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Abstract

Clarification requests are a mechanism to help
solve communication problems, e.g. due to am-
biguity or underspecification, in instruction-
following interactions. Despite their impor-
tance, even skilful models struggle with pro-
ducing or interpreting such repair acts. In this
work, we test three hypotheses concerning the
effects of action taking as an auxiliary task in
modelling iCR policies. Contrary to initial ex-
pectations, we conclude that its contribution
to learning an iCR policy is limited, but some
information can still be extracted from predic-
tion uncertainty. We present further evidence
that even well-motivated, Transformer-based
models fail to learn good policies for when to
ask Instruction CRs (iCRs), while the task of
determining what to ask about can be more
successfully modelled. Considering the impli-
cations of these findings, we further discuss the
shortcomings of the data-driven paradigm for
learning meta-communication acts.

1 Introduction

The concept of graceful interaction (Hayes and
Reddy, 1979, 1983) was proposed as a set of skills
that machines should exhibit to properly engage in
cooperative dialogue with humans, among which
are being able to ask for, understand and offer clar-
ification. More than forty years later, the ineptitude
of large language models and voice assistants to
handle underspecifications and to properly process
or produce clarification requests (CR) is still being
documented (Larsson, 2017; Kuhn et al., 2022; Li
et al., 2023; Deng et al., 2023; Shaikh et al., 2023).
It is also one of the acknowledged limitations of
the currently prevailing commercial chat-optimised
LLM.1

1In the blogpost releasing chatGPT, the limitations section
says: “Ideally, the model would ask clarifying questions when
the user provided an ambiguous query. Instead, our current
models usually guess what the user intended.”. Source: https:
//openai.com/blog/chatgpt.

Figure 1: Clarification requests posed by an instruction
follower, demonstrating uncertainty on deciding what
actions to take due to ambiguity or underspecification.
From: CoDraw dialogue game 8198, CC BY-NC 4.0,
cliparts from Zitnick and Parikh (2013).

Given that they are modulated for instructions,
this seems to be a peculiar fault: CRs are a crucial
mechanism used to repair misunderstandings in in-
struction following interactions (Benotti, 2009), as
we see in Figure 1. On second thought, it comes
as no surprise. Clarification exchanges are meta-
communication acts that do not normally appear in
non-interactive data (Kuhn et al., 2022) and are
also relatively rare in dialogue data. As a spe-
cific dialogue phenomenon, CRs have an empir-
ical frequency of 4% of turns in spontaneous con-
versations to 11% of turns in strictly instruction-
following interactions (Purver et al., 2001; Benotti
and Blackburn, 2021; Madureira and Schlangen,
2023b). Therefore, it is still unclear to what ex-
tent CR strategies can be learnt with data-driven
approaches (Benotti and Blackburn, 2021).

Many existing CR datasets, despite their utility
for applications like conversational search (Key-
van and Huang, 2022; Rahmani et al., 2023), either
have not been collected via real interactions or are
synthetic, so that learnt CR policies may not cor-
respond to genuine human behaviour. Moreover,
current best-performing data-driven models are still
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not doing very well in deciding when to request
clarification (see §2), and we must understand why.

CRs can occur in all four levels of communi-
cation (Clark, 1996): Attention (due to problems
in the channel), identification (due to acoustic im-
pediments), recognition (when the signal is under-
stood but a lexical, parsing or reference problem
manifests) and consideration (when the intention
is unclear) (Rodríguez and Schlangen, 2004). In-
struction CRs (iCR) emerge mostly at Clark’s 4th
level of communication (Clark, 1996), i.e. at the
level of uptake (Schlöder and Fernández, 2014), to
solve ambiguities and underspecifications.

Recently, Madureira and Schlangen (2023b,a)
have argued that the multimodal CoDraw game
(Kim et al., 2019) is a rich resource for iCRs, nat-
urally produced as a by-product of game playing
via actions, as in the example in Figure 1. This
dataset offers a balance between size (in compari-
son to well-curated but small corpora) and retaining
ecological validity (as opposed to massive datasets
collected or crafted artificially). Supposing under-
lying iCR strategies can emerge from data, we can
reasonably assume that action-taking is a key com-
ponent in modelling policies for deciding when and
what to repair in this type of game.

However, one major drawback of the proposed
baseline models is the overhearer paradigm: Mod-
els are not trained to act as authentic dialogue par-
ticipants. Instead, they process other people’s inter-
actions, and at some points have to predict when
to ask iCRs, a decision detached from the actual
actions required by the game. Understanding is
different for overhearers and addressees, and the
latter have advantages in building common ground
(Schober and Clark, 1989). Clark (1992) argues
that subjects in psycholinguistics are actually usu-
ally treated as overhearers; we add to that that many
NLP approaches are also modelling overhearers.

Contributions Given that background, this work
aims to expand the boundaries of the open question
of learning meta-communication acts from human
data. We do that by (i) implementing a more well-
motivated model for learning when to ask iCRs in
CoDraw; (ii) taking another step towards a more re-
alistic agent by defining and modelling the task of
what to ask about; and, most importantly, (iii) test-
ing three hypotheses to study the effect of action-
taking in learning iCR policies, verifying whether
a measure of certainty can be used to probe for iCR
abilities and inform predictions.

2 Related Work

Learning when to ask questions The problem
of knowing when to ask questions in an interac-
tion appears in various contexts. Relevant work
has been done in language-aided visual navigation
(Nguyen and Daumé III, 2019; Thomason et al.,
2020; Chi et al., 2020; Nguyen et al., 2022), in
which the agent must take actions in an environ-
ment and decide when to ask for help, where RL is
a suitable method. Similar policies are necessary
in interactive settings like visual dialogue games
that require deciding when to stop asking (Shekhar
et al., 2018) or incremental predictions on when to
answer a question (Boyd-Graber et al., 2012).

Modelling clarification requests A vast litera-
ture exists on describing and modelling clarifica-
tion strategies (Purver et al., 2003; Gabsdil, 2003;
Schlangen, 2004; Rodríguez and Schlangen, 2004;
Rieser and Lemon, 2006; Stoyanchev et al., 2013,
inter alia). In the age of neural network-based NLP,
the problem has commonly been broken down into
various tasks that are learnt from data: When to
ask (Narayan-Chen et al., 2019; Aliannejadi et al.,
2021; Shi et al., 2022; Kiseleva et al., 2022), what
to ask about (Braslavski et al., 2017; Aliannejadi
et al., 2021; Hu et al., 2020), and how to gener-
ate (Kumar and Black, 2020; Gervits et al., 2021;
Majumder et al., 2021) or select/rank appropri-
ate CRs (Rao and Daumé III, 2018; Aliannejadi
et al., 2019; Mohanty et al., 2023). Ideally, these
tasks should be tied into a single agent, but sev-
eral works are still approaching the problem in a
“task-framed” fashion without integration of all ca-
pabilities (Schlangen, 2021).

Modelling policies for when to ask for clarifi-
cation in instruction following is far from being
a solved problem, as models perform well below
the ceiling. The performance in the Minecraft Di-
alogue dataset is 0.63 accuracy for the CR class
(Shi et al., 2022). In the recent IGLU challenge
(Kiseleva et al., 2022), the best model in the leader-
board2 reaches 0.75 weighted average F1 Score. In
predicting underspecification for code generation,
the highest performance is 0.78 binary F1Score
(Li et al., 2023). In Codraw-iCR, the baseline
achieves a similarly suboptimal 0.34 average pre-
cision (Madureira and Schlangen, 2023b). These
policies are failing to fully capture the human be-
haviour from data, but the reasons as still obscure.

2Reported in the NeurIPS 2022 IGLU challenge platform.
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Another open issue is how to collect high-quality
CR data in enough amounts for machine learn-
ing purposes. In the annotated Minecraft Dia-
logue Corpus (Narayan-Chen et al., 2019; Shi et al.,
2022), TEACh dataset (Padmakumar et al., 2022;
Gella et al., 2022) and CoDraw (Kim et al., 2019;
Madureira and Schlangen, 2023b,a), CRs occur by
own initiative of the players in real, multi-turn in-
teraction, ranging from hundreds to less than ten
thousand identified CR utterances. Still in the same
size range, the IGLU dataset (Kiseleva et al., 2022;
Mohanty et al., 2022) has been collected in a set-
ting that avoids pairing up players, with a one-shot
opportunity to ask for clarification (and without a
partner to answer it and allow further actions).

Other procedures have been used to collect CR
data in larger amounts. Massive datasets are Dial-
FRED (Gao et al., 2022), created via crowdsourc-
ing with workers who are explicitly asked to gener-
ate a question, and answer it, for a situation they are
not actually involved with. In neighbour domains
like virtual assistance, conversational search and
code generation, large-scale datasets containing
CRs have been constructed with data augmentation
methods (Aliannejadi et al., 2021), user simulation
(Kottur et al., 2021), templates (Li et al., 2023) and
crawling QA online forums (Rao and Daumé III,
2018; Kumar and Black, 2020). These strategies
can reflect CR form and facilitate data collection
but abstract away the fundamental triggers of In-
struction CRs (joint effort, real-time interaction
and action-taking), being arguably not suitable for
learning CR policies for instruction following.

Evaluating CR mechanisms in dialogue models
We need more evaluation campaigns and methods
to shed light on what a model has actually learnt
with respect to CR strategies and why it fails. Some
initiatives towards more detailed assessment are in
progress. Chiyah-Garcia et al. (2023) evaluate the
abilities of multimodal models to process CRs in
coreference resolution by interpreting the differ-
ence in the object-F1 score at turns before and after
a CR as the improvement provided by incorporat-
ing the clarification; they also analyse results by
considering various CR properties. In the realm
of LLMs, recent studies have employed evaluation
techniques via prompts to test the models abilities,
concluding that they can detect ambiguity to some
extent but even so do not generally attempt to repair
it and when they do request clarification there is
little alignment with human strategies (Kuhn et al.,

2022; Shaikh et al., 2023). When Deng et al. (2023)
first induce the LLM to predict whether the appro-
priate dialogue act is to ask for clarification the best
LLM achieves only 0.28 F1 Score.

3 Definitions

CoDraw (Kim et al., 2019) is a multimodal dia-
logue game where an instruction follower (IF) uses
a gallery of 28 (out of 58) cliparts to reconstruct a
scene (from the Abstract Scenes dataset (Zitnick
and Parikh, 2013)) they cannot see. They exchange
text messages in a turn-based fashion with an in-
struction giver (IG), who sees the original scene
but has no access to the state of the reconstructed
scene, except for one chance to peek at it during the
game. The available actions are adding or deleting,
moving, flipping and resizing cliparts in a canvas.
Game success is measured by a scene similarity
score based on its symbolic representation. The au-
thors collected 9.9k such dialogues in English, con-
taining around 8k iCRs (11.3% of the game turns),
annotated by Madureira and Schlangen (2023b,a)
both under the license CC BY-NC 4.0.

Note that not all iCRs are questions. In terms
of mood, most CoDraw-iCRs are polar questions,
followed by wh- and alternative questions, but
there are also declarative and imperative forms. Al-
most 60% of instances refer to only one object and
around 33% refer to two objects. The attributes be-
ing clarified are, in order of frequency, relations be-
tween objects, positions in the scene, disambigua-
tion of persons, direction, size and disambiguation
ob objects (Madureira and Schlangen, 2023a).

We can split the space of possible IF models for
this game regarding their CR capabilities:

1. Overhearer: A model that observes the current
game state (dialogue context and scene) to predict
when to ask iCRs, without any additional game-
play actions or linguistic decisions.
2. Action-Taker: A model that plays the game by
only taking clipart actions, without iCR decisions.
3. iCR-Action-Taker: An Action-Taker with the
extra decision of when to ask iCRs.
4. Full agent: A model that makes all game-play
decisions, including natural language generation.

The Overhearer is a common paradigm in NLP
in which models resemble an observer of the actual
player, deciding what to do as if it were in their
shoes. It is, however, a rather rough simplification
of a full-fledged agent, which is an idealised tar-
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get not yet reached. (iCR-)Action-Takers are an
intermediate step examined in this work.

Task 1 We follow the formalisation of the task
of when to ask for iCRs in CoDraw by Madureira
and Schlangen (2023b). In short, given the game
state up to the last IG utterance, the IF has to decide
whether to ask for clarification. This policy is mod-
elled as a function fwhen : s 7→ [0, 1] that maps the
game state st at the current turn t to the probability
of asking an iCR at this point, performing a binary
decision task at each turn in the game. Here, the
state s comprises the dialogue history, the gallery
and the situation of the scene.

Task 2 Additionally, once the decision to ask has
been made, a player should also know what objects
are subject to clarification at that point. We thus
define the subsequent task of what to ask about: at
an iCR turn t, a function fwhat : (oi, s) 7→ [0, 1]
outputs, for each of the 28 objects oi in the gallery,
the probability of asking an iCR about it, given
the state st. These are binary decisions over each
available object in the gallery. Both of these tasks
are steps happening before the actual generation,
which we do not address in this work.3

4 Hypotheses

In this section, we motivate and state the three hy-
potheses we test as our main contribution. We refer
to related findings in the Minecraft game, but note
that CoDraw has a more challenging asymmetry re-
garding the players’ common ground: the IG does
not observe the IF’s actions throughout the game.

Chiyah-Garcia et al. (2023) argue that auxiliary
learning objectives of detecting objects’ attributes
in a scene (Lee et al., 2022) are useful for refer-
ential CRs at Clark’s 3rd level, elicited during ref-
erence resolution.4 Our expectation is that action
prediction should be equivalently relevant for 4th
level iCRs, which emerge when deciding how to
act. More concretely, iCR-Action-Takers should
have a more genuine motivation to decide to re-
quest clarification in comparison to Overhearers.5

To investigate it, our first hypothesis is:
3We leave the additional decisions of what attributes to

mention and which form to realise for ongoing parallel work
dealing specifically with iCR generation.

4CoDraw-iCR also contains referential CRs, but directly
related to uptake of instructions.

5Experiments in the Minecraft dataset point to the opposite
direction: Generating action sequences slightly harmed the
accuracy on when to ask (Shi et al., 2022). We seek to dive
deeper into understanding this issue.

Hypothesis 1: iCR-Action-Takers can learn a
more accurate policy for predicting when to ask
an iCR than Overhearers.

Here, we can also test whether action detection
has a similar effect, by letting the model learn to
detect actions given the scene before and after, as
in Rojowiec et al. (2020). It is a framing even more
equivalent to Lee et al. (2022), since, in their model,
the attributes are already available in the images.
The access to post-action scene can be examined in
this dialogue game because it is turn-based: The IF
would have done all actions they want (thus seeing
the newly edited scene) at the point they press the
button to send the next message or iCR.

Next, we aim to investigate if Action-Takers,
which are trained without any explicit iCR signal,
still build representations that encode the need for
repair. The study done by Xiao and Wang (2019) on
quantifying uncertainty in NLP tasks shows that the
examined models output higher data uncertainties
for more difficult predictions. Besides, Yao et al.
(2019) propose the assumption that if a model is
uncertain about a prediction, it is more likely to be
an error, and use uncertainty as a score to decide
whether the prediction requires user clarification in
semantic parsing. Based on that, we conjecture that
the need for repair should manifest as less certainty
in the Action-Taker’s decisions. Therefore, the
second hypothesis we test is:

Hypothesis 2: At iCR turns, Action-Takers predict
actions with less certainty than at other turns. Sim-
ilarly, less certainty is expected for actions upon
objects subject to iCRs than for other objects.

For this step, we set the linking hypothesis that
certainty is expressed in the probability the model
assigns to taking action, or not, at a given turn. It
is a reasonable assumption, because the objective
function is expected to push the predictions to be
either 0 or 1, so predictions close to 0.5 can be seen
as indecisive.6

Finally, iCR policies for when to ask should be
grounded in a fine-grained representation of what
exactly is unclear. Thus our last hypothesis is:

Hypothesis 3: Pre-trained iCR-Action-Takers can
learn a more accurate policy for predicting what
to ask about in iCR turns than Overhearers.

6An investigation of the predictive uncertainty of the IF
model in the Minecraft data has been done by Naszad et al.
(2022) using length-normalized log-likelihood and entropy of
generated action sequences. Negative results are reported in
an unpublished short manuscript concluding that uncertainty
is not a direct signal for when to ask CRs in their setting.

4



5 Models

In this section, we present the models we anal-
yse in our experiments. We do not intend to pro-
pose a novel architecture, since our aim is to un-
derstand why current SotA models are failing and
the effect that learning to take actions has on them.
We implement a model that addresses the limita-
tions of the baseline model (iCR-baseline) from
Madureira and Schlangen (2023b) by incorporating
techniques from top-flight models in recent multi-
modal dialogue challenges, namely IGLU (Kise-
leva et al., 2022) and SIMMC 2.0 (Kottur et al.,
2021). The basic architecture of the Overhearer
and (iCR-)Action-Taker is illustrated in Figure 2.
We provide here an overview of its informationv
flow; see Appendix for detailed specifications.

The CoDraw IF has access to a gallery of 28
objects, which is an informative source in the game
(e.g. if it contains just one of the three tree cliparts,
it is less likely that disambiguation is needed) but
was absent in iCR-baseline. We follow a symbolic
approach to represent the objects’ attributes (pres-
ence in the scene, orientation, position, size, pose,
facial expression) based on the original drawer in
Kim et al. (2019) (which, however, had unrealistic
access to all possible objects in the database).

Previous works did not employ Transformers
(Vaswani et al., 2017) to model iCR policies in
CoDraw. Given its leading performance in several
scenarios, we bring them to the scene, in an ap-
proach inspired by DETR (Carion et al., 2020). We
use a Transformer decoder7 module to create con-
textual embeddings of each object in the current
game state, i.e. by building a representation that
considers the dialogue so far and the actual scene.

This is done by passing each object to the Trans-
former decoder (“target”), to allow self-attention
to the state of the gallery, and subsequent cross-
attention with the game state representation (“mem-
ory”). The state has two components: The dia-
logue so far, represented via token-level contextual
embeddings constructed by BERT (Devlin et al.,
2019), and the current scene, represented as image
features constructed by a ResNet (He et al., 2015)
backbone, followed by a trainable convolutional
layer to reduce the number of channels, as in the
DETR model (Carion et al., 2020). We make text

7The full Transformer encoder-decoder was detrimental in
almost all cases, so we report results using only the decoder
component. This is probably due to the fact that the scene
and dialogue had already been encoded by the pretrained
components.

…

28 objects 
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Figure 2: The basic structure of our iCR policy models.
The full structure represents the iCR-Action-Taker. The
Overhearer contains no action predictor (area shaded
in grey), whereas the Action-Taker contains no iCR
predictor (area in the dotted box).

and scene available as one sequence like Lee et al.
(2022). The variation of iCR-Action-Detecters ac-
cess the scene before and after the actions.

The Transformer outputs a contextual representa-
tion of each object. The steps so far are represented
in the lower portion of Figure 2. Now we proceed
to the predictions in the upper part, which differs
according to the type of model. To test our hy-
potheses, we implement models that predict the
game actions (or detect them, if the updated image
is used) and/or make iCR decisions via multi-task
learning. We take inspiration from Shi et al. (2022)
to train the contextual object embeddings as joint
encodings for all the classifiers.

Action predictors and iCR predictors are im-
plemented as 2-layer feed-forward networks with
dropout, which take a representation as input and
output a probability. In (iCR-)Action-Takers, we
model each action prediction (add/delete, flip, re-
size, move) as a binary classification done upon
each object embedding.8 The iCR decision is also
performed as a binary classification task. In Task 1
(when to ask), it predicts whether an iCR should be
made at the current turn. In Task 2, (what to ask)
it predicts, for each object, whether it is subject to
and iCR. In iCR-Action-Takers, we let the action
logits be part of the input to the iCR predictor.

8To facilitate evaluation, we add an additional meta-action
prediction which is 1 whenever any action is made to a clipart.
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6 Experiments

For our experiments, we implement variations of
Overhearers and (iCR-)Action-Takers, all trained
on the CoDraw dataset. Results are compared by
varying the complexity of the input, which can be
comprised of the gallery G, the dialogue context D
with varying length, the scene before Sb and after
Sa the current actions, and the actual actions A or
their logits LA.

To test H1, we compare Overhearers with iCR-
Action-Takers and iCR-Action-Detecters in Task 1,
predicting when to ask iCRs at turn level. For H2,
we examine the predictions of the Action-Taker
using the certainty measure we discuss next. Fi-
nally, H3 is tested by a similar analysis as H1, but
in Task 2, i.e. what to ask about. Here, iCR pre-
dictions are done at clipart level and only the turns
where iCRs actually occurred are used (i.e., we as-
sume the decision to ask for iCR has already been
taken). For H3, Overhearers are compared with
pretrained iCR-Action-Takers/Detecters whose ac-
tion modules’ parameters are initialised with the
best Action-Taker/Detecter checkpoint.

iCRs actions

when what any add/del move flip resize

train 11.24 14.32 5.43 3.11 2.13 0.23 0.42
val 11.84 14.43 5.47 3.11 2.17 0.24 0.39
test 11.26 14.69 5.40 3.12 2.11 0.21 0.39

Table 1: % of the positive labels in the dataset.

Table 1 shows the proportion of each type of
label in the dataset. Actions at each turn are sparse
(mean=1.65, std=1.69) because only a small subset
of the full action space is actually performed.

Implementation Our implementation uses Py-
Torch Lightning. We run hyperparameter search
and other manual combinations, and then use the
configuration that led to the best results in the val-
idation set for the Overhearer G+D model. The
training objective is to minimise a sum of binary
cross-entropy losses for each task. Optimisation re-
lies on the Adam algorithm (Kingma and Ba, 2015),
with early stopping. Details of the model con-
figuration, data processing and experiment setup
are in the Appendix. Our code is available at
https://github.com/briemadu/icr-actions.

Evaluation metrics We report test results for the
best epoch in the validation set.9 H1 and H3 are
analysed based on the performance on iCR predic-
tions. To facilitate comparison to existing works,
we report Average Precision (AP) and binary and
macro-average F1-Score (bF1 and mF1) for each
model and task (i.e. one measure for iCR labels and
one for all action labels). To inspect how much in-
formation can be extracted from clipart states alone
(e.g. some cliparts are less often subject to iCRs),
we report metrics for a model that only gets the
gallery as input. For H2, we need an additional pre-
diction certainty metric. We adapt the classification
margin metric used for uncertainty sampling in ac-
tive learning (Settles, 2012), which is the difference
between the probability assigned to the first and the
second class, like in Chi et al. (2020). In our binary
task, we define it as |P (iCR)−P (¬iCR)|, which
is 0 when both are 0.5 (highest uncertainty) and 1
when one or the other is 1 (highest certainty). We
analyse whether we can derive a signal for when
to ask iCRs by finding a decision threshold upon
this metric, as in similar works (Yao et al., 2019;
Naszad et al., 2022; Khalid and Stone, 2023).

7 Results

Table 2 presents the main results for all experi-
ments. We begin with overall observations, and
then walk through the table to analyse the findings
for each hypothesis. In the next section, we discuss
the implications of these findings.

Firstly, for deciding when to ask an iCR, the
base Overhearer achieves 0.38 AP and the highest
performance comes from the iCR-Action-Detecter
with 0.41. This is noticeably higher than the 0.34
Overhearer baseline in Madureira and Schlangen
(2023b), but the gain is not as substantial as ex-
pected given the improvements in the architec-
ture.10 When the Overhearer is ablated to have no
access to the dialogue, performance drops to close
to random, as expected. The addition of scenes be-
fore and after the current actions and the inclusion
of an explicit signal with the last actions, however,
cause only marginal variation and do not really
contribute to a better performance. The Action-
Taker similarly does not profit from having access
to the image. We have no precedent results for the

9We compared Overhearers using a context from 0 to 5
previous turns. 0 or 1 turns had worse results, but 2 to 5 were
almost equivalent, so we report results using 3.

10Note that we use the second released version of the anno-
tation, containing a marginally different proportion of iCRs.
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Task 1: When to Ask Task 2: What to Ask

predictions: iCR actions iCR actions

inputs AP bF1 mF1 AP bF1 mF1 AP bF1 mF1 AP bF1 mF1

Baseline D, Sa .347 - .645 - - - - - - - - -

Overhearer G .138 .000 .470 - - - .332 .289 .593 - - -
G, D .384 .349 .642 - - - .697 .665 .801 - - -
G, D, Sb .372 .267 .604 - - - .697 .666 .799 - - -
G, D, Sb, Sa .378 .304 .620 - - - .694 .660 .799 - - -
G, D, A .372 .404 .662 - - - .711 .683 .810 - - -
G, D, Sb, A .379 .377 .654 - - - .712 .675 .808 - - -
G, D, Sb, Sa, A .388 .377 .655 - - - .706 .674 .808 - - -

Action-Taker G - - - .149 .005 .498 - - - - - -
G, D - - - .769 .710 .853 - - - .571 .550 .770
G, D, Sb - - - .762 .708 .851 - - - .547 .530 .761

iCR-Action-Taker G, D .378 .393 .658 .755 .702 .848 .753 .688 .815 .652 .621 .807
G, D, LA .393 .372 .652 .764 .708 .851 .751 .683 .811 .657 .619 .806
G, D, Sb .384 .380 .655 .760 .702 .848 .739 .681 .810 .612 .592 .792
G, D, Sb, LA .378 .311 .625 .771 .709 .852 .743 .684 .812 .630 .600 .796

iCR-Action-Detecter G, D, Sb, Sa .416 .418 .676 .859 .763 .880 .733 .684 .811 .834 .730 .862
G, D, Sb, Sa, LA .409 .366 .652 .864 .777 .886 .739 .689 .813 .838 .738 .867

Table 2: Main results of average precision, binary F1 Score and macro-average F1 Score for all models in the test
set. The inputs are G: gallery, D: dialogue, Sb: scene before the actions, Sa: scene after the actions, A: last gold
actions, LA: predicted logits of the actions. Shaded cells means the models were pre-trained on actions.

task of what to ask about, but even the Overhearer
achieves more than .70 AP. Given the imbalance
of the labels, we consider it a favourable result,
showing this task is easier to model. Introducing
iCR decisions does not cause drastic changes to the
performance on taking actions for when to ask, but
fine-tuning on what to ask causes a drop, which is
probably due to the fine-tuning occurring only on
iCR turns. See Appendix for additional analysis.

Hypothesis 1 In H1, we study the effect of action-
taking on the decision of when to ask iCRs. To
analyse it, we compare the results of the Over-
hearer with the iCR-Action-Taker/-Detecter in the
left block of Table 2. Integrating multi-task learn-
ing for taking actions is slightly helpful for iCR
prediction only if the action decision logits are
passed to the iCR classifier. If instead of predicting
actions we let the model learn the auxiliary task
of just detecting them from the scenes, the results
are better.11 Interestingly, the magnitude of the
positive difference is comparable to the difference
(in accuracy) found in the Minecraft dataset (Shi
et al., 2022), which was, however, negative. These
effects are not large enough to provide us with defi-
nite evidence that H1 holds.

11Again, this is still plausible: In CoDraw, we can assume
that the actual player has taken actions before generating the
iCR, as discussed by Madureira and Schlangen (2023b).

Hypothesis 2 For H2, we examine the certainty
scores assigned by the Action-Taker to performing
any action upon each clipart. For the task of what to
ask about, we compare two distributions: Scores of
cliparts subject to iCRs versus scores of cliparts not
subject to iCRs. For when to ask iCRs, we inspect
the distributions of the lowest score at turns where
iCRs occur versus turns where no iCR is made.
Using the two-sample Kolmogorov-Smirnov test
(Hodges Jr, 1958), we compare the underlying em-
pirical cumulative distributions of the two samples,
shown in Figure 1, under the null hypothesis that
they are equal, and a two-sided alternative.

clipart (what to ask) turn (when to ask)

iCR non-iCR iCR non-iCR

mean (std) .838 (.251) .952 (.147) .363 (.283) .525 (.328)

KS test .524* .219*
AP .009 .080

Table 3: Mean (std) of certainty scores for each sample,
results of the two-sided Kolmogorov-Smirnov test and
average precision. * means p-value < 0.001.

Table 3 shows the statistically significant test
results. It means that, on the whole, Action-Takers
behave differently regarding action certainty for
cliparts or turns with iCRs. In Figure 3, we can
see that the certainty for non-iCR cliparts is more
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concentrated around 1 than for cliparts subject to
iCRs. Similarly, the distribution of the minimum
certainty score at iCR turns is more concentrated
at lower values. In that sense, we find support for
H2. Still, using these scores directly as a signal
for iCR prediction does not result in high AP, in
line with the findings by Naszad et al. (2022). This
seems to occur because, although the distributions
are different, both samples have values in the whole
range, with overlap in their standard deviation.0 1certainty

0

1

e
c
d
f

turns

non-iCR iCR

0 1certainty
0

1

e
c
d
f

cliparts

non-iCR iCR

0 1certainty
0

1

e
c
d
f

turns

non-iCR iCR
Figure 3: Empirical cumulative distribution function of
the certainty of taking actions for each clipart (left) and
the minimum by turn (right).

Hypothesis 3 Lastly, we assess the effect of tak-
ing actions in deciding what to ask about. Here,
we focus on the right columns of Table 2, again
comparing the Overhearer with the pretrained iCR-
Action-Takers/Detecters. We observe a positive
effect of learning to take actions on the iCR policy,
with AP increasing from .69 to .75. Differently
from the task of when to ask, here predicting ac-
tions leads to better results than merely detecting
them. The difference is not negligible, which is
stronger support in favour of H3 in this context.

8 Discussion

Our setting allowed us to differentiate between un-
derstandability and iCR policy. The first refers
to learning a mapping from linguistic input to ac-
tions. The latter is an additional decision on top of
action-taking that regards knowing when the infor-
mation available to the agent at a given moment is
not enough for the current purposes of wanting to
commit to an outcome.

Learning to take actions does not seem to be a
signal informative enough for deciding when to ask
for iCRs, although it has a more prominent effect
on deciding what to ask about in iCR turns. Be-
sides, we investigated whether there is a signal in

the purely understanding models that predicts what
to clarify. Indeed, a model trained without any ex-
plicit iCR signal made predictions whose certainty
distribution differ at iCR turns and cliparts. Even
though the raw score cannot be directly used as a
predictor of human iCR behaviour, further investi-
gation can be done on extracting an agent’s implicit
iCR policies, e.g. with probing or attribution meth-
ods and in-depth analysis of the model’s internal
states.

The five sources of improvement (integration
of the gallery, token-level representations of utter-
ances, learnable scene features, attention mecha-
nism to construct contextual object embeddings
and action predictions) over the existing CoDraw
baseline formed together a conceptually superior
model design. We expected this more sophisticated
architecture, aligned with the latest literature, to
lead up to a clear-cut improvement in the task of
when to ask iCRs. The fact that the gain is not more
than 10% in our main metric over that baseline
compel us to join the ranks of works that question
whether the current NLP paradigm (employing imi-
tation learning or behavioural cloning to learn with
supervision from limited human data) is the right
way to go when it comes to meta-discursive acts
in interactions (Hayes, 1980; Nguyen et al., 2022;
Min et al., 2022; Naszad et al., 2022; Bohg et al.,
2023, inter alia). It is also possible that the actions
signal is too weak; the action space is large (four
actions on 28 objects) which makes the actually
performed actions at a given turn be sparse.

In a static dataset of human play, the underlying
CR policies of each player may differ by nature
and also in visibility in the data. We cannot know
with certainty if other humans would have behaved
differently at each point than what is realised in
the data; consequently, it is hardly possible to set a
standard against which to judge the trained model’s
policy. We are, after all, trying to learn a “cus-
tomary” policy from what is actually a mixture of
policies with observations sampled from various
players. It may be the case that we have reached
the limits of the generalisable policies we can cap-
ture from this data with supervised training, even
though the actual metrics are not close to the ceil-
ing.12 As Hayes (1980) discussed, graceful inter-
action requires developers to aim for non-literal
aspects of communication that are effective for the

12Though, as pointed out by a reviewer, this may be a limita-
tion of the class of models we tested, and results can possibly
be improved with more powerful vision/language encoders.
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human-agent interaction, instead of trying to imi-
tate human patterns exactly. This connects to the
over confidence problem in LLMs: In some sit-
uations, they should produce an I don’t know or
a CR, but their limited abilities in meta-semantic
communication often cause failures.

Ambiguity arises under competing communica-
tive pressures (Piantadosi et al., 2012). Thus CRs
are not a problem: They are a solution emerging
from joint effort (Clark, 2002). If many bits of in-
formation are to be conveyed, the IG may produce
minimally sufficient messages and leave it to the
addressee to identify gaps. The IF may also take
actions that are only approximately good, since
mistakes can normally be fixed later. Moreover,
crowdworkers seem to lack incentive to try to build
perfect reconstructions, and often seem to use im-
plicit knowledge to make only satisfactory actions
(see Appendix). Therefore, the iCR signal may
not be “out there” in the data, but live in the in-
ternal state of the agents. Treating the task as iid
predictions under supervised learning is also not
ideal because game decisions are actually made
sequentially. Like some works on learning when
to ask questions, modelling iCR policies may call
for reinforcement learning (see e.g. Khalid et al.
(2020)), with evaluation methods that capture the
effectiveness of the agent’s policy for the game,
beyond comparison with human behaviour.

9 Conclusion

We have examined the effects of performing ac-
tions on learning iCR policies in the CoDraw game.
The assumption that learning to take actions would
make the underlying when to ask policy emerge
does not fully hold. Still, we find that prediction
certainty of actions differs at iCR turns. Then, if
we assume that a given policy has informed us on
when iCRs have to be made, we show that it is
possible to predict what to ask about more success-
fully, with action-taking having a stronger positive
effect. Exploring larger datasets with CRs pro-
duced as a by-product of action-taking is desired.
Still, the suboptimal performance of various SotA
models in deciding when to ask for clarification
speaks against approaches that seek to imitate hu-
man behaviour. We recommend more investigation
with RL and evaluation methods that capture the
effectiveness of iCR policies in dynamic contexts.

10 Limitations

We have only explored one dataset because there
are very few genuine iCR datasets available yet.
Minecraft, which is relatively comparable in terms
of the underlying instruction following setting, is
smaller and has a different form of common ground
due to full visibility by the IG. It has been explored
in related work, to which we refer in the related
work section. SIMMC 2.0 is not suitable in this
context for two reasons: Its CRs are not at Clark’s
level 4 (uptake), but mostly level 3 (reference reso-
lution). Besides, it is a simulated dataset, and we
are interested in exploring the limits of modelling
human iCR behaviour.

The models are thus task-specifically fitted to
CoDraw and cannot be applied out of the box to
other domains. Still, we believe that CoDraw is
representative of iCRs and that solving the task in
one domain is a first step towards generalisation,
which has not been achieved yet even with other
datasets, as we discussed.

In this work, our models do not predict all fine-
grained game actions, i.e. they are not full-fledged
Action-Takers. In preliminary experiments, we first
attempted to model an agent that predicts all fea-
tures of each clipart at each turn. However, since
the vast majority of the 28 available cliparts remain
unchanged from one turn to the other, the model
could simply learn to output a copy of the current
state. We thus opted to turn all tasks into binary
predictions for our analysis, as we observed results
that are good enough for our purposes, given the
imbalanced nature of the actions in the data. For
each object in the gallery, it makes high level de-
cisions on which actions are needed (add/delete,
move, resize, flip). A full agent should include the
subsequent tasks of deciding where to place cli-
parts and what exact (discrete) size to set (presence
and orientation can be deduced in post-processing
with the current version).

Further investigation can be done to improve the
performance of the Action-Takers. Since the ac-
tions are very sparse, it may be the case that models
just learn to detect mentioned cliparts in the utter-
ances. A detailed error analysis should look closer
at the predictions and also examine how good the
scene similarity scores of the reconstructions are.
Instead of predicting probabilities, the model could
also output parameters of a distribution from which
the actions would be sampled; we do not investi-
gate that option here. Besides, we use a supervised
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learning approach that treats turns as iid. In reality,
what the player does in one turn influences its next
moves, so other methods like RL could be more
appropriate, as we discussed.

Although our models take several epochs to over-
fit the training data, performance in the validation
set saturates very early. The techniques we tried
(for instance, dropout, variations of the architecture
and filtering the training data) did not lead to better
results. We performed a limited hyperparameter
search that could be done more extensively in the
future, also to investigate in more detail how the
method scales with larger and smaller models.

For the task of what to ask about, we did not in-
clude the utterances for which the annotation does
not provide the reference cliparts due to ambiguity.
Still, that happens for very few cases and should
not have a considerable impact on the results.

To conclude, we do not have human performance
to use as an upper boundary for our results. It
would be interesting to collect human data by let-
ting humans decide when to ask for clarification
and what to ask about, so that we can better un-
derstand to what extent the task itself is possible
for humans acting as overhearers. Still, since our
aim is to do an intrinsic analysis on whether taking
actions improve a model’s performance, human re-
sults are not strictly necessary, because comparison
within models suffices for testing our hypotheses.

11 Ethical Considerations

Merely posing clarification requests can be a source
of miscommunication regarding intentions, which
has ethical implications and may also weaken the
application of moral norms by the interlocutors,
as discussed by Jackson and Williams (2018) and
Jackson and Williams (2019). Besides, the risks
regarding privacy and biases of learning actions
from individual behaviour also apply, as well as
the current topics being discussed in the field of
responsible NLP.
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A Additional Analysis

Here we present additional analysis. Figure 4 il-
lustrates the distribution of the number of actions
per turn. Table 4 presents the average precision for
each type of action, which are aggregated in Table
2. Figure 5 show the boxplots for the distribution
of certainty scores, to aid visualising that they have
different shapes in each sample.
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Figure 4: Empirical distribution of the number of actions
per turn in the CoDraw dataset.

add/del move flip resize

Action-Taker G, D .875 .617 .367 .531
iCR-Action-Taker G, D .865 .600 .398 .539

Action-Detecter G, D, Sa,b .976 .644 .414 .636
iCR-Action-Detecter G, D, Sa,b .974 .642 .423 .626

Table 4: Detailed performance of the Action-Takers
and Action-Detecters for when to ask. Values are the
average precision for each type of action in the test set.
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Figure 5: Empirical distribution of the certainty of tak-
ing actions for each clipart (top) and the minimum by
turn (bottom).

B Reproducibility

In this section, we provide details of our data pre-
processing and implementation. For precise details,
please check the available code. Here, we provide
a brief overview of each component and the justifi-
cation of some decisions.

B.1 Data

We used the annotation released in the file
codraw-icr-v2.tsv13 to identify iCRs and men-
tioned cliparts. We followed the train-val-test splits
as in the original CoDraw data. The ambiguity
classes introduced by the authors were treated as
follows: If an iCR was about an ambiguous but
concrete class, we assigned the positive iCR label
to all objects in the gallery that belong to that class.
For instance, for hat_group, all hats in the gallery
were treated as positive cases. The general ambigu-
ity class, used for unclear cases, was ignored in our
labelling. This occured in 318 iCRS. The whole
dataset was used in all experiments, except for the

13https://osf.io/gcjhz/files/osfstorage
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tasks of what to ask about, for which only the turns
containing iCRs were included for all splits.

The gallery and scene representation was con-
structed using features in a similar fashion as the
original paper. Each clipart was assigned integers
for its identifier, size (three categories), orientation
(two categories), presence in the current scene (a bi-
nary feature), pose (seven categories) and facial ex-
pression (5 categories), as well as five features for
its position (x and y coordinates of its centre, width,
height and area in the canvas). We set features (ex-
cept pose and facial expression) to a special cate-
gory 0 for objects that are not in the scene. All boy
and girl cliparts were collapsed into one class for
each, and their facial expressions and poses were
turned into features in the symbolic representation,
as in original paper. Other cliparts were assigned
a “not-applicable” class for these two features. To
define bounding boxes, we rescaled sizes according
to the AbstractScenes documentation.

Actions were defined as either addition/deletion
or edits. Edits meant flip, resize and move. If a
clipart was added or deleted, we did not consider
changes to its orientation, position and size with re-
spect to the gallery (in order to avoid that the model
only learnt the edits that occur due to an addition
or deletion). Actions were defined by comparing
the state of the gallery in a turn in relation to its
state in the previous turn. For initial turns and
some cases where the scene string was not avail-
able in the dataset, we set the scene to empty and
use the gallery in adjacent turns (since the gallery
should remain the same across the game). We also
introduced an “acted upon” action that is positive
whenever any type of action occurs upon a clipart.

Text embeddings were retrieved from
bert-base-uncased, licensed under Apache 2.0.
Following Shi et al. (2022), we concatenate the IG
and IF utterances using special tokens before each
speaker. Special tokens <TELLER> and <DRAWER>
were appended before the instruction giver and
follower, respectively. The last utterance from
the instruction follower was appended to the
beginning of the utterance of the instruction giver,
so that potential previous iCRs are encoded with
their responses, if given immediately. Embedding
sequences were padded with zeros to the right to
an empirical length of 80 tokens. When context is
used, the previous turns are appended to the left
of the last instruction and, if necessary, padded
with zeros to the left, so that the most recent turn is
always at the same position in the input.

B.2 Implementation

The models were implemented with Python
(v3.10.12), PyTorch14 (v1.13.1) and Pytorch Light-
ning15 (v2.0.8), in Linux 5.4.0-99-generic with
processor x86_64 on an NVIDIA GeForce GTX
1080 Ti GPU with CUDA (v11.6). The pre-trained
ResNet model was retrieved from torchvision16

(v0.14.1) and the pre-trained BERT came from
HuggingFace transformers17 (v4.29.2).

Optimisation was done with the Adam
algorithm (Kingma and Ba, 2015), using
BCEWithLogitsLoss with reduction set to sum
and the argument pos_weight to 2 for each
task. The total loss used for backpropagation
was a sum of all task losses. Early stopping was
implemented using a patience of 8 epochs and
the minimum delta of 0.001 for maximisation
of a monitored metric. Metrics were computed
using torchmetrics18 (v0.11.4). The monitored
metric varied according to the task: If iCRs were
predicted, we tracked the binary average precision
of iCR labels; otherwise, we tracked the binary
average precision of the meta-action class. The
maximum number of epochs was set to 30. The
checkpoint that lead to best performance in the
validation set was saved and loaded to run the tests.
Comet19 was used to manage experiments and to
perform hyperparameter search.

Hyperparameter search was performed with the
base model (i.e. an Overhearer that gets only the
dialogue and the gallery representation as input and
predicts only when to ask iCRs). We used comet’s
Bayes algorithm as well as a few manual selections
of hyperparameters, and opted for the model with
highest iCR binary average precision in the valida-
tion set. Table 5 shows the final hyperparameter
configuration used in all experiments.

We did not keep records of all experiments dur-
ing development. For the final run, we run 43
experiments during tuning and 102 for the analysis.
The duration varied from 5 minutes (the random
baseline) to 06h16m (the iCR-Action-Detecter us-
ing the full Transformer), without including the
time for data preparation. The number of param-
eters varied according to the model. The turn-

14https://pytorch.org/
15https://lightning.ai/pytorch-lightning
16https://pytorch.org/vision/stable/models.html
17https://huggingface.co/bert-base-uncased
18https://torchmetrics.readthedocs.io/en/

latest/
19https://www.comet.com
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hyperparameter type options selected

accumulate gradient discrete 1, 2, 5, 10, 25 1
batch size discrete 16, 32, 64, 128, 256 32
clipping discrete 0, 0.25, 0.5, 1, 2.5, 5 1
context length integer min=1, max=5 3
dropout discrete 0.1, 0.2, 0.3 0.1
d_model discrete 128, 256, 512 256
hidden_dim discrete 32, 64, 128, 256, 512, 1024 256
hidden_dim_trf discrete 256, 512, 1024 2048
learning rate discrete 0.1, 0.01, 0.001, 0.0001, 0.003, 0.0003, 0.00001, 0.0005 0.0001
lr scheduler bool True, False False
lr step integer min=1, max=10 -
n heads discrete 1, 2, 4, 8, 32 16
n layers float min=1, max=6 3
n reload datasets float min=1, max=10 1
pos weight float min=0.8, max=3 2
pre-trained text embeddings categorical bert-base-uncased, roberta-base, distilbert-base-uncased bert-base-uncased
random seed integer min=1, max=54321 12345
weight decay discrete 1, 0.1, 0.01, 0.001, 0.0001 0.
weighted loss bool True, False False

Table 5: Hyperparameters: Investigated options and selected values. Note that the search did not extensively cover
all possibilities for each hyperparameter.

level Overhearer without scenes had 5,008,923 and
with both scenes 29,054,299 (5,546,267 learnable).
The turn-level iCR-Action-Taker without scenes
had 5,339,168, and the iCR-Action-Detecter had
29,384,544 (5,876,512 learnable).

To enable reproducibility, we set the use of use
deterministic algorithms to True in PyTorch and
used Lightning’s seed_everything method with
a fixed random seed. Despite this, according to the
documentation, some methods cannot be forced to
be deterministic in PyTorch when using CUDA.20

B.3 Model
In this section, we explain in more detals how
we address five of the limitations of the baseline
model (iCR-baseline) by Madureira and Schlangen
(2023b), some of them already acknowledged by
the authors. We also refer to the original CoDraw
model (CoDraw-orig) by Kim et al. (2019), which,
however, did not include the instruction follower’s
utterances in the game.

Incorporating the gallery The gallery is an in-
formative source in CoDraw (e.g. if it contains
just one of the three tree cliparts, it is less likely
that disambiguation is needed). iCR-baseline does
not include the available objects as input, whereas
CoDraw-orig uses a symbolic representation as-
suming all 58 objects are available at any time.
Both approaches do not correspond to reality, as

20https://pytorch.org/docs/1.13/generated/
torch.use_deterministic_algorithms.html#torch.
use_deterministic_algorithms

players only see 28 cliparts. We follow a simi-
lar symbolic approach to represent the objects’ at-
tributes (presence in the scene, orientation, position,
size, pose, facial expression), but only for those at
play. The cliparts’ features and bounding boxes are
projected to a higher-dimensional space following
Sadler and Schlangen (2023).

Using contextual word embeddings iCR-
baseline relies only on two sentence-level embed-
dings, one to encode the whole dialogue context
and one for the last utterance, both not optimised
for the game. To allow the policy to access more
fine-grained linguistic information, we make all
token-level contextual embeddings available to the
player, constructed by a pretrained language model.

Enhancing scene representations iCR-baseline
uses a pretrained image encoder. It is unlikely
that off-the-shelf encoders fit well to clipart scenes
without fine-tuning. Here, we follow the approach
in DETR (Carion et al., 2020), employing a ResNet
(He et al., 2015) backbone with learnable positional
encodings to extract scene features, followed by a
trainable convolutional layer to reduce the number
of channels. The sequence of image features is
then used as part of the input.

Transforming The iCR predictions rely only on
pretrained embeddings with a feed forward neu-
ral network in iCR-baseline, and CoDraw-orig did
not employ Transformers (Vaswani et al., 2017) as
a trainable component. Given its leading perfor-
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mance in several scenarios, we bring them more
explicitly to the scene, in an approach similar to
DETR (Carion et al., 2020). We feed the clipart rep-
resentations to the decoder, to allow self-attention
to build up embeddings of the state of the gallery
and scene, without positional encoding due to the
arbitrary order of the cliparts. Here, we also rely
on the findings by Chiyah-Garcia et al. (2023) that
encoding relations between objects and their loca-
tions is helpful for CRs. Then, it performs cross-
attention with the scene and text. We make text
and scene available as one sequence like Lee et al.
(2022). Since cross-attention between modalities
is a cornerstone in current CR models (Shi et al.,
2022, 2023), we also run experiments using the
encoder to let text and scene attend to each other.
We then end up with a multimodal representation
of each clipart in the current context, which is then
passed to classifier layers for each prediction.

Action-taking via multi-task learning iCR-
baseline is an Overhearer, modelling only the pol-
icy of when to ask iCRs. To test our hypotheses,
we implement (iCR-)Action-Takers that predict the
game actions (or detect them, if the updated image
is used) via multi-task learning. Note that this is
not yet a full-fledged Action-Taker. For each object
in the gallery, it makes high level binary classi-
fication on which actions are needed (add/delete,
move, resize, flip); a full model would also make
the subsequent fine-grained decision of exact posi-
tions and sizes. We take inspiration from Shi et al.
(2022) and train a joint encoding for multiple clas-
sifiers. We let the action logits (or the real actions
via teacher forcing) be part of the input to the iCR
decoder. To facilitate evaluation, we add an addi-
tional meta-action prediction which is 1 whenever
any action is made to a clipart.

Components Let d_model be the dimension used
for the Transformer. First of all, an embedding of
the gallery and scene state is constructed. Em-
bedding layers are used for a clipart’s identifier,
orientation, presence, size, face and pose states
with dimensions d_model-100, 10, 10, 10, 20 and
20, respectively. The position is embedded with a
linear layer that maps its centre coordinates, area,
width and height to 30 dimensions. All embedded
features are concatenated so as to create a represen-
tation with dimensions 28 (number of cliparts) by
d_model. We used only the decoder of the Trans-
former, which gets the gallery representation as
“target” and the instruction tokens (whose dimen-

sions were reduced with a linear layer and, if appli-
cable, the sequence was concatenated to the scene
features) summed to positional encodings as “mem-
ory”. The decoder performs self-attention in the
gallery and then cross-attention with the memory.
Scenes are encoded following Carion et al. (2020)’s
implementation, but we first preprocess the scene
according to the pretrained model’s documentation.
The scene is then fed into a pre-trained ResNet50
followed by a trainable convolutional layer that
reduces the number of channels to the same dimen-
sion used for the Transformer. Then, the height
and width dimensions are flattened and the result
is added to learnable position embeddings, with a
dropout layer. The probabilities (for iCRs or ac-
tions) are predicted by taking each output of the
Transformer (i.e. one representation for each cli-
part in the gallery) and passing it through a feed-
forward network with the following sequential lay-
ers: leaky ReLU, dropout, linear, leaky ReLU and
linear. For predicting turn-level iCRs, the represen-
tations of all cliparts are averaged. If the action-
taking logits or teacher forcing is used, they are
appended to the input. The output logits are con-
verted to probabilities using the sigmoid function.

B.4 Evaluation
The threshold for the F1-Scores was set to 0.5. We
did not include the meta-action label in the main
results for taking actions to avoid inflating the per-
formance; it was only used for the analysis for H2,
done on the Action-Taker+G, D. Metrics for the
evaluation were computed with sklearn21 (v1.0.2)
and the plots were generated with seaborn (v0.12.2)
and matplotlib22 (v3.7.1). The hypothesis test
was done with SciPy23 (v1.11.1) stats.ks_2samp
method with a two-sided alternative.

C CoDraw Examples

Figures 6-9 exemplify strategies of crowdwork-
ers, showing various levels of commitment to
playing the game well. The images are gen-
erated with the CoDraw Dataset Visualizer, de-
veloped by @jnhwkim at https://github.com/
facebookresearch/CoDraw. Scenes at the top are
the state of the reconstructions at the highlighted
turns.

21https://scikit-learn.org/stable/index.html
22https://matplotlib.org/
23https://docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.ks_2samp.html
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← Older (?session=train_00487) Newer → (?session=test_00489)

Score: 3.94/5.00

Original Scene

CoDraw Dataset Visualizer
Rollover on messages to check the abstract scene at that moment!

val_00488

Random (?session=train_00401)

Developed by @jnhwkim (https://github.com/jnhwkim) as a reserach intern at Facebook AI Research (http://facebook.com/fair).

ready when you are

small rocket on right

ok

small sun on left corner big boy on left facing right
running position in from bottom

smiling or teeth ?

big girl running facing right shocked in center

ok need to know what expression boy has

small basketball up front beach ball right corner

Chance to peek is used by Teller

great job

Fin.

ok

Figure 6: Even peeking, the instruction giver does not inform the instruction follower that the reconstruction is not
totally correct: The orientation of the rocket is wrong, as well as the position of the basketball and the size of the
two balls. From: CoDraw dialogue game 488, CC BY-NC 4.0, scene from Zitnick and Parikh (2013).
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← Older (?session=train_00197) Newer → (?session=test_00199)

Score: 3.90/5.00

Original Scene

CoDraw Dataset Visualizer
Rollover on messages to check the abstract scene at that moment!

val_00198

Random (?session=val_02488)

Developed by @jnhwkim (https://github.com/jnhwkim) as a reserach intern at Facebook AI Research (http://facebook.com/fair).

ok

medium sun left corner cut off . boy frowning with leg
out to your right

ok

he 's wearing sunglasses and kicking yellow frisbee

so he is standing and where is his eyes to skyline

medium pine tree on right top and a little of side cut
off orange cat below tree looking at boy

so boy and pine on the right ? ? ?

his eyes are barely below the skyline

check my question

boy is on left but to the right of the sun

ok

are you finished ? will use chance .

ok

make sun bigger and top left cut off , move glasses
onto boys eyes , and frisbee touches his foot

ok

shrink the tree and the cat is more to the left of it

ok

Fin.

Chance to peek is used by Teller

Figure 7: A more careful instruction giver uses two turns to try to repair even minor details after the peek, like the
slightly wrong position of the sunglasses. From: CoDraw dialogue game 198, CC BY-NC 4.0, scene from Zitnick
and Parikh (2013).
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← Older (?session=train_03834) Newer → (?session=train_03836)

Score: 2.91/5.00

Original Scene

CoDraw Dataset Visualizer
Rollover on messages to check the abstract scene at that moment!

train_03835

Random (?session=train_06961)

Developed by @jnhwkim (https://github.com/jnhwkim) as a reserach intern at Facebook AI Research (http://facebook.com/fair).

hi and ready .

med cloud on left sky , small apple tree on left , then
frowny boy sitting in sandbox with bucket , bear to
right

Chance to peek is used by Teller

make tree and bear smaller , cloud closer to middle ,
make boy and box bucket bigger , and you got it

tree will not go smaller .

oh , and flip direction of boy

fixed everything but tree .

were good !

thanks !

Fin.

ok

Figure 8: The instruction follower gets underspecified instructions at the first turn (for instance, nothing is said
about the orientation of the boy and his position with respect to the bucket), but acts even so without asking for
clarification. From: CoDraw dialogue game 3835, CC BY-NC 4.0, scene from Zitnick and Parikh (2013).
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← Older (?session=train_04285) Newer → (?session=train_04287)

Score: 0.364/5.00

Original Scene

CoDraw Dataset Visualizer
Rollover on messages to check the abstract scene at that moment!

train_04286

Random (?session=train_05320)

Developed by @jnhwkim (https://github.com/jnhwkim) as a reserach intern at Facebook AI Research (http://facebook.com/fair).

ready !

a tree , with a girl in front with shades on a swing set ,
a guy in a pirate hat . a cat you bounce on . a sun and

thanks .

that 's left to right

medium to the left

what position is the girl and what is she doing ?

standing up smiling on the left side of the swing

where is the swing set ? what position is the boy ?

sad and to the right of the swing

where is the bee ?

to the farthest right

where is the swing ?

on horizon sun above

Fin.

what size tree where is the tree ?

Figure 9: The instruction giver provides underspecified instructions at the first turn. Instead of taking all actions
immediately, the instruction follower does many rounds of clarification. From: CoDraw dialogue game 4286, CC
BY-NC 4.0, scene from Zitnick and Parikh (2013).
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