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Abstract

Significant progress has been made on text
generation by pre-trained language models
(PLMs), yet distinguishing between human
and machine-generated text poses an escalating
challenge. This paper offers an in-depth evalu-
ation of three distinct methods used to address
this task: traditional shallow learning, Lan-
guage Model (LM) fine-tuning, and Multilin-
gual Model fine-tuning. These approaches are
rigorously tested on a wide range of machine-
generated texts, providing a benchmark of their
competence in distinguishing between human-
authored and machine-authored linguistic con-
structs. The results reveal considerable differ-
ences in performance across methods, thus em-
phasizing the continued need for advancement
in this crucial area of NLP. This study offers
valuable insights and paves the way for future
research aimed at creating robust and highly
discriminative models.

1 Introduction

The drive to discern between human and machine-
generated text has been a long-standing pursuit,
tracing its origins back to Turing’s famous *Turing
Test’, which explore a machine’s ability to imitate
human-like intelligence. With the vast and rapid
development of advanced PLMs, the capacity to
generate increasingly human-like text has grown,
blurring the lines of detectability and bringing this
research back into sharp focus.

Addressing this complexity, this paper explores
two specific tasks: 1) the differentiation between
human and machine-generated text, and 2) the iden-
tification of the specific language model that gen-
erated a given text. Our exploration extends be-
yond the traditional shallow learning techniques,
exploring into the more robust methodologies of
Language Model (LM) fine-tuning and Multilin-
gual Model fine-tuning (Winata et al., 2021; Adi-
lazuarda et al., 2023b; Radford et al., 2019). These
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techniques enable PLMs to specialize in the detec-
tion and categorization of machine-generated texts.
They adapt pre-existing knowledge to the task
at hand, effectively manage language-specific bi-
ases, and improve classification performance. Note
that in this experiment, we do not use parameter-
efficient strategies even when they have a superior
specific-language capabilities. This is due to our
constraint to fully fine-tune a language model and
given the modular models’ limited capabilities in
such tasks (Adilazuarda et al., 2023a).

Through an exhaustive examination of a diverse
set of machine-generated texts, Our paper offers
the following contributions:

1. An exhaustive evaluation of the capabilities
of PLMs in categorizing machine-generated
texts.

2. An investigation into the effectiveness of em-
ploying multilingual techniques to mitigate
language-specific biases in the detection of
machine-generated text.

3. The application of a few-shot multilingual
evaluation strategy to measure the adaptability
of models in resource-limited scenarios.

2 Related Works

This study’s related work falls into three main cat-
egories: machine-generated text detection, iden-
tification of specific PLMs, and advancements in
language model fine-tuning.

Machine-generated Text Detection: Distin-
guishing human from machine-generated text has
become an intricate challenge with recent ad-
vancements in language modeling. Prior research
(Schwartz et al., 2018; Ippolito et al., 2020; Jawa-
har et al., 2020; He et al., 2024; Tian et al., 2023;
Bhattacharjee and Liu, 2023; Koike et al., 2023; Yu
et al., 2023) has explored nuances separating hu-
man and machine compositions. Our work builds
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on these explorations by assessing various method-
ologies for this task.

Language Models Identification: Some studies
(Antoun et al., 2023; Guo et al., 2023; Wu et al.,
2023; Mitchell et al., 2023; Deng et al., 2023; Su
et al., 2023; Li et al., 2023; Liu et al., 2023; Chen
et al., 2023) attempt to identify the specific lan-
guage model generating a text. These efforts, how-
ever, are still in growing stages and often rely on
model-specific features. Our work evaluates var-
ious methods’ efficacy for this task, focusing on
robustness across a spectrum of PLMs.

Language Model Fine-tuning Advances: Lan-
guage Model fine-tuning (Howard and Ruder,
2018) and Multilingual Model fine-tuning (Con-
neau et al., 2020) represent progress in language
model customization. They enable model special-
ization in machine-generated text detection and
classification and address language-specific biases,
thereby enhancing classification accuracy across
diverse languages.

This study intertwines these three research av-
enues, providing a thorough evaluation of the men-
tioned methodologies in machine-generated text
detection and classification.

2.1 Dataset

Our experiments utilize two multi-class classifica-
tion datasets, namely Subtask 1 and Subtask 2, as
referenced from the publicly available Autextifica-
tion dataset (Angel Gonzalez et al., 2023). Subtask
1 is a document-level dataset composed of 65,907
samples. Each sample is assigned one of two class
labels: ’generated’ or Thuman’. Subtask 2, serves
as a Model Attribution dataset consisting of 44,351
samples. This dataset includes six different labels
-A, B, C, D, E, and F - representing distinct mod-
els of text generation. A detailed overview of the
statistics related to both Subtask 1 and Subtask 2
datasets is provided in Table 1.

Language Subtask |Train| [Valid| |Test| #Class
Enolig, | Subask 1 27414 3046 3385 2
glis Subtask 2 18,156 2,018 2242 6
Spamisn | Subtask 1 25960 2886 3207 2
P Subtask2 17,766 1,975 2,194 6

Table 1: Statistics of the datasets.

3 Methods

3.1 Shallow Learning

We conducted an evaluation of two distinct shal-
low learning models, specifically Logistic Regres-
sion and XGBoost, utilizing Fasttext word embed-
dings that were trained on our preprocessed train-
ing set. FastText’s subword representation captures
fine morphological details. This is useful in de-
tecting differences between the often overly formal
structured machine-generated text and the morpho-
logically rich human-generated text.

Prior to the training process, we implemented
a fundamental preprocessing step involving non-
ASCII and special characters removal. As showed
in Table 2, we propose embedding on four lexical
complexity measures aimed at quantifying different
aspects of a text:

Average Word Length (AWL): This metric
reflects the lexical sophistication of a text, with
longer average word lengths potentially suggest-
ing more complex language use. Let W =
{w1,wa, ..., w, } represent the set of word tokens
in the text. The AW L is given by:

AW = ;zn: |

=1

Average Sentence Length (ASL): This mea-
sures syntactic complexity, with longer sentences
often requiring more complex syntactic struc-
tures.Let S = {s1, s2,..., Sm} represent the set
of sentence tokens in the text. The ASL is defined
as:

1 m
ASL = m; En

Vocabulary Richness (VR): This ratio of unique
words to the total number of words is a measure
of lexical diversity. If UW represents the set of
unique words in the text, the V R is calculated as:

[UW]
n

VR =

Repetition Rate (RR): The ratio of words occur-
ring more than once to the total number of words,
indicative of the redundancy of a text. If RW rep-
resents the set of words that occur more than once,
RR is computed as:

|[RW|
n

RR =




Table 2 presents a snapshot of our dataset af-
ter the application of our feature calculations.
These include Average Word Length (AWL), Aver-
age Sentence Length (ASL), Vocabulary Richness
(VR), and Repetition Rate (RR). By computing
these features, we aimed to capture distinct tex-
tual characteristics that could aid our models in
discriminating human and machine-generated text.

Text Label AWL ASL VR RR
you need to.generated 3.12 49.50 0.96 0.04
The Comm..generated 4.92 62.56 0.69 0.09
I pass my... human 3.55 90.00 090 0.10

Table 2: Text feature calculation. Label, AWL: Avg.
Word Length, ASL: Avg. Sent. Length, VR: Vocab.
Richness, RR: Repetition Rate

3.2 Language Model Finetuning

In this study, we employed multiple models: XLM-
RoBERTa, mBERT, DeBERTa-v3, BERT-tiny,
DistilBERT, RoBERTa-Detector, and ChatGPT-
Detector. The models were fine-tuned on single
and both languages simultaneously using multilin-
gual training (Bai et al., 2021).

During evaluation, we employed the F1 score
for our primary metrics. Furthermore, we incorpo-
rated a Few-Shot learning evaluation to assess our
models’ capacity to learn effectively from a limited
set of examples for their practical applicability in
real-world scenarios. This involved using varying
seed quantities of [200, 400, 600, 800, 1000]
instances, applied across both English and Spanish
languages.

4 Experiments

Our approach to fine-tuning PLMs remained consis-
tent across all models under consideration. We uti-
lized HuggingFace’s Transformers library!, which
provides both pre-trained models and scripts for
fine-tuning. Utilizing a multi-GPU setup, we em-
ployed the AdamW optimizer (Loshchilov and Hut-
ter, 2019), configured with a learning rate of 1e-6
and a batch size of 64. To prevent overfitting, we
implemented early stopping within 3 epochs pa-
tience. The models were trained across a total of
10 epochs.

Multilingual Finetuning. An integral part of
our approach was the models fine-tuning using En-

"https://huggingface.co/

glish and Spanish data to capture the unique lin-
guistic features of each language.

Few-Shot Learning. To see the performance of
the models in few-shot learning scenarios, employ
few-shot learning experiments ranging from 200 to
1000 samples combination from the English and
Spanish training data. The results of the few-shot
learning experiments are depicted in Fig. 1.

5 Results and Discussion

5.1 Distinguishing Capability

From the few-shot learning experiments, the mod-
els’ performance varied significantly in distinguish-
ing between human and machine-generated text.
In the default evaluation, multilingually-finetuned
mBERT outperformed the other models in English,
and single-language finetuned mBERT exhibited
the highest score in Spanish. However, In the few-
shot experiment setting, the RoBERTa-Detector
demonstrated the most robust distinguishing capa-
bility, scoring up to 0.787 with 1000 samples.

F1 Score vs. Shots (Subtask 1-EN)

Lo

A
/ < - s

F1 Score vs. Shots (Subtask 1-ES)

F1 Score

(a) English (b) Spanish

Figure 1: Subtask 1 Evaluation on Few-Shot Learning

When comparing these results, we can observe
that mBERT maintains strong performance in both
the few-shot learning experiments and the single
language experiments. It suggests that mBERT
could provide a reliable choice across different
tasks and experimental settings in both Subtasks.

5.2 Model Generation Capability

Model A B C D E F
Error(%) 37.62 6843 58.55 48.89 7424 13.81

Table 3: Comparison of Model Error Percentages. The
models, labeled as A, B, C, D, E, and F, were used for
prediction. The error rate was computed using mBERT
with multilingual fine-tuning.

Figure 3 illustrates the error rates of the evalu-
ated models, with Model E has the highest error



Model Subtask 1 Subtask 2
English-F1 Spanish-F1 | English-F1 Spanish-F1
Shallow Learning + Feat. Engineering
Logistic Regression 65.67% 63.87% 38.39% 42.99%
XGBoost 71.52% 71.53% 38.47% 41.08%
Fine-tuning
XLM-RoBERTa 78.80% 76.56% 27.14% 30.66%
mBERT 85.18% 83.25% 44.82% 45.16%
DeBERTa-V3 81.52% 72.58% 43.93% 28.28%
TinyBERT 63.75% 57.83% 15.38% 13.02%
DistilBERT 84.97% 78.77% 41.53% 35.61%
RoBERTa-Detector 84.01% 75.18% 34.13% 22.10%
ChatGPT-Detector 68.33% 64.64% 23.84% 25.45%
Multilingual Finetunin
mBERT 84.80% 82.99% 49.24% 47.28%
DistilBERT 85.22% 80.49% 41.64% 35.59%

Table 4: F1 Score for Various Models in English and Spanish for Subtask 1 and 2. Bold and underline denote first

and second best, respectively.

rate at 74.24%. In this context, a higher error rate
is interpreted positively, indicating that Model E
has the strongest capability to generate deceptive
text. This could mean that Model E is best at cre-
ating text that is complex or nuanced enough to
trick the detector into making incorrect judgments.
Model F, conversely, shows the lowest error rate
at 13.81%. This suggests that it is the least capa-
ble at generating deceptive text compared to the
other models. It might produce more predictable
or simpler text that the detector can easily identify
as generated, hence fewer errors in detection.

However, it’s worth noting that the performance
might be influenced by "similarity bias in architec-
ture" between the detector and generator models.
This means if the generator and detector models are
structurally similar, they might share certain biases
or weaknesses, which could skew the error rates.
For instance, if both models are based on a simi-
lar underlying technology (like a specific version
of BERT adapted for multilingual contexts, men-
tioned as mBERT with multilingual fine-tuning),
they might inherently perform similarly in certain
tasks or languages, affecting the observed error
rates.

5.3 Comparative Analysis of Model
Performances

Our analysis from experiments in Table 4 reveals
variations in the performance of the models for
both tasks: differentiating human and machine-
generated text, and identifying the specific lan-
guage model that generated the given text. For

the first task, mBERT emerges as the top performer
with English and Spanish F1 scores of 85.18% and
83.25% respectively, in the fine-tuning setup. This
performance is closely followed by DistilBERT’s
English F1 score of 84.97% and Spanish score of
78.77%. In the multilingual fine-tuning configu-
ration, DistilBERT edges out with an English F1
score of 85.22%, but mBERT retains its high Span-
ish performance with an F1 score of 82.99%.

In the second task, mBERT continues to excel,
achieving F1 scores of 44.82% and 45.16% for En-
glish and Spanish respectively in the fine-tuning
setup. It improves further in the multilingual fine-
tuning setup with English and Spanish scores of
49.24% and 47.28%. However, models such as
XLM-RoBERTa and TinyBERT show substantial
performance gaps between the tasks. For example,
XLM-RoBERTa excels in the first task with En-
glish and Spanish F1 scores of 78.8% and 76.56%,
but struggles with the second task, with F1 scores
dropping to 27.14% and 30.66%. Similarly, Tiny-
BERT shows a notable performance drop in the
second task.

The performance disparity suggests that the two
tasks require distinct skills: the first relies on de-
tecting patterns unique to machine-generated text,
while the second demands recognition of nuanced
characteristics of specific models. In conclusion,
mBERT demonstrates a consistent and robust per-
formance across both tasks. However, the findings
also underscore a need for specialized models or
strategies for each task, paving the way for future
work in the design and fine-tuning of models for



these tasks.

6 Conclusion

This study performed an exhaustive investiga-
tion into three distinct methodologies: traditional
shallow learning, Language Model fine-tuning,
and Multilingual Model fine-tuning, for detecting
machine-generated text and identifying the specific
language model that generated the text. Our find-
ings showed that mBERT is a robust discriminator
model across different tasks and settings. However,
other models like XLM-RoBERTa and TinyBERT
showed a noticeable performance gap between the
tasks, indicating that these two tasks might require
different skillsets. This research provides insights
into the performance of these methodologies on
a diverse set of machine-generated texts. It also
highlights the critical importance of developing
specialized models or strategies for each task.

Limitations

This study provides a comprehensive comparison
and analysis of models’ abilities to distinguish be-
tween human and machine-generated texts. How-
ever, it relies on datasets from the Autextification
competition, which withholds the specific models
used for text generation in Subtask 1. As a result, in
Subtask 2, our classification is based on anonymous
labels (A, B, C, D, E, F), without insight into the
actual models. This lack of transparency limits our
assessment of potential data biases or architectural
effects on the classification results. Future work
that overcomes these limitations could enhance the
depth and accuracy of the analysis.
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A Dataset Statistics

Figure 2 presents a comparative visualization of
feature-engineered dataset statistics for Subtask 1,
encompassing both English and Spanish languages.
The distribution patterns across the datasets for
each language are delineated by average word and
sentence length, alongside vocabulary richness and
repetition rate. Notably, the visualizations eluci-
date the differences between human-generated and
machine-generated text, with the human-generated
text typically showcasing greater variability in sen-
tence length and vocabulary richness.

Figure 3 offers a detailed feature comparison for
Subtask 2, showcasing statistical analyses of engi-
neered datasets in both English and Spanish. This
figure provides insights into the average word and
sentence length distributions, as well as vocabulary
richness and repetition rate across different labels,
significantly expanding upon the foundational com-
parisons of Subtask 1.
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Figure 2: Subtask 1 feature engineered dataset statistics.
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Figure 3: Subtask 2 feature engineered dataset statistics.



B Feature Engineered Dataset Samples

We present samples from our feature-engineered
dataset, which has been specifically curated to fa-
cilitate the analysis of textual features that may dis-
tinguish between human-generated and machine-
generated text. The dataset consists of text snip-
pets, each labeled as either "human’ or ’generated’,
representing the origin of the text. The features
engineered for this analysis include Average Word
Length (AWL), Average Sentence Length (ASL),
Vocabulary Richness (VR), and Repetition Rate
(RR).

Tables 5 and 6 display subsets of our dataset,
illustrating the distribution of these features across
texts labeled as "human’ or ’generated’. These sam-
ples exhibit the variability within and between cat-
egories, forming the basis for subsequent analysis
aiming to identify patterns and markers indicative
of the text’s origin. The engineered features are
expected to contribute to the development of mod-
els capable of differentiating between human and
machine-generated text.



Text Label AWL  ASL VR RR
you need to stop the engine and wait until it stops. Thisis generated 3.120 49.500 0.960 0.040
how I would do it: // Check if its safe
I have not been tweeting a lot lately, but I did in November, generated 3.160 49.500 0.840 0.120
and it was a really good month. I also
I pass my exam and really thankgod for that but idk where ~ human ~ 3.550  90.000 0.900 0.100
will I go for shsmy result is ah
@PierreJoye i have a server already, thanks for the offer human 3.400 104.000 0.920 0.080
the problem is time, as always :p (ill be done
Crying because I have to cry for you?. No. No, no, no. Itll generated 2.458 14.200 0.708 0.208
be all right. 1

Table 5: English feature engineered dataset on Subtask 1.
Text Label AWL  ASL VR RR
Mam, por qu no me despertaste? Te hable 5 veces, te grite, human  2.827 41.000 0.826 0.087
te prend la luz y te abr
. Artculo 2. Los Estados miembros aplicarn las medidas ~ human  4.353 43.500 0.647 0.216
necesarias para cumplir la presente Directiva a ms tardar
el 31 de diciembre de 1981. Artculo 3. Los destinatarios
de la presente Directiva sern los Estados miembros. Hecho
en Luxemburgo, el 30 de junio de 1981.
Mi memoria es: 5% de los mdicos tienen una alta vocacin  generated 3.840 118.000 0.960 0.040
y por lo tanto son buenos profesionales, el resto es prescind
APROBAR el proyecto de resolucin que se adjunta como generated 3.937 74.600 0.797 0.114
Anexo I, por la cual se aprueba la solicitud presentada
por el seor Csar Enrique Vega Arvalo (CP N PI:KEY),
con domicilio en calle 7 N 3080 Quilicura, comuna de
Santiago. Artculo 2. Notifquese y publquese. Dado en La
Moneda, a los veintisiete das del mes de diciembre de dos
mil diecinueve. Curso de Photoshop CS6 Bsico para
De pequeo Dios me dio a elegir entre tener una memoria  human  3.784 109.000 0.957 0.043

increble o un pito gigante y no me acuerdo lo que eleg

Table 6: Spanish feature engineered dataset on Subtask 1.
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C Evaluation on Subtask 2

In Figure 4, we observe the evaluation of few-shot
learning performance across various models for
Subtask 1 in both English and Spanish, denoted as
Subtask 2-EN and Subtask 2-ES respectively. The
F1 Score versus the number of shots (examples) is
plotted, providing a clear illustration of how model
performance scales with the amount of provided
training data. Notable trends include the progres-
sive improvement of models like ROBERTa and its
variant ROBERTa-ChatGPT with increasing data,
as well as the comparatively high performance of
XLM-R in both languages.
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Figure 4: Subtask 1 Evaluation on Few-Shot Learning
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