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Abstract

Large Language Model (LLM)-based Synthetic Data is becoming an increasingly important field of research. One of
its promising applications is in training classifiers to detect online toxicity, which is of increasing concern in today’s
digital landscape. In this work, we assess the feasibility of generative models to create synthetic data for toxic
language detection. Our experiments are conducted on six different toxicity datasets, four of whom are hateful
and two are toxic in the broader sense. We then employ a classifier trained on the original data for filtering. To
explore the potential of this data, we conduct experiments using combinations of original and synthetic data, synthetic
oversampling of the minority class, and a comparison of original vs. synthetic-only training. Results indicate that while
our generative models offer benefits in certain scenarios, the approach does not improve hateful dataset classification.
However, it does boost patronizing and condescending language detection. We find that synthetic data generated by
LLMs is a promising avenue of research, but further research is needed to improve the quality of the generated data
and develop better filtering methods. Code is available on GitHub; the generated dataset is available on Zenodo.
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1. Introduction research questions:

1. How effective are classifiers augmented with
synthetic data generated by GPT-3 Curie
for English hate speech classification, when
compared to less-resourced toxicity detection

The rapid advancements in Large Language Mod-
els (LLMs), particularly those based on the Trans-
former architecture (Vaswani et al., 2017), have
transformed Natural Language Processing (NLP).

These models, trained on massive corpora, demon- tasks?

strate remarkable generation capabilities to the ex- This explores the variability of synthetic data
tent of the fields’ leading scientists debating Artifi- augmentation effectiveness across tasks and
cial General Intelligence (Bubeck et al., 2023; But- languages.  German serves as a less-
lin et al., 2023). Efforts to utilize synthetic data resourced language contrast, while the sub-
are gaining momentum globally. Organizations tlety of patronizing language could reveal in-
leverage it to address complex issues such as hu- sights on GPT-3's harm filter and its application
man trafficking while maintaining data privacy (IOM, in nuanced toxicity detection.

2022)". Synthetic data can also help to alleviate the >
burden of labelling sensitive datasets (Juuti et al.,
2020), has proven valuable in hateful language de-
tection research (Wullach et al., 2021), and has synthetic data?
applications in preserving data privacy and bolster-

ing less-resourced NLP tasks (Tennage et al., 2018; This research question investigates the poten-
Lohr et al., 2018). tial to augment real-world datasets with syn-

thetic ones, which could have implications for
privacy and compliance in various fields.

. Is it possible to match the performance of
classifiers trained on existing toxic language
datasets with classifiers exclusively trained on

This work explores the potential of smaller gen-
erational models in data augmentation, specifically

to address toxicity detection. We utilize fine-tuned 3. Can synthetic data generated by GPT-3 Curie

GPT-3 Curie instances to generate synthetic text improve hate speech classifier performance
data to enhance downstream ML systems. over GPT-27?

_ Toxicity detect|_on has been a focus of NLP tasks This research builds on the GPT-2 based
in recent years, in part due to what has been de- methodology of Wullach et al. (2020, 2021).

scribed as a Facebook-fuelled genocide of the Ro-
hingya people in Myanmar (Mozur, 2018). We build
upon previous work (Wullach et al., 2021; Meyer
et al., 2022b) and investigate the following three

We compare our experimental results on GPT-
3 Curie generated data to theirs on GPT-2 gen-
erated data. We investigate potential improve-
ments due to GPT-3’s larger size and capabili-
ties and the potential impact of harm filters on
"https://tinyurl.com/2vs3raf4 data quality.

37

TRAC-2024 Workshop, pages 37-51
20 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0


https://tinyurl.com/2vs3raf4

Our findings indicate that while our generative
models offer potential for data augmentation, its
hateful language generation capabilities are con-
strained, likely due to its harm filter. Patronizing
non-hateful toxic language detection on the other
hand is improved by our methodology. Code ? is
available on GitHub; the generated dataset is avail-
able on Zenodo®.

2. Related Work

2.1. Toxic Language Detection

Toxic language detection is a critical task for miti-
gating harmful online communication, a focus high-
lighted by legislation like the EU’s Digital Service
Act (DSA). According to the DSA, illegal offline con-
duct is deemed to be illegal online as well, which in-
cludes inciting violence or hatred against protected
groups based on race, religion or ethnicity. It aims
to regulate large (>45m monthly users) social me-
dia companies to “protect its users and the users’
data”.

Toxic language includes interrelated concepts
like Hate Speech (Waseem and Hovy, 2016), Abu-
sive Language (Nobata et al., 2016), Cyberbullying
(Kumar et al., 2018, 2021), Toxicity (Risch et al.,
2021), Misogyny (Kumari and Singh, 2020), or dan-
gerous language (Poletto et al., 2021; Leader May-
nard and Benesch, 2016) among others (Fortuna
et al., 2020). These definitions can be subjective
and often overlap; toxicity and abusiveness are um-
brella terms for the distinct, yet related, concepts
like Hate Speech (Poletto et al., 2021; Sanguinetti
et al.,, 2018) and Patronizing Language (Pérez-
Almendros et al., 2020).

Various research challenges such as SemEval
(Basile et al., 2019; Zampieri et al., 2019, 2020;
Pavlopoulos et al., 2021), TRAC (Kumar et al.,
2018, 2020a), HASOC (Mandl et al., 2019, 2020,
2021) or GermEval (Wiegand et al., 2018; Struf3
et al., 2019; Risch et al., 2021) address these com-
plexities, emphasizing the need for robust detection
methods. The challenge of subjectivity, along with
the requirement for large, diverse datasets, mo-
tivates the use of data augmentation techniques.
LLM-based augmentation approaches offer poten-
tial for improving model performance in this domain,
as newer models are capable of accurately mim-
icking human text (Olney, 2023; Mukherjee et al.,
2023). However, responsible and ethical use of
such techniques is crucial, especially given the po-
tentially harmful nature of toxic language and the
biased nature of the models (Zamfirescu-Pereira
et al.,, 2023).

’https://github.com/khaliso/thesis
Shttps://zenodo.org/records/10022788
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2.2. Data Augmentation

Data Augmentation is defined as the synthesis of
new data from existing training data with the ob-
jective of improving the performance of a down-
stream model (Wong et al., 2016). Traditional ap-
proaches include mathematical generation (Boedi-
hardjo et al., 2022), synonym replacement (Pappas
etal., 2022), and oversampling techniques (Chawla
et al., 2002; Maldonado et al., 2019).

In contrast to these traditional approaches, LLM-
based data augmentation for specific classification
scenarios has the potential to re-define the infor-
mation theory rule, according to which process-
ing data can only reduce the amount of informa-
tion, not add to it (Beaudry and Renner, 2012).
LLMs are trained on vast amounts of data, and their
weights and biases incorporate information present
in these datasets (Brown et al., 2020). Tasking
such a model with replicating a dataset in any way
is therefore bound to incorporate parts of this in-
trinsic knowledge, and can be seen as an abstract
knowledge distillation task (Magister et al., 2022).

Applications for synthetic data span code gener-
ation (Luo et al., 2023; Gunasekar et al., 2023;
Mukherjee et al., 2023), image classification
(Krizhevsky et al., 2017; Ramesh et al., 2021;
Poole et al., 2022; Betker et al., 2023), robotics
(Bousmalis et al., 2023), medicine (Pappas et al.,
2022; lve et al., 2020; Lohr et al., 2018) and toxic
language detection (Wullach et al., 2020, 2021;
Schmidhuber, 2021; Meyer et al., 2022b; Whitfield,
2021). Various LLMs (e.g., GPT-2 (Anaby-Tavor
et al., 2020; Wullach et al., 2020, 2021; Schmidhu-
ber, 2021; Feng et al., 2020; Schick and Schitze,
2021; Whitfield, 2021; Juuti et al., 2020; Papaniko-
laou and Pierleoni, 2020), GPT-3 (Yoo et al., 2021;
Meyer et al., 2022b,a; Shaikh et al., 2022), T5 (Vu
et al.,, 2021) and ChatGPT (Meller et al., 2023))
are suitable for this task, with trade-offs in cost and
availability. The currently most widely used models,
ChatGPT, are optimized for a chat scenario, while
GPT-3 is designed for a more general text comple-
tion task. Ye et al. (2023) found that GPT-3 can
be as useful for Natural Language Understanding
tasks as GPT-3.5, given the wide variety of task
designs.

In general, LLM-based data augmentation falls
into two main key categories:

1. Prompt Engineering: Carefully designed
prompts guide LLM output to ensure the gen-
eration of relevant, high-quality data. Key con-
siderations include prompt structure, bias miti-
gation, and evaluation of data variability and
coherence (Meyer et al., 2022a; Meister et al.,
2023). Additionally, prompt evolution systems
can help optimize prompt design (Fernando
et al., 2023).
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2. Fine-tuning: Fine-tuning LLMs on a small,
task-specific dataset enables further special-
ization for data augmentation. This involves
potential trade-offs between introducing bias
and enhancing the quality of generated data
(He et al., 2022; Papanikolaou and Pierleoni,
2020). Fine-tuning can be class-agnostic or
class-sensitive.

(a) Class-agnostic: Augmentation focuses
on overall data generation, with the class
label playing a diminished role. Often, a
classifier is used to subsequently assign
soft labels (He et al., 2022; Kumar et al.,
2020b).

(b) Class-sensitive: LLMs are directly fine-
tuned to generate specific class-related
data, often requiring further filtering or re-
labelling to ensure quality (Yang et al.,
2020; Vu et al., 2021).

2.3. Data Augmentation in Toxic
Language Detection

In Toxic Language Detection in particular, data
augmentation can prove to be a crucial asset for
overcoming annotator burden and dataset scarcity
(Juuti et al., 2020). GPT-2 has proven effective in
this domain (Juuti et al., 2020; Wullach et al., 2020,
2021).

Generalization across toxic language datasets
can be limited, as seen in Seemann et al. (2023).
This emphasizes the importance of tailoring aug-
mentation to specific datasets. Shaikh et al. (2022)
highlight that prompts, if utilized, strongly influence
LLM output, with improved instruction following re-
ducing harmful content generation.

Waullach et al. (2020, 2021) offer a foundational
methodology for class-specific synthetic data gener-
ation with GPT-2. Their filtering with a BERT-based
classifier proved effective, and their experiments
revealed notable F1 improvements, driven mainly
by increased recall while maintaining precision.

Meyer et al. (2022b) built upon their work and
used GPT-3 Curie for a patronizing and conde-
scending language detection task, achieving im-
provements over a baseline classifier trained only
on original data. Their experiments on unfiltered
data highlight the critical role of filtering.

However, there are some gaps in the existing lit-
erature. The more recent generative models start-
ing at GPT-3 have only rarely been used for toxic
language augmentation, possibly due to cost con-
straints. Furthermore, there is little recent research
focusing exclusively on synthetic data. This ap-
proach emphasizes preservation over performance
gains, and could lead to improvements in data avail-
ability, privacy preservation and compliance.

2.4. Ethical Considerations

The ethical considerations in the deployment of
LLM-based data augmentation are vast. Utiliz-
ing an LLM to generate synthetic data gives the
LLM immense leverage over the task at the end of
the pipeline. It is therefore paramount to be well-
informed over any biases, tendencies, and privacy
concerns the LLM might pose.

1. Privacy: While synthetic data aims to mitigate
privacy breaches, there is no guarantee for
superior performance over traditional methods.
Researchers must critically assess the privacy-
utility trade-off. Additionally, LLMs trained on
private data can potentially leak that data when
prompted (Perez et al., 2022).

2. Toxicity & Hate: Generating toxic content can
aid in its detection, but also poses risks for
misuse. Safeguards against creating harmful
Al tools are crucial. Red-teaming for instance
is an active research area aiming to identify
LLM vulnerabilities (Perez et al., 2022; Ganguli
et al., 2022). Mitigating toxic tendencies in
LLMs themselves remains an open problem
(Gehman et al., 2020).

3. Time: While language changes slowly, it also
changes constantly (Aitchison, 2005). Espe-
cially in toxic language detection, what is con-
sidered hurtful or patronizing is susceptible to
change, e.g. the statement "She is a bossy
woman" carries a slightly different connotation
than "He is a bossy man" today, but might not
in the future. If a data point was attributed a
certain label some time ago, it might no longer
be true today.

4. Model Bias: LLMs inherit biases from train-
ing data, affecting both generated data and
subsequent classifiers (Nangia et al., 2020;
Blodgett et al., 2020; Abid et al., 2021; Bom-
masani et al., 2022). Bias detection and miti-
gation techniques are essential. Sycophancy
and deceptive reasoning of LLMs further com-
plicate the issue (Turpin et al., 2023; Nanda
et al., 2023).

5. Democratization of Al: Synthetic data could
break reliance on proprietary datasets, mak-
ing Al research more accessible. However, if
biased LLMs create synthetic data, this will
amplify issues rather than actually addressing
them. (Paullada et al., 2021; Solaiman and
Dennison, 2021).

3. Methodology

This research employs GPT-3 Curie for synthetic
data generation, building upon the works of Wullach



et al. (2020, 2021) and Meyer et al. (2022b), while
adapting them to the task at hand.

3.1.

We evaluated six datasets. Davidson (Davidson
et al., 2017), Founta (Founta et al., 2018), HatEval
(Basile et al., 2019) and Stormfront (de Gibert et al.,
2018) are also investigated by Wullach et al. (2020,
2021) and focus on English Hate Speech detection.
The GermEval dataset (Risch et al., 2021) adds
German Toxic Language detection, while the PCL
dataset (Pérez-Almendros et al., 2020) tackles sub-
tle patronizing and condescending language. This
selection allows both a comparison to prior experi-
ments and explores LLM performance on different
Toxic Language variations.

Datasets

3.2. Classifiers

RoBERTa (Liu et al., 2019), AIBERT (Lan et al.,
2019), HateBert (Caselli et al., 2021a) BERT and
multilingual BERT (Devlin et al., 2018) were the
classifiers evaluated for their performance on both
full and undersampled original training sets. Hate-
Bert is a BERT model fine-tuned on English hateful
Reddit comments.

3.3. Generative Model

We selected GPT-3 Curie (Brown et al., 2020) as
our Generative Model. While GPT-3 DaVinci was
the strongest available model that could be fine-
tuned at the time of experimentation, GPT-3 Curie
offers comparable performance while being both a
lot more economically feasible and building upon
previous work with PCL data (Meyer et al., 2022b).
Open-source alternatives like GPT-J Wang and Ko-
matsuzaki (2021) or GPT-NeoX-20B (Black et al.,
2022) were considered, but were either less pow-
erful or more computationally demanding.

3.4. Pre-processing

During pre-processing, all datasets were trans-
formed to be binary (0: non-toxic, 1: toxic). After-
wards, the data Dy.g was split into 80/20 train-test
sets Doyig-irain @aNd Dorig-test Where no testing data
was supplied, preserving class imbalance. We
also created undersampled training sets Dorig-us-
All datasets were shuffled for unbiased validation.

3.5. Data Generation

The data generation pipeline was inspired by Wul-
lach et al. (2020, 2021). Doyig-train Was split by class
label. This split results in two datasets, Dyy4.0 and
Dyrig-1, to fine-tune two GPT-3 Curie models, re-
spectively. The OpenAl API expects a .jsonl docu-
ment in the format of prompt-completion pairs. In
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the next step, we therefore transform both datasets
to fit this schema. In accordance with the pipeline
proposed by Wullach et al. (2020), we used an
empty () prompt. For the completion section, the
text samples from the datasets were used.

These datasets are then used to fine-tune a GPT-
3 Curie model via the OpenAl API, resulting in
FTorg0 and FTypqe.1. The fine-tuned models are
prompted (") to generate a total of 40.000 synthetic
samples per class-label, resulting in Dgyns.0 and
Dsynin-1. The maximum token length of each gen-
erated output was set to the average token length
of the corresponding Dorig-o and Dyyig-1. We further-
more removed any tabs the models had created,
as the samples Dgyi0 and Dgypm.; Were saved in
a .tsv file, and replaced them with a space (' ’). For
the synthetic PCL datasets, only the missing syn-
thetic data to get to 40,000 raw synthetic samples
per label was generated, as we had access to the
synthetic data created by Meyer et al. (2022b). The
total cost of synthetic data generation was $269,80
USD.

3.6. Filtering

Filtering is crucial for ensuring the quality of class-
conditioned synthetic data, as noted by Meyer et al.
(2022b); Wullach et al. (2020, 2021) and Anaby-
Tavor et al. (2020). Our filtering method slightly
differs from Wullach et al. (2020, 2021). Instead of
a BERT model, we fine-tuned all five evaluated clas-
sifiers on Dorig-train @and evaluated them on Dyyig.test-
We then used the strongest performing baseline
classifier to filter the corresponding Dsyni.o and
Dsynin-1. Samples mismatching their intended label
(e.g., label 1 data generated by F'Tyq.0) or with
confidence scores below 0.7 were discarded, fol-
lowing Wullach et al. (2021). These samples were
then combined to form Dgy .

While our initial goal was to have 40,000 cleaned
synthetic samples per dataset, filtering loss varied
greatly. As can be seen in Table 1, up to 96%
of data was discarded. Compared to earlier work
(Meyer et al., 2022b; Wullach et al., 2020), our
FTorg-1 model generated a lot less toxic data.

3.7. Experiments

Due to this high rejection rate, reaching 40,000
samples for all datasets was not economically fea-
sible. To maximize the use of the available syn-
thetic data, we designed three experiments that
were conducted using the best baseline classifier:
fine-tuning on all available data, only on synthetic
data, and synthetic oversampling. To check for ro-
bustness, the runner-up classifier from the baseline
selection process was also evaluated on the Com-
posite experiments. Significance testing was done



Dataset Synthetic 0 | Synthetic 1 | Synthetic filtered 0 | Synthetic filtered 1
Davidson (Davidson et al., 2017) 43479 42540 41790 1521
Founta (Founta et al., 2018) 40996 41269 40782 5268
HatEval (Basile et al., 2019) 43758 41273 40991 22587
Stormfront (de Gibert et al., 2018) 43536 40259 41523 22988
GermEval (Risch et al., 2021) 40334 40935 34801 5154

PCL (Pérez-Almendros et al., 2020) 44073 44642 42919 10474

Table 1: Number of synthetic samples before and after filtering

through cross-validation using Bonferri-corrected
paired t-tests.*

3.7.1. Composite (C)

Evaluates whether adding Dgyni t0 the Doyig-train
improves classifier performance.

Here, the classifier is either fine-tuned on Dgyn,
along with Dorig-train, OF Uses an undersampled ver-
sion (US) of both, Dyyig.us and Dsynih.us. The evalu-
ation is conducted on Dyyig.test-

3.7.2. Synthetic (S)

The classifier is only fine-tuned on Dgynim OF Dypni-ys-
Here, we also implemented 5-fold cross-validation
for statistical testing, which was conducted on
Dorig-train- The evaluation is conducted on Dorig-test.

3.7.3. SMOTE-like

Inspired by previous work (Chawla et al., 2002;
Meyer et al., 2022b; Maldonado et al., 2019), we
use Dsynin to balance a skewed Dyig.1rain before
fine-tuning. This method uses synthetic samples to
balance the minority class, as displayed in Pseudo-
code 1. The evaluation is conducted on Dyyig.test-

Algorithm 1 Adjust Dataset Lengths
: Deomp-1 = Dorig-1 + Dsynth-1
if len(Dcomp-1) < len(Dyrigo) then
Dorig—O = Dorig—O[: Ien(Dcomp—1 )]
else if len(Dcomp-1) > len(Doyig.o) then
Dsynth-1 Dsynth-1 [3 Ien(Dorig-O)
Ien(Dorig-1)]
Dcomp—1 = Dorig—1 + Dsynth—1
end if

aRrebd=

194

4. Evaluation and Results

4.1.

Surprisingly, most of our baseline classifiers
achieved higher macro F1, Precision and Recall
than those reported by Wullach et al. (2021), Meyer
et al. (2022b) and Schmidhuber (2021). Only the

Baseline Classifier Selection

“Detailed settings and results can be found in the
project repository.
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HatEval classifiers consistently returned lower per-
formance.

HateBert emerged as the most consistently
strong performer, being either the best or runner-up
across all datasets. This suggests that 'hateful’ em-
beddings are effective for toxic language detection,
even transcending language barriers in the case
of GermEval. AIBERT, however, fell behind expec-
tations, as it never achieved a top or runner-up
position.

While there is no clear correlation between
dataset size, imbalance and whether the full train-
ing set or undersampled training data is optimal,
undersampled classifiers often yielded higher recall.
This is important, as minimizing false negatives in
toxic language detection is critical.

4.2. Composite (C)

In the case of the Hate Speech datasets, the Com-
posite approach generally yielded results between
those of classifiers trained on Dyyig-train @and its un-
dersampled counterpart trained on Dyyg.s, With a
few classifiers performing a lot worse. This pattern
was observed across Founta, Stormfront, David-
son, and HatEval. Pre-processing errors (e.g., Hat-
Eval Dgyn, containing Spanish samples not used
by Wullach et al. (2020)) may have affected perfor-
mance.

For the Toxic datasets, mBert trained on Dorig-us
performed best for GermEval. Issues with GPT-
3 Curie generating non-English text are hinted at
by substantial filtering of label 0 data. However,
HateBert fine-tuned on the undersampled data per-
formed well, even though the presence of synthetic
data appears to be a hindrance in this case. Only
the experiments on the PCL dataset (patronizing
and condescending language) showed modest F1
score improvements. This suggests GPT-3’s capa-
bility to provide meaningful variations for this subtle
form of toxicity, possibly due to the harm filter being
less restrictive for non-hateful content.

GPT-3 Curie generated Synthetic data appears
to have limited benefit for heavily imbalanced hate
speech datasets. This could point to GPT-3’s harm
filter limiting the generation of novel harmful con-
tent. Also, pre-processing errors in some datasets
likely impacted the results. We will provide more
details in the Limitations section. Overfitting may
explain some cases where only one label was pre-



Table 2: Recall and Macro F1 for full and undersampled Composite and SMOTE experiments in comparison
to the original. The highest result per dataset is marked bold, and the runner-up bold and italic

Dataset Classifier Original 0.Us Composite C.US SMOTE
R F1 R F1 R F1 R F1 R F1
Founta BERT 78.08 81.87 | 86.31 70.69 | 80.54 80.72 | 83.68 67.12 | 8520 71.98
HateBert | 76.30 80.97 | 85.76 69.23 | 79.52 79.63 | 84.78 70.58 | 85.33 71.54
Stormfront | HateBert | 72.87 ~71.16 | 83.68 83.63 | 67.99 6580 | 81.38 81.32 | 78.87 78.87
RoBERTa | 05  33.3 | 82.01 &81.96 | 49.79 3598 | 51.26 41.99 | 55.02 44.39
Davidson | HaeBert | 82.89 "92.64 | 91.38 87.78 | 81.82 84.15 | 9052 87.70 | 91.78 89.62
BERT 90.79 90.93 | 90.53 87.87 | 55.63 54.06 | 89.43 85.46 | 89.65 89.11
‘ HatEval HateBert | 56.32 43.44 | 59.14 49.02 | 56.02 43.23 | 50.70 36.10 | 57.99 46.91
RoBERTa | 58.82 48.72 | 55.69 42.16 | 50.0 36.71 | 50.0 36.71 | 54.48 40.48
GermEval | mBert 70.92 7081 | 81.26 81.25 | 50.0 34.3 | 58.03 54.96 | 67.42 67.13
HateBert | 51.51 38.73 | 79.17 78.98 | 60.53 60.17 | 76.29 76.01 | 65.80 65.69
‘ PoL Bert 69.39 71.78 | 81.23 6594 | 50.0 4751 | 82.84 642 | 71.61 73.10
HateBert | 68.77 7151 | 795 64.74 | 69.01 72.28 | 80.04 59.40 | 74.96 73.72

Table 3: Mean score (Standard Deviation)—in percent, for original and synthetic classifiers, calculated on
original validation sets in 5-fold cross-validation. Significantly worse F1 scores of synthetic classifiers
compared to their original counterparts are marked bold.

Original Synthetic
Dataset A P R F1 A P R F1
Founta
Bert 93.27 (1.9) 70.24 (22.5) 64.28(13.9) 65.93(17.1) | 91.70(0.4) 73.64(0.6) 79.10(2.6) 75.94(1.3)
Bert US 85.15 (0.6) 85.14 (0.6) 85.13 (0.6) 85.13 (0.6) 83.27 (2.1) 84.23(1.9) 83.24(2.1) 83.13(2.2)
Stormfront ‘
HateBert 92.34 (1.2) 73.12 (15.8) 69.07 (10.9) 70.48(12.9) | 68.85(12.2) 54.17(5.1) 64.74(8.3) 50.68 (2.2)
HateBert US | 84.49 (2.7) 84.75 (2.5) 84.50 (2.6) 84.44 (2.8) 54.39 (8.7) 35.41(22.7) 53.71(8.3) 40.25(14.9)
Davidson
HateBert 94.21 (0.5) 92.24 (0.5) 92.64 (0.9) 92.42 (0.6) 68.28 (3.5)  45.00 (4.9) 48.55(1.5) 45.72(2.3)
HateBert US | 92.57 (1.0) 92.61 (0.9) 92.56 (1.0) 92.56 (1.0) 76.53 (3.2) 80.45(2.3) 76.53(3.1) 75.69 (3.5)
HatEval
HateBert 68.28 (13.85) 69.41(11.01) 73.36(7.3) 65.84(15.33) | 81.47(6.8) 77.07(6.7) 82.82(5.0) 77.81(6.7)
HateBert US | 82.03 (0.1) 81.84 (0.5) 82.46 (0.9) 82.13 (0.2) 82.57 (0.9) 83.10(0.9) 82.56(0.9) 82.49(0.9)
GermEval
mBert 60.62 (6.5) 49.48 (20.0) 58.23 (8.6) 52.32(15.68) | 56.63 (0.5) 28.32(0.3) 50.0 (0) 36.16 (0.2)
mBert US 60.42 (5.5) 55.33(16.8) 60.20 (5.9) 56.90(13.0) | 62.49 (4.9) 64.83(4.5) 6257 (4.2) 60.95(5.0)
PCL
Bert 90.66 (0.5) 66.94 (12.2) 62.78 (7.3) 64.20 (9.4) 78.39(6.9) 61.85(1.9) 74.78(1.5) 62.74(4.2)
Bert US 81.55 (1.9) 81.47 (1.9) 81.49 (1.9) 81.45 (1.9) 7443 (1.9) 78.30(1.2) 74.45(0.9) 73.44(1.6)

dicted (R=50.0), particularly in imbalanced training
scenarios.

4.3. Synthetic (S)

We trained the base version of the winning base-
line classifier of each dataset on Dyig.train, Dorig-us:
Dsynin and Dgypm.ys in 5-fold cross-validation. The
models fine-tuned on synthetic data were validated
on the corresponding original dataset. In Table 3,
we give an overview of the cross-validation results.
When applying paired t-tests to macro F1 results
with p < 0.0042 5 we get four significant results for

5To account for multiple comparisons, we applied a
Bonferroni-correction of p = 0.05/12 = 0.0042 to set the
threshold for significant results.

42

3 different datasets, all of which mark a significant
performance decrease.

As can be seen in Table 3, synthetic-only
macro F1 for Stormfront was significantly worse
for HateBertsynm-us (t(4) = 6,51, p = 0.0029) when
compared to HateBertorg.us, While the difference
between HateBertsynn and HateBertorig-train Was
found to be not significant (t(4) = 3,94, p = 0.0170).

For Davidson, macro F1 of HateBertorig-train Was
significantly higher than that of Hate Bertsynn (t(4) =
46,09, p < .001), and HateBertorg.us outperformed
HateBertsypmus ((4) = 12.12, p < .001).

In the case of PCL, the model trained on Dgyn
did not significantly lag behind its original counter-
part, while macro F1 of Bertyng.us Was significantly
higher than Bertsynm.us (1(4) = 9.62, p < .001).



In the cases of the Founta, HatEval and Germ-
Eval datasets, however, the models trained on the
synthetic data variations did not significantly lag
behind their original counterparts.

4.4. SMOTE-like

The SMOTE approach consistently performed well
across all tested datasets, being the top-performing
or runner-up approach for the synthetic data exper-
iments in HatEval, Davidson, Stormfront, PCL and
GermEval. Most notably, HateBert fine-tuned on
the SMOTE-like dataset achieved the highest result
on any experiment on PCL data, achieving a higher
F1 score than the classifiers trained on original
data.

4.5. GPT-3 vs. GPT-2

As displayed in Table 4, we find that our base-
line models are surprisingly strong. We achieved
higher macro F1 scores than previous work (Wul-
lach et al., 2020, 2021; Meyer et al., 2022b) in three
of the four datasets using either the full or under-
sampled training set. Our experiments involving
synthetic data on the other hand, returned mixed
results. The macro F1 of Davidson Dcomp.us is com-
parable to that reported by Wullach et al. (2021),
and Founta Dcomp-irain €Xceeded all classification
results reported by them on this dataset. On the
other hand, the experiments involving RoBERTa
saw a steep decline in performance. We also need
to note that Wullach et al. (2021) achieved stronger
macro F1 results on both our baseline and com-
posite experiments on the HatEval dataset, while
Precision and Recall are similar.

HateBERT emerged as the best or second-best
classifier on all datasets, even on the German
GermEval set. This underscores the power of bi-
asing models towards hate speech, even when the
model is trained in a language it is not evaluated
on. We find no clear pattern for undersampling.
The benefits in F1 score of undersampled vs. full
datasets vary across datasets, with no clear link to
dataset size or imbalance. Undersampled classi-
fiers do, however, often show higher recall, making
them ideal if false negatives are of high concern.

GPT-3 Curie generated synthetic data appeared
to have a detrimental impact on some, but not all,
classifier performances.

5. Discussion

While our works build on Wullach et al. (2021) and
Meyer et al. (2022b), there are a few key differ-
ences. We utilize undersampling and SMOTE-like
techniques, and investigate synthetic-only training
scenarios. Let us revisit our research questions:
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1. Are classifiers augmented with synthetic data
generated by GPT-3 Curie for English hate
speech classification more effective, when
compared to less-resourced toxicity detection
tasks?

English hate speech classifiers saw perfor-
mance decreases with synthetic data. For
German toxic language, multilingual BERT per-
formed best at baseline, but HateBert outper-
formed it on synthetic data. This suggests
possible cross-linguistic hate speech pattern
recognition. The best results were seen on
the subtle patronizing and condescending lan-
guage (PCL) dataset, especially on synthetic
oversampling.

Conclusion: H1 is partially accepted. The im-
pact of GPT-3 Curie generated synthetic data
varies across tasks and languages.

Is it possible to match the performance of
classifiers trained on existing toxic language
datasets with classifiers exclusively trained on
synthetic data?

Synthetic-only classifiers underperformed sig-
nificantly on Davidson and the undersampled
PCL and Stormfront datasets. No significant
impact was seen on the remaining datasets.

Conclusion: H2 is partially rejected, as the
results were dataset-dependent. A possible
explanation is GPT-3’s harm filter, which would
limit the generation of novel harmful content,
making the approach less effective for explicitly
hateful datasets.

Can synthetic data generated by GPT-3 Curie
improve hate speech classifier performance
over GPT-27?

GPT-3 Curie generated data negatively im-
pacted English hate speech classifier perfor-
mance compared to baseline classifiers. This
contrasts with the findings of Wullach et al.
(2021) using GPT-2 generated data. This neg-
ative impact could be explained by either the
harm filter of GPT-3 Curie or by our stronger
baselines.

Conclusion: H3 is rejected. GPT-3 Curie,
following our methodology, does not achieve
stronger performance than GPT-2 for English
hate speech classifier performance.

We also find that the data preparation approach
made as much, if not more, difference than syn-
thetic data. The SMOTE-like approach consistently
performed well, and training models on both the
full training data and undersampled training data
had a positive impact in our experiments. If one
approach had failed due to under- or overfitting,
the other often delivered a usable model. Finally,



Table 4: Comparison to Wullach et al. at Base and Gen:80K

o . Original Composite
Dataset Classifier | Metric Wullach et al. Own results Wullach et al. Own results
P 73.0 66.85 (0. US) /87.27 (O) 84.9 64.38 (C. US)/80.91 (C) ‘
Founta Bert R 65.0 86.31 (0. US) /78.07 (O) 67.8 83.68 (C. US) / 80.54 (C)
F1 68.8 70.69 (0. US) / 81.87 (O) 75.4 67.12 (C. US) / 80.72 (C)
P 60.9 70.73 (0. US) / 74.8 (O) - - ‘
Bert R 56.2 70.71 (O. US) / 57.95 (O) -
Stormfront F1 58.5 70.70 (O. US) / 49.35 (O) - -
P 80.9 82.22 (0. US)/25.0 (O) 87.2 53.47 (C. US) /48.48 (C)
RoBERTa | R 63.7 82.01 (0. US) /50.0 (O) 73.6 51.26 (C. US)/ 49.79 (C)
F1 71.3 81.96 (O. US) / 33.33 (O) 79.8 41.99 (C. US)/35.98 (C)
P 98.1 86.10 (O. US) /91.07 (O) 87.5 83.45 (C. US) / 74.62 (C) ‘
Davidson Bert R 70.6 90.53 (O. US) /90.79 (O) 86.8 89.43 (C. US) / 55.63 (C)
F1 82.1 87.87 (0. US) /90.93 (O) 87.1 85.46 (C. US) / 54.06 (C)
P 69.6 66.78 (O. US) /68.27 (O) - -
Bert R 53.5 55.90 (O. US) / 56.2 (O) -
HatEval F1 60.5 43.26 (O. US) /43.37 (O) - -
P 64.0 68.77 (O. US) /68.06 (O) 70.6 29.00
RoBERTa | R 64.2 55.69 (0. US) / 58.82 (O) 80.8 50.0
F1 64.1 42.16 (0. US) /39.12 (O) 75.4 36.71

HateBert performed well on all challenges related
to toxicity detection, regardless of language or the
complexity of the task it was tested it on; its use-
case can therefore possibly be extended beyond
hate to the field of toxicity detection in general.

6. Conclusion and Future Work

This research demonstrates the potential and limi-
tations of GPT-3 Curie for synthetic toxic data gen-
eration. We find that strict filtering is crucial, and
performance may still be lower than using original
data alone. GPT-3 Curie is feasible with non-hateful
toxic language, providing a potential avenue of re-
search when original data is limited. We further
note the importance of utilizing both full and under-
sampled versions of a dataset, and underline the
power of synthetically oversampling the minority
class (SMOTE) for stability.

There is a plethora of research avenues for fu-
ture work. Our experiments listed in Tables 2 and
4 need to be cross-validated and tested for signif-
icance. ANOVA could be utilized to test for sig-
nificance in the relationships between using the
full datasets, undersampling, and the SMOTE-like
approach. An exploratory data analysis using meth-
ods like unique word comparison, ROGUE-L and
cosine similarity to investigate the discrepancy in re-
sults between and within the original and synthetic
datasets is recommended. Filtering techniques be-
yond our approach could be tested and compared,
including more traditional machine learning con-
cepts like XGBoost or Naive Bayes.

We find GPT-3 Curie to be not suitable to gen-
erate synthetic hateful language, likely due to its
harm filter. However, other generative models, both
proprietary and open-source, could be fruitful. Al-

ternative generation techniques, such as using soft
labels (Yang et al., 2020; He et al., 2022) or class-
agnostic approaches based on prompting or fine-
tuning, offer a more resource-friendly path and
could be investigated. Crucially, a thorough evalu-
ation of our approach using privacy-preservation
metrics is needed to assess feasibility.

All things considered, LLM-based data augmen-
tation is an immensely powerful tool that promises
to remove some of the barriers in the way of sci-
ence. Before we get there, however, there is still
some work to be done, and this paper is hopefully a
step in this direction. We need to thoroughly under-
stand model biases and potential pitfalls through
rigorous tests like red-teaming (Perez et al., 2022;
Ganguli et al., 2022). We need to understand a
model structure for it to be as effective as possi-
ble, i.e. we find it is not recommended to generate
harmful data with a model that has a harm filter with
no accessible way of circumventing it for research.

7. Limitations

The ethical considerations outlined in the ethics
section must be reiterated. Model biases can po-
tentially be amplified in our pipeline, where a po-
tentially biased model generates synthetic data,
filtered by another biased model, only to train yet
another biased classifier.

Our generative model may have been trained
on some of the evaluated datasets (except for PCL
and GermEval datasets, which were published after
GPT-3’s knowledge cutoff), impacting the evalua-
tion of synthetic data.

The current binary classification approach
presents scalability issues for multi-label datasets.
Alternative generation methods that are class-
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agnostic or use a one-model approach should be
explored to address this limitation.

Our study also faced several limitations that war-
rant acknowledgement. An error led to overlaps
between training and test data for the GermEval
(75/609 test cases) and Founta (163/11764 test
cases) data entries. This contamination, especially
pronounced in GermEval, may affect the validity of
the results. The HatEval datasets used to fine-tune
GPT-3 Curie included Spanish data due to a pre-
processing error, which hinders direct comparisons
with prior work. No Spanish data was contained
in later steps of the experiments. And finally, as
seenin Table 4, we did not conduct all experiments
on Bert, AIBERT and RoBERTa that were done by
Waullach et al. (2021) due to time constraints.
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