance

In order to identify the sentence context features
that are responsible for the clusters, we need to
identify the features that are important for the per-
formance of the classifiers for cluster assignment.
For this purpose, we apply recursive feature elimi-
nation (RFE) on top of the classifiers.” RFE func-
tions as a wrapper feature selection algorithm. It
assesses the importance of each feature and itera-
tively removes the least important ones. The model
is then re-fitted with the reduced feature set, and
this process continues until the desired number of
features is achieved.

°Sci-kit learn library is used both for the implementation
of RFE and the training of the classifiers.
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Figure 2: Layer-wise clustering performance with
homonymy and polysemy.

We apply RFE to reduce the sentence feature
matrix to 10 features. We train the classifiers with
RFE using the same training and test datasets as
the classifiers trained with the full-sentence feature
matrices. By selecting the top 10 features from
the sentence feature matrix, we determine which
features are important for the correct classification.
Then, we evaluate the performance of the classi-
fiers that are trained only with the top 10 features
on cluster assignment. Additionally, we train classi-
fiers for cluster assignment with randomly selected
10 features for each sense group in order to es-
tablish a baseline. The baseline is determined by
averaging the performance of the classifiers across
5 runs for all sense groups. The high performance
of the classifiers that are trained with the top 10
features will indicate that these features are respon-
sible for the formation of the clusters.

Finally, we assess the significance of these fea-
tures to WSD for each word through qualitative
evaluation. There are two reasons why we opt for
qualitative evaluation. First, there might be coin-
cidental similarities in sentence context within the
sentences of one sense that help the clustering pro-
cess but that are insignificant to WSD. For example,
a verb’s most past tense occurrences might coinci-
dentally overlap with one sense, and generalizing
over this pattern can help the WSD process. How-
ever, relying on these patterns is less than ideal. In
such cases, performance-based evaluation cannot
effectively capture the significance of these features
because they might artificially boost performance.
Our primary aim is to uncover these features. The
second reason is the limited data size. Qualitative
evaluation allows for a deeper understanding, even
in situations where the data is limited.
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S Results
5.1 Clustering

As shown in Figure 2, the clustering performance
improves across the layers, with the highest per-
formance observed in the final layer for both
types. Word sense clustering performs better with
homonymy than polysemy. In the last layer, ARI
score is 0.68 for homonymy and 0.36 for poly-
semy, as shown in Table 1. Regarding the layer-
wise performance of the clustering, the pattern for
homonymy and polysemy is different. There is a
significant performance improvement observed be-
tween the 3rd and 5th layers for homonymy. How-
ever, there isn’t that steep gain in performance for
polysemy overall. This suggests that homonymous
senses are mostly disambiguated early in the model
layers. Overall, these results are in line with our
expectations; the performance with homonymy is
higher than with polysemy.

5.2 Sentence-Feature Classifiers

The classifiers for WSD achieve an F1 score of
0.80 for homonymy and 0.72 for polysemy. This
difference supports our hypothesis; sentence con-
text features are more useful for the disambiguation
of homonymy than polysemy. Regarding the clas-
sifiers for cluster assignment, there are also perfor-
mance differences for each lexical ambiguity type.
The performance is better with homonymy (0.87)
than with polysemy (0.78). Overall, they achieve
an F1 score of 0.82.

The classifiers for cluster assignment show better
performance compared to the classifiers for WSD,
with an overall increase of 0.06 point. There is an
increase for both homonymy (0.07) and polysemy
(0.05). This increase suggests that the sentence
context features are more prominent in the clusters
than the original sense sentences and the clusters
are more easily distinguishable by their features
compared to the senses. Finally, the overall high
performance of the classifiers for cluster assign-
ment suggests that the selected sentence context
features are a good starting point for feature selec-
tion. The results of the classifier performances can
be seen in Table 1.

5.3 Feature Importance

Top 10-Feature Classifiers for Cluster Assign-
ment. The classifiers trained with the top 10 fea-
tures for cluster assignment achieve good perfor-
mance with an overall F1 score of 0.85, surpassing
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Figure 3: Count of each feature category. The cate-
gories are punctuation marks, function words (fw), con-
tent words (cw), neighboring words, the position of the
target words in the sentences, and morphological prop-
erties and syntactic roles of the target words.

the random baseline (F1: 0.39) by a large margin
(see Table 1). This indicates that: the selected top
10 features are able to recreate the clusters to a
great extent.

Evaluation of the Selected Features. We group
the top 10 features selected for all sense groups
by their similarities and 6 categories are formed.
These categories are punctuation marks, func-
tion words, content words, POS tags of neighbor-
ing words, morphological properties of the target
words, syntactic roles of the target words, and po-
sitions of the target words in the sentences. Their
counts can be seen in Figure 3.1°

Punctuation marks (‘-’, “;’, etc.), function words
(‘if’, ‘not’, etc.), and content words (‘river’, ‘bed’,
etc.) are the items that are found in the bag-of-
words representations of the sentences and are se-
lected as important features. This means that the
fact that there are certain items in the sentence de-
termines the decision of the classifiers.

Furthermore, morphological properties of the
target word, e.g. whether the verb is in past tense
or not, and the syntactic role of the target word, e.g.
whether the noun is the direct object of the sentence
or not, determine the decision of the classifiers.
Similarly, the POS tags of neighboring words also
is a determining feature. For example, whether a
verb is followed by an adverb or not or whether a
verb is followed by a punctuation or not. Finally,
the position of the target word is also a determining

[

10A detailed list can be seen in Appendix C.
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feature. However, only the 6th, 7th, 8th, 9th and
10th positions are found to be important.

First, without looking at the details, it is apparent
that certain feature categories lack significance or
have little significance to WSD. These categories
include punctuation marks, the position of the tar-
get word in the sentence, the syntactic role and
the morphological properties of the target words.
On the other hand, features such as POS tags of
the neighboring words, and the existence of some
content words in the sentence can carry more sig-
nificance. For example, whether a verb is followed
by a preposition or not can be a good indicator of
a sense. Similarly, the presence of a word in the
sentence can signal one sense, as previously shown
in (1) for ‘bank’.

Yet, a closer examination reveals even more strik-
ing results. In most cases, the important features
are insignificant to WSD, except for a few words
and this explains the poor clustering performance.
The main issue is that most of the time, a partic-
ular insignificant feature is found in both sense
sentences and causes these sentences to cluster to-
gether. The features from all categories affect the
performance like this. For example, sentences of
different senses of a verb are clustered together be-
cause, in all of them, the verb is in the past tense,
as illustrated in example (3) with two senses of the
verb ‘indicate’.

3) a. be a signal for or a symptom of:
“The statistics hardly indicated that...”
b.  to state or express briefly:

“He indicated that requests would...”

Other times, one feature that is not significant to
WSD is found only in the sentences of one sense co-
incidentally and causes these sentences to cluster
together. While this might affect the performance
positively, it does so for reasons that are not ideal.
This finding aligns with our expectations. For ex-
ample, the word ‘other’ is selected as an important
feature for the clusters of ‘time’. This feature is not
significant to the WSD of this word and it is even
not found in direct syntactic relation with the target
word in the sentences as in example (4).

4) The debris of his other careers was piled
everywhere; a pile of wire cages for mice
from his time as a geneticist and a micro-

scope lying on its side on the window sill...

Finally, we do not observe specific patterns for dif-
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Figure 4: PCA visualization of the embeddings of
‘foot’ in different sense sentences and important features
found in each sentence cluster of the word. The em-
beddings are extracted from the last layer of the BERT
model. The features are ‘inch’, NUM-I (the left neighbor
is a numeral), PRON-I (the left neighbor is a pronoun)
and DET-I (the left neighbor is a determiner).

ferent lexical ambiguity types, however, in general,
we observe that for some words, there are more
clear clues in the sentence context that are helpful
for disambiguation.

An Example: ‘ask’ vs. ‘foot’. ‘ask’ in its first
sense means “to request something” as in (5-a)
and in its second sense means literally “to ask a
question” and in this sense, it is also frequently
used with direct speech as in (5-b). ‘foot’ in its first
sense is the body part and in its second sense, it is
the measuring unit, as illustrated in (6).

&)

‘ask’:
a. to request something: “He asked her

for recommendation.”

b.  to ask a question: “Don’t ask a ques-
tion.”, ““Who said that?’ he asked.”
(6) ‘foot’:
a.  body part: “He hit his feet.”
b. measuring unit: “She is five feet tall.”

Even though both of these words are homony-
mous, there are performance differences between
them.!! Word sense clustering achieves perfect per-
formance with ‘foot’ (1.0) and bad performance
with ‘ask’ (0.16). However, the sentence-feature
classifiers for cluster assignment perform well with
both words (‘ask’: 0.77, ‘foot’: 1). Looking at the
classifier performance, we can conclude that the
clusters of both words are distinguishable based on
their sentence context features. However, looking

1See Appendix D for a performance comparison of all
words in the last experiment.
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Figure 5: PCA visualization of the embeddings of
‘ask’ in different sense sentences and important features
found in each sentence cluster of the word. The em-
beddings are extracted from the last layer of the BERT
model. The features are ‘go’, ‘and’, VB (the verb is in
base form), and pos6 (the word is the 6th token in the
sentence).

at the word sense clustering performance, we can
understand that these features are not equally sig-
nificant to WSD for both words; they are significant
in the case of ‘foot’, but not ‘ask’.

The clusters of ‘foot’” represent each sense well
as shown in Figure 4, and features for each cluster
are also related to different senses of ‘foot’. For the
cluster related to the ‘measuring unit’ sense, the
features ‘inch’, and NUM-I (the left neighbor is a
numeral, as in ““5 feet”) are selected as important
features. Whereas, for the cluster related to the
‘body part’ sense, the features PRON-I (the left
neighbor is a pronoun, as in “his feet”), and the
feature DET-I (the left neighbor is a determiner,
as in “the feet”) are selected. These features are
indeed good indicators of these senses.

On the other hand, we do not see nicely formed
clusters for ‘ask’ (see Figure 5) and we see that
the similarity of the representations is driven by
the features that are not significant to WSD. For
example, all sentences in which the verb is in base
form (VB) or the word is the 6th token (pos6) or
the sentences that have the words ‘go’ or ‘and’ are
clustered together.

Two senses of ‘ask’ occur in different sentence
structures: the first sense occurs with prepositional
objects, as in (5-a), and the second sense with direct
speech as in (5-b). It is interesting to see that these
distinctions are not captured by the clusters and
these features do not determine the similarity of
the representations. We also see that the sentence-
feature classifier for WSD performs better (0.81)
than the sentence-feature classifier for cluster as-



signment (0.77) with ‘ask’. This contrasts with
the general pattern. This might indicate that the
senses are actually distinguishable by their sen-
tence context features, however, not these features
but insignificant features are responsible for the
formation of the clusters.

6 Discussion

In order to identify the sentence context features
that are responsible for the similarity of the con-
textualized representations, we conducted a clus-
ter explainability study and identified the sentence
context features that lead to the formation of the
clusters in word sense clustering with CWEs. Our
results have shown that features from different cat-
egories determine the similarity of the representa-
tions; function words, punctuation marks, content
words in the sentences, position of the target word
in the sentence, neighboring words, morphological
properties and the syntactic role of the target word.
Our results are in line with Sajjad et al. (2022) who
have shown that the CWEs encode both grammat-
ical and semantic properties of the words and the
clusters of CWEs reveal these similarities.

Furthermore, we qualitatively evaluated the iden-
tified features for each word and have shown that
they are mostly insignificant to WSD. We observed
that even when different senses of a word occur in
diverse contexts and the sentence context provides
clear clues for different senses (as in the case with
‘ask’), the significant features do not determine the
similarity of the representations in most cases. This
contradicts our expectations. When the sentence
context provides clear clues for different senses,
e.g. in the case of homonymy, we expected the
similarity of contextualized representations to be
determined by these clues. However, this is not
the case and there are other features in the sen-
tences that are insignificant to WSD, that affect the
similarity of the representations more.

Our analysis also has revealed that insignificant
features affect the clustering performance nega-
tively in several ways. Most commonly, some in-
significant features occur in the sentences of both
word senses and they lead these sentences to cluster
together. This explains the poor clustering perfor-
mance reported previously (Yenicelik et al., 2020)
and also in this study. Additionally, in some cases,
certain insignificant features occur only in the sen-
tences of one sense by chance and they lead to the
formation of clusters. Although these cases don’t
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affect the performance negatively, this shows how
the randomness in the data can affect the clustering
performance.

In relation to the performance with different lex-
ical ambiguity types, the findings of our study are
in line with previous studies (Nair et al., 2020;
Haber and Poesio, 2021; Sevastjanova et al., 2021).
Clustering performs better with homonymy than
polysemy. In addition to previous studies, our re-
sults have shown that homonyms are more distin-
guishable by sentence context features than pol-
ysemes and their disambiguation can be more eas-
ily achieved with a simple classifier trained with
these features. However, contextualized representa-
tions’ similarity is not consistently determined by
the sense-significant features even for homonyms.

7 Conclusion

The information encoded in contextualized repre-
sentations which determines their similarity is not
significant to WSD in most cases. This shows that
these representations do not capture the different
meanings of words as expected, explaining why
using CWEs of pre-trained language models alone
does not yield sufficient performance in unsuper-
vised WSD. In the future, we plan to explore pos-
sible strategies to create contextualized representa-
tions that are more suitable to WSD by limiting the
information that is insignificant to WSD encoded in
the representations. This way, we aim to enhance
unsupervised WSD performance.
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Tag Description

nsubj nominal subject

pobj object of a preposition

attr attribution

xcomp open clausal complement
npadvmod noun phrase as adverbial modifier

Table 2: Dependency labels used in this study, from
spaCy model en_core_web_trf.

Tag  Description

NN  Noun, singular or mass

NNS  Noun, plural

VBD Verb, past tense

VBP  Verb, non-3rd person singular present
VBZ  Verb, 3rd person singular present

VB Verb, base form

Table 3: Fine-grained POS tags used in this study, from
Penn Tree Bank (Marcus et al., 1993).

Tag Description

ADP adposition

PUNCT punctuation

PART particle

SCONJ  subordinating conjunction
PRON pronoun

DET determiner

ADV adverb

NUM numeral

Table 4: POS tags used in this study, from Universal
Dependencies (Nivre et al., 2016).

A Feature Tags

The feature tags for the morphological properties
of the words, the syntactic role of the words, and
the POS tags of neighboring words that are used
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ask: 1 heart: 2 life: 5
begin: 3 produce: 2 point: 5
degree: 3 put: 3 raise: 3
drive: 3 table: 2 time: 2
foot: 2 right: 2 way: 4
heart: 2 case: 3 world: 4
indicate: 2 consider: 4 plane: 2
light: 3 cover: 2 lead: 7
man: 3 door: 2

Table 5: The words that are found in our dataset with
their sense counts. All the words are used in the word
sense clustering and the bold words are used in the
cluster explainability experiment.

in this study can be found in Table 2, 3, 4. For the
morphological properties of the words, we use their
fine-grained POS tag (Table 3). For the syntactic
role of the words, we use their dependency label
(Table 2). All the labels are obtained by processing
the sentences with spaCly.

B Selected Words

A list of the words that are found in our dataset can
be seen in Table 5. All the words and senses are
used in the word sense clustering experiment. Only
10 words and 2 sense each are used in the cluster
explainability experiment.

C Selected Features List

A detailed list of selected features from each cate-
gory can be seen in Table 6.

D Performance with Individual Words

The individual performance of each word can be
seen in Table 7. Only the performances of the
words that are used in the last experiment are re-
ported. Both clustering performance and the per-
formance of the sentence-feature classifiers are re-
ported. The data size (number of sentences) of each
word can be also seen in Table 7.


https://doi.org/10.18653/v1/2020.emnlp-demos.6
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https://doi.org/10.18653/v1/2020.blackboxnlp-1.15
https://doi.org/10.18653/v1/2020.blackboxnlp-1.15

Feature Category Features

Neighbouring Word (right)  ADP: 3, PUNCT: 2, PART: 2, SCONIJ: 1, PRON: 1, DET: 1, ADV: 1
Neighbouring Word (left) DET: 4, PART: 2, PRON: 2, NUM: 2, ADP: 2, ADJ: 2, PUNCT: 1
Punctuation 2,701,

Function Word ‘and’: 1, ‘after’: 1, ‘can’: 1, ‘she’: 1, ‘might’: 1, ‘the’: 3, ‘to’: 2, ‘when’: 1, ‘my’: 1, ‘on’: 1,
‘through’: 1, ‘no’: 1, ‘with’: 1, just’: 1, ‘a’: 1, ‘by’: 1, ‘however’: 1, ‘in’: 1, ‘or’: 1, “’s’: 1,
‘each’: 2, ‘which’: 1, ‘her’: 1 ‘other’: 1, ‘their’: 1, ‘once’: 1, ‘such’: 1

Content Word ‘mean’: 1, ‘nothing’: 1, ‘high’: 1, ‘outside’: 1, ‘see’: 1, ‘first’: 1, ‘route’: 1, ‘Spencer’: 1,
‘new’: 1, ‘plan’: 1, ‘event’: 1, ‘God’: 1, ‘three’: 1, ‘hand’: 1, ‘go’: 1, ‘take’: 1, ‘inch’: 1,
‘age’: 1, feel’: 1

Syntactic Role nsubj: 2, pobj: 1, xcomp: 1, attr: 1, npadvmod: 1

Morphological Properties NNS: 3, VBD: 2, NN: 2, VBP:1, VBZ: 1, VB: 1

Word Position 6th: 1, 7th: 1, 8th: 1, 9th: 1, 10th: 1

Table 6: Selected important features in each category and their counts. POS tags of the word’s neighbors are given
for neighboring words, the dependency label of the word is given for the syntactic role, and the fine-grained POS
tag is given for the word’s morphological properties. See Appendix A for the descriptions of the tags used.

Clustering Sentence-Feature Classifiers

Word Data# | Performance | Feature# WSD Cluster 10-Cluster

F1 P R | F1 P R | F1 P R
Homonymy
ask 278 0.16 1668 081 0.82 081077 077 077|077 077 0.77
begin 90 0.34 1007 0.87 0.87 087|091 093 092 | 080 0.80 0.80
foot 119 1 1008 1 1 1 1 1 1 1 1 1
indicate 70 0.12 809 0.62 062 062 08 08 085|085 08 0.85
man 92 0.54 932 0.71 071 0.70 | 0.82 0.83 0.82 | 0.85 0.86 0.85
Polysemy
life 74 0.34 775 0.59 0.60 0.60 | 0.81 083 0.81 | 0.86 0.86 0.86
man 54 0.16 690 0.66 0.81 068 | 0.84 084 084|094 095 094
time 56 0.69 762 071 0.76 0.71 | 0.84 084 084 | 094 095 094
way 110 0.55 1179 0.81 081 081 |08 08 086 | 073 074 0.73
world 56 0.35 692 084 0.84 084|053 066 055|083 0.88 0.83

Table 7: Data size and performance details of individual words. Data# refers to the number of sentences. Clustering
performance is evaluated using ARI. Feature# is the size of the sentence feature matrix. WSD refers to the classifiers
trained for WSD, Cluster for cluster assignment. /0-Cluster classifiers refer to the classifiers trained for cluster
assignment with only the top 10 features. F1, Precision and Recall scores are given for each classifier. The best F1
score for each word is given in bold.
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