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Abstract

Researchers have raised awareness about the
harms of aggregating labels especially in sub-
jective tasks that naturally contain disagree-
ments among human annotators. In this work
we show that models that are only provided ag-
gregated labels show low confidence on high-
disagreement data instances. While previous
studies consider such instances as mislabeled,
we argue that the reason the high-disagreement
text instances have been hard-to-learn is that
the conventional aggregated models underper-
form in extracting useful signals from subjec-
tive tasks. Inspired by recent studies demon-
strating the effectiveness of learning from raw
annotations, we investigate classifying using
Multiple Ground Truth (Multi-GT) approaches.
Our experiments show an improvement of con-
fidence for the high-disagreement instances1.

1 Introduction

[Warning: This paper may contain offensive con-
tent.]

Datasets labeled by human annotators play a crit-
ical role in many supervised Natural Language Pro-
cessing (NLP) tasks (Paullada et al., 2021). How-
ever, as the volume of such data has grown, it has
become difficult to manually assess data quality.
Recognizing this challenge, recent efforts have
proposed automated strategies for evaluating an-
notated datasets, specifically targeting the identi-
fication of noisy and hard-to-learn data instances
(Swayamdipta et al., 2020).

Existing methods for automatically gauging sam-
ple quality often rely on aggregated labels, such as
a majority vote (Swayamdipta et al., 2020), but dis-
agreements among annotations for data items are
widespread (Plank, 2022). Some of these discrepan-
cies arise from human labeling errors (Mokhberian
et al., 2022), however, a growing body of research
highlights that annotator differences in subjective

1Our code and data are publicly available at GitHub.

tasks introduce bias in annotations, particularly
in sensitive domains like hate speech recognition
(Plank et al., 2014; Aroyo and Welty, 2015; Pavlick
and Kwiatkowski, 2019; Sap et al., 2022). There-
fore, a single ground truth for each data instance
may lead to potential oversights in capturing nu-
anced perspectives from different annotators.

In this paper, we leverage Data Maps
(Swayamdipta et al., 2020), an automated data eval-
uation strategy, to understand the relation between
noise and bias in annotated datasets. Data Maps
define two intuitive measures for each data item:
the model’s confidence in predicting the true class
and the variability of this confidence across epochs.
Swayamdipta et al. (2020) have shown that lower
model confidences correlate with higher chances
of mislabeling for corresponding samples. Firstly,
based on the assumption that a single correct label
exists for a given example, we investigate an initial
research question:

RQ1: Is there any correlation between hu-
man disagreement on instances and model’s un-
certainty/confidence for classifying the instance to
aggregated ground truth?

Swayamdipta et al. (2020) has briefly studied
the relationship between intrinsic uncertainty and
the training dynamic measures. Their findings re-
veal a correlation between human disagreement
and the model’s uncertainty in a natural language
inference dataset. We explore this correlation in
the context of toxicity detection in social media
texts using three different datasets. Our findings
reveal a significant correlation between human la-
bel agreement and model confidence, with confi-
dence decreasing as disagreements among anno-
tators increase. Specifically, single ground truth
(Single-GT) models (see §4.1.2 for details) exhibit
lower confidence for high-disagreement samples,
potentially due to the subjectivity of those instances.
These observations from RQ1 motivate the explo-
ration of multiple ground truths (Multi-GT) or
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Multi-GT models (details in §5.1) that can infer
based on multiple perspectives (Mostafazadeh Da-
vani et al., 2022; Gordon et al., 2022; Weerasooriya
et al., 2023; Mokhberian et al., 2023) as an alterna-
tive to Single-GT models.

As far as we are aware, there is limited existing
research that has examined the training dynamics of
non-aggregated annotations. Therefore, we adapt
the Data Maps definition to Multi-GT models and
empirically address our second research question:

RQ2:. Does learning from raw annotations
enhance the model’s confidence for the high-
disagreement instances?

When using Multi-GT models, we identify im-
proved confidence among minority votes for sam-
ples characterized by substantial annotation dis-
agreements.

Our analysis in this paper demonstrates that sam-
ples receiving low confidence in Single-GT models
are not inherently unusable. Furthermore, employ-
ing Multi-GT models for subjective tasks yields
improved confidence for certain raw annotations
associated with high-disagreement samples.

2 Related Work

Uncertainty in Machine Learning In the realm
of uncertainty estimation and dataset evaluation,
several studies have paved the way for understand-
ing the dynamics of model training. Srivastava et al.
(2014) introduce dropout-based uncertainty esti-
mates, showcasing a positive relationship between
training dynamics and dropout measures. The Data
Maps approach (Swayamdipta et al., 2020) lever-
ages this knowledge to establish the credibility of
the proposed training dynamics measures and their
relationship with uncertainty. Other works (Laksh-
minarayanan et al., 2017; Gustafsson et al., 2020;
Ovadia et al., 2019) collectively support the no-
tion that deep ensembles provide well-calibrated
uncertainty estimates, laying the groundwork for
our exploration of training dynamics measures and
their correlation with uncertainty. Fort et al. (2020)
sheds light on diversity trade-offs in ensembles,
offering insights into the cost-effectiveness of us-
ing ensembles of training checkpoints. Chen et al.
(2017) advocates for ensembles of training check-
points as a more economical alternative with cer-
tain advantages. The work by (Xing et al., 2018)
on loss landscapes provides additional perspectives
on the optimization process during training, com-
plementing the understanding gained from training

dynamics.
Toneva et al. (2019) and (Pan et al., 2020) , along

with (Krymolowski, 2002) , address catastrophic
forgetting, providing approaches to analyze data
instances. Bras et al. (2020) introduces AFLite, an
adversarial filtering algorithm, advocating for the
removal of "easy" instances. Chang et al. (2018)
proposes active bias for training more accurate neu-
ral networks, aligning with the broader discussion
on active learning methods presented in (Peris and
Casacuberta, 2018; P.V.S and Meyer, 2019). Mad-
dox et al. (2019) propose a technique for represent-
ing uncertainty in deep learning models utilizing
Stochastic Weight Averaging to track a weighted
average of neural network weights. Mishra et al.
(2020) explores creating better datasets, resonating
with the theme of dataset enhancement in the con-
text of active learning methods. Influence functions
(Koh and Liang, 2020), forgetting events (Toneva
et al., 2019), cross-validation (Chen et al., 2019),
Shapley values (Ghorbani and Zou, 2019), and the
area-under-margin metric (Pleiss et al., 2020) con-
tribute to the discussion on data error detection and
instance scoring.

Multiple Perspectives In the paper by (Plank,
2022), the challenge of human label variation due
to annotator perspective biases is described, empha-
sizing the impact on data quality, modeling, and
evaluation stages. This resonates with our explo-
ration of model confidence and the drawbacks of
aggregating labels in subjective tasks. The call for
Multi-GT designs aligns with our goal of under-
standing noise and bias in raw annotations.

The survey on ’Handling Bias in Toxic Speech
Detection’ by (Garg et al., 2023) provides insights
into mitigating bias in toxic speech detection, re-
flecting the awareness raised by researchers about
the harms of aggregating labels, especially in tasks
involving disagreements among human annotators.
This survey contributes relevant perspectives for
enhancing the robustness and fairness of models in
the context of subjective tasks.

Prior research has introduced models aimed at
directly learning from annotation disagreements
in subjective tasks. Two primary approaches have
been proposed in this regard. The first approach
treats the "ground truth" as the distribution en-
compassing all labels that a population of anno-
tators could generate, as demonstrated in (Peter-
son et al., 2019; Uma et al., 2020). The second
approach involves learning from the hard labels
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assigned by individual annotators, as explored in
(Mostafazadeh Davani et al., 2022; Weerasooriya
et al., 2023; Mokhberian et al., 2023).

While preceding studies have made significant
strides in uncertainty estimation and dataset eval-
uation, our work adopts a novel perspective by
questioning the effectiveness of aggregated models
in identifying mislabeled samples. The definition
of confidence used in this study and the Data Maps
approach deviates from conventional usage in other
fields, where confidence is typically assessed based
on the predicted label. Alternative definitions and
interpretations of confidence are present in certain
core machine learning papers. The shift toward
Multi-GT approaches and the exploration of di-
verse perspectives contribute to a more nuanced
understanding of noise and bias within annotated
datasets. The work by Wang and Plank (2023) sug-
gests innovative uncertainty measures derived from
Multi-GT models for integration into an Active
Learning pipeline, aiming to decrease the budget
required for item-annotator labeling. In contrast,
our approach diverges as we focus on exploring
training dynamics to capture noise in Multi-GT
models.

3 Datasets

In this section we introduce the three datasets stud-
ied in this paper. Statistics of the datasets are pre-
sented in Table 1.

DSI DMHS DMDA

# unique texts 45,318 39,565 10,440
# labels 2 3 2
# annotators 307 7,912 819
# annotations
per text

3.2±1.2 2.3±1.0 5

# annotations
per annotator

479±830 17±4 64±139

Table 1: The statistics for dataests introduced in §3

The social bias inference corpus (DSI) contains
45K posts from online social platforms such as Red-
dit, Twitter, and hate sites (Sap et al., 2020). The
dataset includes structured annotations of social
media posts with respect to offensiveness, intent
to offend, lewdness, group implications, targeted
group, implied statement, and in-group language.
Following Weerasooriya et al. (2023) we only con-
sider the labels from “intent to offend” for each

data item.

The measuring hate speech corpus (DMHS)
consists of 39,565 social media posts spanning
YouTube, Reddit, and Twitter, manually annotated
by 7,912 Amazon Mechanical Turk annotators
from United States (Kennedy et al., 2020; Sachdeva
et al., 2022). Annotations for each text sample in-
clude evaluating the intensity of 10 distinct hate
speech labels, encompassing sentiment, disrespect,
insult, humiliation, inferior status, violence, dehu-
manization, genocide, attack or defense, and hate
speech. The labels are aggregated across all anno-
tations for a given text using Rasch measurement
theory (Rasch, 1960), resulting in a continuous
hate speech score, where higher values denote in-
creased offensiveness. This score is discretized
into three labels: above +0.5 for hate speech, below
-1.0 for supportive speech, and between -1.0 and
+0.5 for neutral or ambiguous speech. We use these
aggregated labels for Single-GT model. Further-
more, we incorporate each individual annotator’s
hate speech label as their specific annotation for
Multi-GT model. Both the aggregated and non-
aggregated target columns represent a multi-class
classification task with 3 labels - supportive, neu-
tral, or hate speech.

The Multi-Domain Agreement dataset (DMDA)
has been created for studying offensive language
detection (Leonardelli et al., 2021). It comprises
approximately 400K English tweets from three top-
ics: Covid-19, US Presidential elections, and the
Black Lives Matter movement. Each tweet has
been annotated for being offensive or not by 5 US
native speakers using Amazon Mechanical Turk,
resulting in a total of 10,753 annotated tweets. The
tweets have been analysed further in Leonardelli
et al. (2021) regarding level of annotator agreement:
unanimous, mild, and low.

4 RQ1: Is there correlation between
human disagreement and model’s
uncertainty/confidence?

4.1 Methods

This section outlines the approaches employed to
address RQ1. We compute the agreement level in
the human labels directly based on the annotations
available in each dataset, with detailed explanations
provided in §4.1.1. Subsequently, we investigate
whether the classifiers’ confidence in data items
correlates with the level of annotator agreement.
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Figure 1: Dataset Cartography map for Single-GT model on DMDA (left), DSI (center) and DMHS (right). The x-axis
shows variability and y-axis, the confidence. Further, the points are color-graded by correctness (probability the
trained model assigns this data point to the ground truth label in its prediction). Samples in the top left corner with
high confidence and low variability are easy for the model to learn, whereas sample that are in the lower left corner
with low confidence and low variability are difficult.

We utilize a conventional supervised text classifi-
cation model, as elucidated in §4.1.2, and examine
the training dynamics during defined epochs, out-
lined in §4.1.3.

4.1.1 Annotator Agreement Level
The annotator agreement level is defined as the pro-
portion of annotations that align with the majority
vote for a specific text sample. This metric, intro-
duced by (Wan et al., 2023), provides insights into
the degree of consensus among annotators regard-
ing the majority label assigned to a given sample.

4.1.2 Single-GT Models
The conventional text classification model predicts
the aggregated label for each instance. Text embed-
dings from transformer-based encoders are fed into
a feed-forward classification layer which performs
a linear projection layer to predict the majority la-
bel.

4.1.3 Data Maps
We adhere to the definitions outlined in
Swayamdipta et al. (2020) to quantify the
qualities of data instances automated by training
classification models.

Confidence is defined as the mean class probabil-
ity for each data item’s gold label across all epochs.
The confidence is tied to the evolution of class
probabilities during the training process, offering
insights into the model’s certainty or consistency
in predicting gold labels for each data item.

Variability is defined as the standard deviation
of class probability for each data item’s gold label
across all epochs and measures the extent to which
they change across different training epochs. It

indicates the degree of fluctuation or stability in the
model’s predictions over time.

Swayamdipta et al. (2020) find that the simulta-
neous occurrence of low confidence and low vari-
ability correlates well with an item having an incor-
rect label.

4.2 Results

We calculate the training dynamics, confidence and
variability to generate data cartography maps for
the three datasets – DMDA, DSI and DMHS – as il-
lustrated in Figure 1. Furthermore, we leverage
training dynamics to evaluate the correlation be-
tween the model’s confidence in predicting the gold
label and the level of agreement among annotators
for the gold label. This correlation is visually rep-
resented through boxplots in Figure 2 for Single-
GT model where gold label is the aggregated vote.
Across all three datasets, we identify a robust cor-
relation between model confidence and annotator
agreement level. Notably, instances of higher dis-
agreement among human annotators correspond to
lower model confidence throughout training epochs
when the model is trained on the majority vote. To
quantify the observed correlation, we utilize Pear-
son correlation coefficient with the results shown
in Table 2 where we see large correlation for all
three datasets with the associated p-values being
statistically significant.

It is worth noting that the model remains un-
aware of annotator agreement level information
during training, as it is only trained on a single
ground truth label for a text sample, which is the
majority vote. Nevertheless, this external factor sig-
nificantly influences the model’s confidence, with
instances of heightened disagreement among hu-
man annotators corresponding to a persistent trend
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Figure 2: Boxplots illustrating the relationship between model confidence and annotator agreement level (am)
for Single-GT model trained on DMDA (left), DSI (center) and DMHS (right). There is a clear correlation between
model’s confidence in predicting the ground truth label and the agreement between annotators (denoted as the
fraction of annotators that agree on the majority vote on the x-axis). We further depict significant differences in
confidence distribution across agreement levels using the Mann-Whitney-Wilcoxon test (McKnight and Najab,
2010) with Statannotations (Charlier et al., 2022). Notation includes **** for p <= 1.00e− 04.

Dataset DMDA DSI DMHS
Corr. 0.44 0.37 0.45

Table 2: Pearson correlation coefficients between model
confidence on each sample and the corresponding anno-
tator agreement level for Single-GT model trained on
the three datasets. The reported values are statistically
significant.

of lower model confidence. Hence, a critical ques-
tion arises: given the observed challenge where
the model struggles to learn samples with high
disagreement level exhibiting low confidence, can
being exposed to multiple annotators’ annotations
enhance the model’s learning capabilities on low
confidence (hard-to-learn) samples?

5 RQ2: Do Multi-GT models lead to
better confidences on hard-to-learn
samples?

5.1 Methods
For our Multi-GT model, we rely on DisCo (Dis-
tribution from Context), as introduced by Weera-
sooriya et al. (2023), which is a neural model
specifically designed for predicting labels assigned
by individual annotators. Instead of considering
items in isolation, this model takes annotator-item
pairs as input and conducts inference by consider-
ing predictions from all annotators. The authors
discover that incorporating annotator-specific mod-
ules into a classifier, as opposed to overlooking
individual perspectives, leads to superior perfor-
mance.

Following the DisCo model, in this study,
the inputs consist of instance-annotation pairs
(xm, yn,m), where xm represents the mth data item,

Dataset DMDA DSI DMHS
Corr. 0.46 0.44 0.51

Table 3: Pearson correlation coefficients between model
confidence on each sample and the corresponding an-
notator agreement level for DisCo trained on the three
datasets. When computing the training dynamics for
DisCo, the pair of text sample and annotator ID is dis-
tinct across the dataset, which results in multiple confi-
dence values for each annotation for a text sample. The
reported values are statistically significant.

and yn,m denotes the label annotator n assigned
to it. We adapt the calculation of confidence and
variability based on the probabilities of gold an-
notation per instance-annotation. This approach
yields multiple confidences per item, correspond-
ing to the number of annotations available for that
item.

5.2 Results

As shown in the previous section, we employ train-
ing dynamics to assess the relationship between
model confidence on annotations and the agree-
ment level among annotators for a given text sam-
ple. We depict the relationship using Pearson cor-
relation coefficient values in Table 3 with statis-
tically significant p-values and the boxplots are
illustrated in Appendinx A. It is important to note
that for computing training dynamics for DisCo,
the pair of text sample and annotator ID is unique
across the dataset, hence, a text sample has multi-
ple confidence values, one for each annotation for
a text sample. We observe that consistent with the
trend in models trained on a single ground truth
label, heightened disagreement among annotators
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Annotation yn,m compared to majority vote ȳ.,m
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Figure 3: Boxplot illustrating the relationship between model confidence and whether the annotator’s annotation
(yn,m) disagrees with the majority vote (ȳ.,m) for DisCo trained on DMDA (left), DSI (center) and DMHS (right).
We see a clear correlation indicating higher confidence in the predicted label by the model when yn,m = ȳ.,m
and lower confidence when yn,m ̸= ȳ.,m. We further depict significant differences in confidence distribution
for yn,m = ȳ.,m and yn,m ̸= ȳ.,m using the Mann-Whitney-Wilcoxon test (McKnight and Najab, 2010) with
Statannotations (Charlier et al., 2022). Notation includes **** for p <= 1e− 04.
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0.0

0.2

0.4

0.6

0.8

1.0

C
on

fi
d

en
ce

****
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Figure 4: Boxplots illustrating the relationship between model confidence and whether the annotator’s annotation
(yn,m) disagrees with the majority vote (ȳ.,m) for DisCo trained on DMDA (left), DSI (center) and DMHS (right) for
DisCo only for the subset of samples where confidence is below 0.5 in Single-GT model. In contrast to the overall
dataset presented in Figure 3, a reversed trend is observed, indicating higher confidence when yn,m ̸= ȳ.,m and
lower confidence when yn,m = ȳ.,m. This highlights DisCo’s ability to crucially learn from minority votes that are
discarded for Single-GT model. We further depict significant differences in confidence distribution for yn,m = ȳ.,m
and yn,m ̸= ȳ.,m using the Mann-Whitney-Wilcoxon test (McKnight and Najab, 2010) with Statannotations
(Charlier et al., 2022). Notation includes **** for p <= 1.00e-04.

for a text sample correlates with reduced model
confidence. We further check the model confi-
dence distribution for annotations (yn,m), grouped
by whether they are equal to majority vote (ȳ.,m)
for all three datasets depicted in Figure 3. The re-
sults show a clear trend: samples with yn,m = ȳ.,m
yield a high-confidence distribution, while those
with yn,m ̸= ȳ.,m result in a notably lower con-
fidence distribution. Two factors may contribute
to this observation: 1) the inclusion of noisy mi-
nority vote annotations, where the majority vote
represents an objectively correct label; and 2) the
architectural limitations of the model. Although
the model is designed to learn multiple annotations
for a given text sample depending on the annotator
ID as input, it encounters challenges in confidently
learning the minority vote annotation for the text.
These results emphasize the significance of anno-
tator agreement in understanding uncertainty in

model predictions, which applies to both Single-
GT model and DisCo, a Multi-GT model, where
higher confidence aligns with increased agreement
on annotations.

Additionally, to answer the question whether
DisCo, a Multi-GT model, is able to demonstrate in-
creased confidence levels in hard-to-learn instances
for the Single-GT model, our investigation specifi-
cally targets text samples where Single-GT model
exhibits low confidence (below 0.5). As illustrated
in Figure 4, a significant and consistent trend is
observed across all three datasets. In this instance,
samples with yn,m ̸= ȳ.,m show higher confidence
compared to samples with yn,m = ȳ.,m. This con-
trasts with the relationship observed in the com-
plete dataset boxplots in Figure 3, where model has
higher confidence on samples with yn,m = ȳ.,m.
This finding emphasizes a critical characteristic
of DisCo, which can extract valuable information

107



from annotations that are disregarded during the
majority vote aggregation process. The Single-GT
model never encounters this information and there-
fore cannot improve on challenging samples where
the discarded annotation may be crucial due to mis-
labeled samples (Swayamdipta et al., 2020) or the
subjectivity of the text.

We present a subset of the above group of sam-
ples with yn,m ̸= ȳ.,m in Table 4 that have high
confidence in DisCo (above 0.9, i.e. easy to learn)
and low confidence in Single-GT model (below 0.5)
for ȳ.,m. Provided with the opportunity to learn the
minority vote label yn,m for these samples, DisCo
rather finds it easy to learn them and hence, leading
to the conjecture that majority votes ȳ.,m are inac-
curate. We provide an additional set of examples in
Appendix A where the Single-GT model exhibits
high confidence (above 0.5) for ȳ.,m, while DisCo
demonstrates extremely low confidence (below 0.1)
for yn,m where yn,m ̸= ȳ.,m. This observation sug-
gests that, in these instances, minority votes yn,m
are deemed inaccurate.

Further, to evaluate the model’s capability to
learn multiple annotator perspectives, we focus on
samples with disagreement in the dataset where
annotator agreement level is below 1.0, signifying
disparate labels provided by different annotators
for the same text. Effectively capturing diverse an-
notator perspectives entails the model’s ability to
accurately predict distinct labels for identical text
inputs based on annotator input, showcasing its
ability to learn varied perspectives encoded in the
annotations. To illustrate this, in Figure 5 we plot
the count of samples with disagreement grouped
by the number of different labels the model learns
with high confidence (above 0.5). This visualiza-
tion would help us assess whether the model is
able to learn multiple labels for a text with high
confidence, when the sole variation in input to the
model lies in the annotator ID. Thus, it serves as an
evaluation of its capability to learn different annota-
tor viewpoints. For datasets DMDA and DSI, with a
binary classification task, although the model con-
fidently learns a single label for over 50% of the
samples, there is still a notable subset of samples
(All Labels > 0.5), where the model shows high
confidence for both labels, indicating its ability to
capture annotator perspectives.

However, for DMHS, characterized by three la-
bels, insights from Figure 5 reveal that DisCo con-
fidently learns only a single label for over 75% of
the samples, with approximately only 12% sam-

ples where it confidently learns multiple labels.
This underscores its challenge in capturing indi-
vidual annotators’ perspectives through their anno-
tations. We attribute this difficulty to the notably
low average number of annotations per annotator
in DMHS (below 20), as shown in Table 1, in con-
trast to the other two datasets. The limited number
of annotations per annotator presents an obstacle
in effectively modeling an annotator’s perspective.
Therefore, we emphasize that accumulating a sub-
stantial number of annotations from each annotator
is imperative for the effectiveness of DisCo.

Our analysis unveils key insights into model con-
fidence and annotation dynamics. Examining the
relationship between model confidence and anno-
tator agreement levels for text samples, our find-
ings echo those in Single-GT models, showing
that heightened annotator disagreement aligns with
decreased model confidence. In hard-to-learn in-
stances for the Single-GT model, DisCo showcases
increased confidence in samples with minority vote
annotations, revealing its capacity to extract valu-
able insights from annotations typically overlooked
in majority vote aggregation. Moreover, our inves-
tigation reveals that DisCo can effectively predict
diverse labels for identical text inputs, especially in
instances marked by disagreement, but it struggles
in datasets with a limited number of annotations per
annotator, emphasizing the necessity of accumulat-
ing a substantial number of annotations for DisCo’s
effectiveness. In essence, our findings underscore
the critical importance of preserving multiple per-
spectives through annotations in subjective tasks
and advocate for advancements in modeling ap-
proaches to achieve nuanced learning for broader
representations.

6 Conclusions

This paper delves into an exploration of whether
perspectivist classification models effectively har-
ness valuable insights from instances identified as
noisy through automated dataset evaluation tech-
niques. Our investigation begins by examining
how Single-GT models classify high-disagreement
elements as noise. Subsequently, we shift our ap-
proach to Multi-GT models and observe a notable
increase in confidence for minority votes for the
same instances. This shift underscores the potential
for richer and more nuanced understanding when
leveraging multiple perspectives in the classifica-
tion process.
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Figure 5: Number of samples with disagreement in the dataset where annotator agreement level is strictly below 1.0
and they are grouped by the number of different labels DisCo learns with high confidence (above 0.5) for these
samples for the dataset DMDA (left), DSI (center) and DMHS (right).

Dataset Text Majority Label Minority Label

DMDA

START PUNCHING BACK !!! offensive not offensive

Y’ALL FORGOT THE WHITE
DUDE THAT THE POLICE
KILLED LAYING JUST LIKE
GEORGE FLOYD THE CRIM-
INAL <url>

not offensive offensive

His life mattered. You however
say whatever sounds good. It’s
disgusting. You insult this issue.

offensive not offensive

DSI

why are jews ’ noses so big ? air
is free alt : more gold to dig

not offensive offensive

What did the Texas shooter
say as he walked through the
church? Pew pew pew!

not offensive offensive

Still better that Nero’s poetry. //
cc @ChrisWarcraft

offensive not offensive

DMHS

Fucking fagot burn in hell supportive offensive

Your nigga don’t suck toes or eat
ass he a bitch.

supportive offensive

At 7:19 is why I hate people,
women especially look how mad
she got just because the dog
splashed her.. f*** you you
stupid b**** either have fun or
go kill yourself

neutral offensive

Table 4: Examples from the three datasets DMDA, DSI
and DMHS where Single-GT model has low confidence
(below 0.5) for the Majority Label and DisCo has really
high confidence (above 0.9) for the Minority Label. Fol-
lowing our best assessment, it appears that the majority
label for this subset appears to be inaccurate, and the
minority label emerges as the more suitable annotation.

For future research directions, it is worth explor-
ing model confidences for each annotator in the
dataset in the context of the Multi-GT model. This
investigation will enhance our understanding of
the challenges faced by current models in learn-
ing annotator perspectives. Additionally, it is also
worth exploring datasets like DMHS featuring anno-
tator demographic details and target demographic
information for offensive text. Such datasets pro-
vide a chance to assess model confidences for both
Single-GT and Multi-GT models across diverse
demographic groups. This presents an opportu-
nity to investigate the impact of preserving diverse

perspectives through annotations in addressing so-
cietal biases within learned models.

Limitations

Although we have carried out a comprehensive
analysis, our study has certain limitations that war-
rant consideration. Firstly, the performance of
Multi-GT models is dependent on the number of
annotations per annotator, and a low number in
some datasets may impact the representation of
individual annotators. Secondly, the absence of
raw annotations in many datasets limits a broader
analysis of potential bias or noise. Additionally,
variations in annotation instructions across datasets
and differing levels of freedom for subjective in-
terpretation among annotators introduce potential
biases and inconsistencies that may affect compar-
ison. Moreover, for Multi-GT models, this paper
only considers DisCo, which requires an annota-
tor ID to make the prediction. However, future
research can explore the models that learn from the
distribution of labels for each item. Furthermore,
various approaches to defining annotators’ label
agreement, such as entropy and silhouette score
(Mokhberian et al., 2022), could be explored in
forthcoming research. Finally, despite employing a
Multi-GT approach, there is a possibility that the
dataset items and annotators may have limitations
as they may belong to a non-representative pool
that does not encompass diverse societal perspec-
tives. These limitations highlight the importance
of cautious interpretation and generalization of our
findings.

Ethical Considerations

We employ Multi-GT models to capture diverse
perspectives in the classifier. However, it’s con-
ceivable that the items or annotators within each
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collected dataset may be constrained in various
ways, and the annotator pool may not accurately
represent perspectives from the entire societal spec-
trum. Limitations could stem from factors such as
an insufficient count of annotators from specific
demographics in the pool or the presence of noisy
annotations from certain annotators.

An additional ethical consideration in training
Multi-GT models that capture the preferences of
individual annotators is the issue of privacy and
anonymity. It is crucial to ensure that annotators re-
main anonymized, and the process of learning and
inferring their personal perspectives is conducted
in a manner that avoids any potential misuse or
harm.
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A Supplemental Material

A.1 Experimental Setup

Dataset F1 (Single-GT) F1 (DisCo)
DMDA 0.78 0.78
DSI 0.80 0.78
DMHS 0.68 0.75

Table 5: F1(weighted) scores for Single-GT and DisCo
trained on the three datasets.

For our experiments we utilize pre-trained
RoBERTa-Base as Single-GT model for fine tun-
ing on DMDA, DSI and DMHS. Both Single-GT and
DisCo were trained for 5 epochs on each dataset
to compute training dynamics values of confidence
and variability. We report the F1 scores for Single-
GT and DisCo models trained on DMDA, DSI and
DMHS in Table 5 offering a summary of their per-
formance to highlight convergence of models and
reliability of predictions.

A.2 Additional Examples and Plots

Dataset Text Majority Label Minority Label

DMDA

Shocking! (Sorry, sarcasm
doesn’t work well on Twitter)

not offensive offensive

<user> Did he really die of
COVID-19. ???

not offensive offensive

Fragility at its finest not offensive offensive

DSI

Rate this Anti-Social Socially
Anxious Hermit Loser with
Long Hair (Pic)

offensive not offensive

What’s a pedophile’s all you can
eat buffet? The school bus

offensive not offensive

But is it really that big a deal? not offensive offensive

DMHS

@Cam_Coles You don’t know
what I know. Name somebody
colder, you monkey faced immi-
grant

offensive supportive

When these niggas force me to
say good morning URL

offensive neutral

Lailat al Miraj mubarak to all
Muslims.. I’m wishing for ev-
eryone’s peace & prosperity

supportive neutral

Table 6: Examples from the three datasets DMDA, DSI
and DMHS where Single-GT model has high confidence
(above 0.5) for the Majority Label and DisCo has really
low confidence (below 0.1) for the Minority Label. Fol-
lowing our best assessment, it appears that the minority
label in this case appears to be inaccurate.
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Figure 6: Boxplots illustrating the relationship between
model confidence and annotator agreement level (am)
for DisCo trained on DMDA (top), DSI (center) and DMHS
(bottom). We see a clear correlation indicating higher
confidence in the predicted label by the model with
higher agreement between annotators (denoted as the
fraction of annotators that agree on the majority vote on
the x-axis). We further depict significant differences in
confidence distribution across agreement levels using
the Mann-Whitney-Wilcoxon test (McKnight and Na-
jab, 2010) with Statannotations (Charlier et al., 2022).
Notation includes * for 1e− 02 < p <= 5e− 02 and
**** for p <= 1e− 04.
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